JPS6324427B2 - - Google Patents

Info

Publication number
JPS6324427B2
JPS6324427B2 JP59187764A JP18776484A JPS6324427B2 JP S6324427 B2 JPS6324427 B2 JP S6324427B2 JP 59187764 A JP59187764 A JP 59187764A JP 18776484 A JP18776484 A JP 18776484A JP S6324427 B2 JPS6324427 B2 JP S6324427B2
Authority
JP
Japan
Prior art keywords
powder
weight
parts
waste
mentioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59187764A
Other languages
Japanese (ja)
Other versions
JPS6164387A (en
Inventor
Hisashi Nakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59187764A priority Critical patent/JPS6164387A/en
Publication of JPS6164387A publication Critical patent/JPS6164387A/en
Publication of JPS6324427B2 publication Critical patent/JPS6324427B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は廃棄物の処理剤とその処理方法に関す
る。 近年、産業活動、生活活動の結果排出される廃
棄物は自然の浄化作用の限度を超える莫大な量と
なつており、自然環境と生活環境との間の物質循
環を円滑に行うためには上記廃棄物を処理するこ
とが急務となつている。 本発明で廃棄物とは、産業活動、生活活動の結
果排出されるものをいい、各種廃棄物の焼却灰、
汚泥、鉱物性油および動植物性油脂に係るすべて
の廃油、廃酸、廃アルカリ、各種有機物系無機物
系の廃液、動植物性残渣、廃棄処分の果物と魚
類、各種鉱滓、家蓄糞尿、屎尿と屎尿浄化槽汚
泥、媒塵、および河、川、湖、池、海洋の底質汚
泥である。そして、それら廃棄物の内PCB等の
有機塩素化合物、有機リン化合物、シアン系化合
物および有害金属等の有害物質の一種又は二種以
上含有するものを特に有害物質含有廃棄物とい
う。 (従来の技術) 従来、廃棄物の処理について種々の方法が用い
られており、特に有害物質の含有するものに対し
ては化学反応により無害化する化学処理方法か、
又はセメントによる固形化方法で処理していた。 ここで化学処理とは、例えば六価クロム
(Cr6+)を硫酸酸性中で酸性亜硫酸ナトリウムで
還元処理して三価クロム(Cr3+)にするものであ
り、セメント固形化はセメントが有するアルカリ
性での水酸化物沈澱効果及びイオンの吸着効果に
よりセメント固形化時に有害物質をセメント中に
固定化するものである。 しかしながら、化学処理の方法は二次公害の虞
れが常につきまとうものであるから、その処理操
作が極めて面倒であること、また、セメント固形
化による方法はその処理操作が簡単であるが、有
害物質の固定化機能に限界があり、カドミ、鉛、
砒素以外の有害物質の溶出量を許容範囲内に抑止
することが極めて難しいこと、等により従来の処
理法は未だ充分なものでなかつた。 (発明が解決しようとする問題点) 本発明は上記した事情に鑑みてなされたもので
あり、セメント固形化の処理操作の簡便さを有
し、しかもセメントよりも優れた有害物質に対す
る固定化機能を具備するとともに、有害物質含有
廃棄物ばかりではなく、その他の廃棄物にも適用
可能な新規な廃棄物の処理剤及びその処理方法を
提供せんとするものである。 (問題点を解決するための手段) 本発明に係る廃棄物の処理剤は、生石灰粉末
40.0〜56.0の重量部、硅酸苦土石灰粉末5.0〜14.0
重量部、滑石粉末3.5〜6.5重量部、炭酸石灰粉末
12.5〜18.0重量部、クレイ粉末1.0〜3.0重量部、
アルミン酸カルシウム粉末9.0〜11.0重量部、及
び三酸化イオウ50重量%以上含有粉末8.5〜11.5
重量部を配合したことを特徴としている。 また、本発明に係る廃棄物の処理方法は上記処
理剤と被処理廃棄物とを混合するとともに、脱水
粉体化することを特徴としている。 以下、本発明を実施例に基づいて具体的に説明
する。 (作用) 本発明に用いられる各原料は例えば次の様な成
分規格のものが用いられる。
(Industrial Application Field) The present invention relates to a waste treatment agent and a treatment method thereof. In recent years, the amount of waste generated as a result of industrial and daily life activities has exceeded the limits of natural purification, and the above-mentioned measures are needed to ensure smooth material circulation between the natural environment and the living environment. There is an urgent need to dispose of waste. In the present invention, waste refers to those discharged as a result of industrial activities and daily life activities, including incineration ash of various wastes,
Sludge, all waste oils related to mineral oils and animal and vegetable oils, waste acids, waste alkalis, various organic and inorganic waste liquids, animal and plant residues, fruits and fish for disposal, various mine slags, household manure, human waste and human waste. These are septic tank sludge, pollutants, and bottom sludge from rivers, rivers, lakes, ponds, and oceans. Among these wastes, those containing one or more types of hazardous substances such as organic chlorine compounds such as PCBs, organic phosphorous compounds, cyanide compounds, and toxic metals are particularly referred to as hazardous substance-containing wastes. (Prior Art) Conventionally, various methods have been used to treat waste. Especially for waste containing harmful substances, there are chemical treatment methods that make them harmless through chemical reactions,
Or, it was treated by solidification method using cement. Chemical treatment here is, for example, reducing hexavalent chromium (Cr 6+ ) with acidic sodium sulfite in acidic sulfuric acid to convert it into trivalent chromium (Cr 3+ ), and cement solidification is the process of reducing the amount of chromium (Cr 6+ ) that cement has. Harmful substances are immobilized in cement during cement solidification due to the hydroxide precipitation effect and ion adsorption effect in alkaline conditions. However, chemical treatment methods are always associated with the risk of secondary pollution, so the treatment operations are extremely troublesome, and cement solidification methods are easy to treat, but they contain harmful substances. There is a limit to the immobilization function of cadmium, lead,
Conventional treatment methods have not yet been sufficient, as it is extremely difficult to suppress the elution of harmful substances other than arsenic to within an acceptable range. (Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned circumstances, and has a simple cement solidification process and has a better immobilization function for harmful substances than cement. It is an object of the present invention to provide a novel waste treatment agent and its treatment method that can be applied not only to waste containing hazardous substances but also to other wastes. (Means for solving the problem) The waste treatment agent according to the present invention is a quicklime powder.
40.0~56.0 parts by weight, magnesium silicate lime powder 5.0~14.0
Parts by weight, 3.5 to 6.5 parts by weight of talcum powder, lime carbonate powder
12.5-18.0 parts by weight, clay powder 1.0-3.0 parts by weight,
9.0 to 11.0 parts by weight of calcium aluminate powder and 8.5 to 11.5 parts by weight of powder containing 50% by weight or more of sulfur trioxide
It is characterized by containing parts by weight. Further, the waste treatment method according to the present invention is characterized in that the above-mentioned treatment agent and the waste to be treated are mixed and dehydrated and powdered. Hereinafter, the present invention will be specifically explained based on Examples. (Function) Each raw material used in the present invention has the following component specifications, for example.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 (7) 三酸化イオウ50重量%以上含有粉末(例え
ば、無水硫酸アルミニウム又は焼き石膏)
[Table] (7) Powder containing 50% by weight or more of sulfur trioxide (e.g., anhydrous aluminum sulfate or calcined gypsum)

【表】【table】

【表】 本発明の処理剤は上記(1)〜(7)(7a又は7b)
の原料を所要の比率で混合することによつて得ら
れる。 次に上記処理剤を用いた廃棄物の処理方法につ
いて説明する。 廃棄物は前処理した後、あるいは前処理工程を
経ないでそのまま、本発明の処理剤と混合され
る。 この前処理工程では有害金属を水に溶出しにく
い難溶性化合物に変えられる。六価クロム、三価
クロム、カドミウム、鉛、水銀、及び砒素につい
ての前処理工程における反応を示せば第1表の通
りである。
[Table] The processing agent of the present invention is the above (1) to (7) (7a or 7b).
It can be obtained by mixing the raw materials in the required ratio. Next, a method for treating waste using the above-mentioned treatment agent will be explained. The waste is mixed with the treatment agent of the present invention after being pretreated or as it is without undergoing a pretreatment step. This pretreatment process converts harmful metals into poorly soluble compounds that are difficult to dissolve in water. Table 1 shows the reactions of hexavalent chromium, trivalent chromium, cadmium, lead, mercury, and arsenic in the pretreatment step.

【表】 処理剤の混合された廃棄物は酸化カルシウムと
水との化学反応熱と固化にともなう水和熱により
高温になり、廃棄物中の水分の一部が蒸発すると
ともに大部分の水分は結晶水や水和物となつて廃
棄物の含有水分を低下させ、混合系は外観上乾燥
した状態となる。有害物質を含有しない廃棄物は
この状態で処理が完了し、土として土壌中へ還元
することが可能となる。 さらに、本発明の処理剤の各原料のうち主とし
てアルミン酸カルシウム、及び硫酸カルシウムが
それぞれ〔〔Ca4〔Al(OH)62・24H2O(3SO4)・
2H2O、又は3Ca・Al2C3・3CaSO4・32H2Oとな
つて多量の水を結晶水として捕捉するとともに、
上記化合物中のAl原子はイオン半径の近いTi、
Cr、Mn、Feなどと容易に置換し、SO2- 4
CrO2- 4、AsO2- 3、AsO3- 4などと容易に置換し、こ
れらは共に有害金属を有効に捕捉する。 また、処理剤と廃棄物との混合系はその内部に
存する毛細管空間が材令の経過と共に水和物によ
つて次第に埋められ、不連続した水和硬化体組織
は緻密化する。この緻密化と上記結晶水等による
遊離水の欠如によつて有害金属は水和硬化体組織
内の空隙間を移動することなく組織内に封じ込め
られ固定化される。 さらに、本発明は重金属の水に対する溶解度が
アルカリ側で低減し、PHと酸化還元電位が適当な
アルカリ性領域で極難溶性化合物を生成する性質
を利用して水酸化カルシウム飽和のアルカリ性を
保ち、かつ酸化還元電位も中庸を保つようにして
いるので常に重金属を極難溶性物質として固化体
組織内に沈積させ得るものである。 (本発明の効果) 本発明の処理剤は強酸、強アルカリを示すもの
ではなく、かつ重金属等の有害物質を含有するも
のではないので取扱いが容易であるばかりではな
く、使用上処理剤それ自体による二次公害(汚
染)は全くない。 本発明の処理剤及びその処理剤を用いた処理方
法は重金属等の有害物質を確実に固定化すること
ができるとともに、最終的に固体化または粉体化
させるものであるから、最終処理物を単に埋める
だけで良く、その取いが極めて簡単である。ま
た、本発明は反応熱と水和熱により被処理物の水
分を蒸発させることが期待できるので、高水分含
有被処理物を水分除去のための予備処理を何ら行
うことなくそのまま処理することができ、低水分
のものから高水分のものまで広範囲に適用でき
る。 (実施例) 実施例 1〜4 上記した原料(1)〜(7)、7a又は7b)を第2表
に示す割合で混合して本発明の処理剤を得た。
[Table] The waste mixed with the treatment agent reaches a high temperature due to the heat of chemical reaction between calcium oxide and water and the heat of hydration accompanying solidification, and while some of the water in the waste evaporates, most of the water is removed. It turns into crystal water and hydrates, lowering the moisture content of the waste, and the mixed system appears dry. Waste that does not contain harmful substances is completely processed in this state, and can be returned to the soil as soil. Further, among the raw materials for the treatment agent of the present invention, calcium aluminate and calcium sulfate are mainly [[Ca 4 [Al(OH) 6 ] 2.24H 2 O(3SO 4 ).
2H 2 O or 3Ca・Al 2 C 3・3CaSO 4・32H 2 O and captures a large amount of water as crystal water,
The Al atom in the above compound has a similar ionic radius to Ti,
It easily replaces Cr, Mn, Fe, etc., and SO 2- 4
It easily replaces CrO 2- 4 , AsO 2- 3 , AsO 3- 4 , etc., and both of these effectively capture harmful metals. In addition, in the mixed system of processing agent and waste, the capillary spaces existing inside the system are gradually filled with hydrates as the material ages, and the discontinuous hydrated material structure becomes dense. Due to this densification and the absence of free water due to the above-mentioned crystallization water, harmful metals are confined and immobilized within the structure of the hydrated material without moving through the voids within the structure. Furthermore, the present invention maintains the alkalinity of calcium hydroxide saturation by utilizing the property that the solubility of heavy metals in water decreases on the alkaline side and generates extremely sparingly soluble compounds in the alkaline region where the pH and redox potential are appropriate. Since the oxidation-reduction potential is also maintained at a moderate level, heavy metals can always be deposited in the solidified structure as extremely sparingly soluble substances. (Effects of the present invention) The treatment agent of the present invention does not exhibit strong acid or strong alkali, and does not contain harmful substances such as heavy metals, so it is not only easy to handle, but also the treatment agent itself There is no secondary pollution (pollution) caused by this. The treatment agent of the present invention and the treatment method using the treatment agent can reliably immobilize harmful substances such as heavy metals, and are ultimately solidified or powdered, so that the final treatment product can be All you have to do is fill it in, and it is extremely easy to remove. Furthermore, since the present invention can be expected to evaporate the water content of the object to be treated using the heat of reaction and the heat of hydration, it is possible to treat the object containing high moisture as it is without performing any preliminary treatment to remove water. It can be applied to a wide range of conditions, from low moisture to high moisture. (Examples) Examples 1 to 4 The above raw materials (1) to (7), 7a or 7b) were mixed in the proportions shown in Table 2 to obtain the processing agent of the present invention.

【表】 次に第2表に示す実施例1〜4の処理剤を用い
て種々の有害物質含有廃棄物の処理方法を述べ
る。 実施例 5 高炭素フエロクロム製錬工程で発生する集じん
ダストの処理 まず、第3表に示す有害金属を含有する原ダス
ト(50Kg)、に対して硫酸第1鉄5Kg、64.2%濃
度の硫酸5Kg、及び水25Kgを加え40分間混練撹拌
する前処理を行う。この前処理工程においてダス
トは汚泥化するとともに六価クロム(Cr6+)は三
価クロム(Cr3+)に変わる。この汚泥に実施例1
の処理剤を添加混合して混練撹拌する。このとき
の処理剤の添加量は5Kg(ダストに対する添加率
10%)である。 上記前処理及び混練撹拌は第1図及び第2図に
示す撹拌機1を用いておこなつた。撹拌機1は長
尺の密閉横型の反応筐2を有し、上面を長手方向
に開口してホツパ3が連設されている。ホツパ3
は一端に処理剤投入口4が形成され、他の部分は
仕切板5にて2分された汚泥投入口6及び処理剤
拡散室7である。その他樋型受け筐8、螺旋スク
リユー軸9、仕切り壁10、スクリユー軸9の動
力モータ11、及び横スライド可能な開閉板12
が装着されている。 また、反応筐2内には撹拌翼14…が突設され
た回転軸13,13が横架されている。これら回
転軸13,13の一端には互いに噛合するギヤ1
5,15が取り付けられて両軸13,13は相互
に逆方向に回転する。さらに反応筐2の内部には
撹拌翼14…がその回転において側面14aで近
接する板状の固定翼17…が設けられている。該
固定翼17は反応筐2の対向側壁2a,2aに所
定ピツチでもつて長手方向に一列に固着されてい
る。 なお、反応筐2の底壁2bがシリンダ18にて
下方に開放可能な蓋19になつている。予備発熱
給水用の水噴射ノズル20、及びベルトコンベア
やスクリユコンベア等の搬送装置21も附設され
ている。 原ダスト、硫酸第1鉄及び64.2%濃度の硫酸は
撹拌機1の投入口4から供給され、水は水噴射ノ
ズル20から供給される。供給された原ダスト、
硫酸第1鉄、硫酸、及び水は撹拌翼14を回転さ
せて反応筐2内で充分に撹拌し混和される。次い
で投入口4より実施例1の処理剤を供給し、充分
に撹拌する。このとき水と酸化カルシウムが反応
して発熱し、温度が急激に上昇して処理物内部の
温度が100〜150℃程度となり一部蒸発乾燥が行わ
れる。混合系は流動性の低いペースト状乃至だん
ご状となり、有害金属は内部に封じ込められて固
化無害化する。 その後、蓋19を開いて搬送装置21にて所定
の場所に搬出し、固化をさらに促進するために養
生し、最後に埋立地にて処分する。養生10日後の
有害金属の溶出量を検査したところ第3表に示す
結果を得た。 尚、比較例として本実施例の処理剤に換えて、
金属等を含む廃棄物の固型化に関する基準(改正
昭和55年環告57)にしたがい水硬性セメント(添
加率17.6%)を用いて同様にして行つた結果を示
す。
[Table] Next, methods for treating various wastes containing harmful substances using the treating agents of Examples 1 to 4 shown in Table 2 will be described. Example 5 Treatment of collected dust generated in the high carbon ferrochrome smelting process First, for raw dust (50 kg) containing harmful metals shown in Table 3, 5 kg of ferrous sulfate and 5 kg of sulfuric acid with a concentration of 64.2% , and 25 kg of water, and perform pretreatment by kneading and stirring for 40 minutes. In this pretreatment step, the dust turns into sludge and hexavalent chromium (Cr 6+ ) changes to trivalent chromium (Cr 3+ ). Example 1
The processing agent is added and mixed, and the mixture is kneaded and stirred. The amount of processing agent added at this time was 5 kg (addition rate to dust).
10%). The above pretreatment and kneading/stirring were performed using the stirrer 1 shown in FIGS. 1 and 2. The stirrer 1 has a long, closed, horizontal reaction case 2, the upper surface of which is open in the longitudinal direction, and a hopper 3 is connected thereto. Hotupa 3
A processing agent inlet 4 is formed at one end, and the other portion is a sludge inlet 6 and a processing agent diffusion chamber 7, which are divided into two by a partition plate 5. Others include a gutter-shaped receiving case 8, a spiral screw shaft 9, a partition wall 10, a power motor 11 for the screw shaft 9, and an opening/closing plate 12 that can be slid laterally.
is installed. Furthermore, rotating shafts 13, 13 on which stirring blades 14 are protruded are horizontally suspended within the reaction case 2. A gear 1 that meshes with each other is attached to one end of these rotating shafts 13, 13.
5 and 15 are attached, and both shafts 13 and 13 rotate in opposite directions. Furthermore, plate-shaped fixed blades 17 are provided inside the reaction casing 2 so that the stirring blades 14 approach each other at side surfaces 14a during rotation thereof. The fixed blades 17 are fixed to the opposing side walls 2a, 2a of the reaction case 2 in a line in the longitudinal direction at a predetermined pitch. Note that the bottom wall 2b of the reaction case 2 is a lid 19 that can be opened downward by a cylinder 18. A water injection nozzle 20 for preheating water supply and a conveying device 21 such as a belt conveyor or a screw conveyor are also attached. Raw dust, ferrous sulfate and 64.2% sulfuric acid are supplied from the inlet 4 of the stirrer 1, and water is supplied from the water injection nozzle 20. supplied raw dust,
Ferrous sulfate, sulfuric acid, and water are sufficiently stirred and mixed in the reaction chamber 2 by rotating the stirring blade 14. Next, the processing agent of Example 1 was supplied through the inlet 4 and thoroughly stirred. At this time, water and calcium oxide react to generate heat, the temperature rises rapidly, and the temperature inside the treated material reaches approximately 100 to 150°C, resulting in partial evaporation drying. The mixed system becomes paste-like or dumpling-like with low fluidity, and harmful metals are sealed inside and solidified to become harmless. Thereafter, the lid 19 is opened and the material is transported to a predetermined location using the transport device 21, cured to further promote solidification, and finally disposed of in a landfill. After 10 days of curing, the amount of toxic metals eluted was examined and the results shown in Table 3 were obtained. As a comparative example, instead of the processing agent of this example,
The results are shown in the same manner using hydraulic cement (addition rate 17.6%) in accordance with the standards for solidification of wastes containing metals, etc. (Revised Announcement 57 of 1982).

【表】 この第3表から解るように本発明の処理剤及び
処理方法による有害金属の固定能力は従来のセメ
ントによる固定化法に比べ格段に優れていること
が理解できる。 尚、溶出量の測定方法は「産業廃棄物に含まれ
る金属等の検定方法」(昭和48年2月17日付環境
庁告示第13号)によつた。以下述べる実施例にお
いても同様である。 実施例 6 電気炉集じんダスト 第4表に示す有害物質を含有する原ダスト(50
Kg)は前処理工程を経づにそのまゝ実施例1の処
理剤と混合して処理した。このとき処理剤の添加
率は20%である。 混合は実施例5で採用した撹拌機1を用いた。 処理剤を撹拌機1の投入口4に供給し、スクリ
ユー軸9を回転させて反応筐2内に拡散落下させ
る。水噴射ノズル20から少量の水を噴射して反
応筐2内の撹拌翼14を回転させて処理剤のみを
撹拌する。これにより水と酸化カルシウムが反応
して予備発熱し温度が急激に上昇する。その後原
ダストを汚泥投入口6から反応筐2内に投入して
処理剤と原ダストとを混合撹拌する。このとき、
処理物内部の温度は100〜150℃程度になる。 それ以外の操作は実施例5と同様にして行つ
た。 養生後10日目の溶出量を第4表に示す。 尚、比較例として本実施例の処理剤に換えて、
実施例5の水硬性セメント(添加率17.6%)を用
た他の条件は同様にして行つた結果を第4表に示
す。
[Table] As can be seen from Table 3, the ability of the treatment agent and treatment method of the present invention to fix harmful metals is significantly superior to that of the conventional fixation method using cement. The method for measuring the elution amount was based on the ``Method for testing metals, etc. contained in industrial waste'' (Environment Agency Notification No. 13, dated February 17, 1971). The same applies to the embodiments described below. Example 6 Electric furnace collected dust Raw dust containing harmful substances shown in Table 4 (50
Kg) was treated by mixing it with the treatment agent of Example 1 without undergoing any pretreatment process. At this time, the addition rate of the processing agent was 20%. For mixing, the stirrer 1 used in Example 5 was used. The processing agent is supplied to the inlet 4 of the stirrer 1, and the screw shaft 9 is rotated to diffuse and fall into the reaction chamber 2. A small amount of water is injected from the water injection nozzle 20 to rotate the stirring blade 14 in the reaction case 2 to stir only the processing agent. As a result, water and calcium oxide react with each other, causing preliminary heat generation and a rapid rise in temperature. Thereafter, the raw dust is introduced into the reaction case 2 through the sludge inlet 6, and the treatment agent and the raw dust are mixed and stirred. At this time,
The temperature inside the processed material is approximately 100 to 150°C. The other operations were the same as in Example 5. Table 4 shows the elution amount on the 10th day after curing. As a comparative example, instead of the processing agent of this example,
Table 4 shows the results obtained by using the hydraulic cement of Example 5 (addition rate: 17.6%) and using the same conditions except for the same conditions.

【表】 実施例 7 一般廃棄物生ゴミ焼却灰 第5表に示す有害物質を含有する原ダスト(50
Kg)は実施例6と同様に前処理工程を経づにその
まゝ実施例2の処理剤と混合して処理した。溶出
量の測定は養生後7日目に行つた。その結果を第
5表に示す。 尚、比較例は実施例6と同様に本実施例の処理
剤に換えて、水硬性セメント(添加率20%)を用
いた。
[Table] Example 7 General waste and garbage incineration ash Raw dust containing the hazardous substances shown in Table 5 (50
Kg) was treated by mixing it with the treatment agent of Example 2 without going through the pretreatment process in the same manner as in Example 6. The elution amount was measured on the 7th day after curing. The results are shown in Table 5. In addition, in the comparative example, similar to Example 6, hydraulic cement (addition rate 20%) was used in place of the treatment agent of this example.

【表】 実施例 8 電気炉集じんダスト 第6表に示す有害物質を含有する原ダスト(50
Kg)は実施例6と同様に前処理工程を経づにその
まゝ実施例1の処理剤(添加率15%)と混合して
処理した。溶出量の測定は養生後3日目に行つ
た。その結果を第6表に示す。 尚、比較例は実施例6と同様に本実施例の処理
剤に換えて水硬性セメント(添加率17.6%)を用
いた。
[Table] Example 8 Electric furnace dust collection Raw dust containing harmful substances shown in Table 6 (50
Kg) was treated by mixing it with the treatment agent of Example 1 (addition rate: 15%) without going through the pretreatment process in the same manner as in Example 6. The amount of elution was measured on the third day after curing. The results are shown in Table 6. In addition, in the comparative example, similar to Example 6, hydraulic cement (addition rate 17.6%) was used in place of the treatment agent of this example.

【表】 実施例 9 廃プラスチツク等ケミカル物焼却灰 第7表に示す有害物質を含有する原焼却灰(50
Kg)は実施例6と同様に前処理工程を経づにその
まゝ実施例4の処理剤と混合して処理した。溶出
量の測定は養生後5日目に行つた。その結果を第
7表に示す。 尚、比較例は実施例6と同様に本実施例の処理
剤に換えて水硬性セメント(添加率17.6%)を用
いた。
[Table] Example 9 Incineration ash of chemicals such as waste plastics Raw incineration ash containing the hazardous substances shown in Table 7 (50
Kg) was treated by mixing it with the treatment agent of Example 4 without going through the pretreatment process in the same manner as in Example 6. The elution amount was measured on the 5th day after curing. The results are shown in Table 7. In addition, in the comparative example, similar to Example 6, hydraulic cement (addition rate 17.6%) was used in place of the treatment agent of this example.

【表】【table】

【表】 実施例 10 釉薬汚泥 第8表に示す有害金属を含有する原汚泥(50
Kg)に対して硫酸アルミニウム5Kgを加え10分撹
拌混合する。硫化ナトリウム0.5Kgを加え、さら
に20分間混練する。この前処理工程で、鉛の大部
分は硫酸鉛と硫化鉛になり、鉛は難溶性化合物に
なる。この汚泥に実施例3の処理剤を添加混合し
て混練撹拌する。この時の処理剤の添加量は5Kg
(ダストに対する添加率10%)である。 混合は実施例5で採用した撹拌機1を用いた。 原汚泥と硫酸アルミニウムは撹拌機の投入口4
から供給される。撹拌翼14を回転させて反応筐
2内で充分に混和させる。次いで投入口4より硫
化ナトリウムを添加、引き続き混合する。ついで
投入口4より実施例3の処理剤を加え充分に撹拌
する。このとき水と酸化カルシウムが反応して、
発熱し、温度が急激に上昇して処理物内部の温度
が80〜120℃となり、一部蒸発乾燥が行われる。
処理剤添加後30分撹拌し、固化状になり、有害金
属は内部に封じ込められ、固化無害化する。その
後排出し、固化をさらに促進するために養生し、
最後に埋立地にて処分する養生3日後の有害金属
の溶出量を検査し、その結果を第8表に示す。 尚比較例は実施例5と同様に本実施例の処理剤
に換えて水硬性セメント(添加率17.6%)を用い
た。
[Table] Example 10 Glaze sludge Raw sludge containing toxic metals shown in Table 8 (50
Add 5 kg of aluminum sulfate per kg) and stir and mix for 10 minutes. Add 0.5Kg of sodium sulfide and knead for a further 20 minutes. In this pretreatment process, most of the lead is converted into lead sulfate and lead sulfide, and lead becomes a poorly soluble compound. The treatment agent of Example 3 is added to and mixed with this sludge, and the mixture is kneaded and stirred. The amount of processing agent added at this time is 5 kg.
(Addition rate to dust: 10%). For mixing, the stirrer 1 used in Example 5 was used. Raw sludge and aluminum sulfate are inlet 4 of the agitator.
Supplied from. The stirring blades 14 are rotated to thoroughly mix the mixture inside the reaction chamber 2. Next, sodium sulfide is added through the inlet 4 and mixed continuously. Then, the processing agent of Example 3 was added through the inlet 4 and thoroughly stirred. At this time, water and calcium oxide react,
Heat is generated, the temperature rises rapidly, and the temperature inside the processed material reaches 80 to 120°C, and some of the material is evaporated and dried.
After adding the processing agent, stir for 30 minutes until it becomes solidified, and the harmful metals are sealed inside, solidifying and rendering them harmless. It is then drained and cured to further promote solidification.
Finally, the amount of harmful metals eluted after 3 days of curing before disposal at a landfill was examined, and the results are shown in Table 8. In the comparative example, similar to Example 5, hydraulic cement (addition rate: 17.6%) was used in place of the treatment agent of this example.

【表】 実施例 11 シアン化合物廃アルカリ液 第9表に示すシアン含有廃液(50Kg)に対し
て、水酸化カルシウムを加え、PHを10以上とす
る。次亜塩素酸ナトリウム20Kgを加え撹拌する。
20分撹拌後、硫酸第1鉄を加え、PHを8〜9に
し、20分撹拌する。この時点でシアン化合物の
内、分解可能なものは分解する。この分解液に実
施例2の処理剤を添加混合し、撹拌する。処理剤
の添加量は50Kg(添加率は100%)である。 前処理は鉄容器を、混合は実施例5で採用した
撹拌機1を用いた。 原液を鉄容器に入れ水酸化カルシウムを加え
て、PHを10以上とする。撹拌しながら次亜塩素ナ
トリウム20Kgを加える。20分撹拌して反応を行な
わせた後、硫酸第1鉄を加えPHを8〜9とし、さ
らに20分撹拌する。 撹拌機1の投入口4より実施例2の処理剤50Kg
を加え、少量の水を加え、撹拌翼14を回転させ
て撹拌させ、水と酸化カルシウムを反応させ、発
熱させる。投入口4より先の処理された液を加え
る。温度が上昇し、処理物内部の温度が80〜120
℃となり一部蒸発乾燥が行われる。処理剤と混合
後30分撹拌し、固化状になり、未分解のシアンは
内部に封じ込められ、固定化無害化される。その
後排出し、固化をさらに促進するため養生し、後
処分する。 養生7日後、シアンの溶出量を検査し、その結
果を第9表に示す。 尚比較例は実施例5と同様に、本実施例の処理
剤に換え、水硬性セメント(添加率17.6%)砂
(添加率40%)を用いた。
[Table] Example 11 Cyanide compound waste alkaline solution Calcium hydroxide is added to the cyanide-containing waste solution (50 kg) shown in Table 9 to adjust the pH to 10 or higher. Add 20 kg of sodium hypochlorite and stir.
After stirring for 20 minutes, add ferrous sulfate to adjust the pH to 8-9 and stir for 20 minutes. At this point, the decomposable cyanide compounds are decomposed. The processing agent of Example 2 is added to and mixed with this decomposition liquid, and the mixture is stirred. The amount of processing agent added was 50 kg (addition rate was 100%). An iron container was used for pretreatment, and the stirrer 1 used in Example 5 was used for mixing. Place the stock solution in an iron container and add calcium hydroxide to adjust the pH to 10 or higher. Add 20 kg of sodium hypochlorite while stirring. After stirring for 20 minutes to carry out the reaction, ferrous sulfate was added to adjust the pH to 8-9, and the mixture was stirred for an additional 20 minutes. 50 kg of the processing agent of Example 2 was added from the inlet 4 of the stirrer 1.
is added, a small amount of water is added, and the stirring blades 14 are rotated to stir the water and calcium oxide to react with each other and generate heat. Add the treated liquid from input port 4. The temperature rises and the temperature inside the processed material reaches 80-120
℃, and some evaporation drying takes place. After mixing with the processing agent, it is stirred for 30 minutes to solidify, and the undecomposed cyanide is sealed inside, making it immobilized and harmless. It is then discharged, cured to further promote solidification, and then disposed of. After 7 days of curing, the amount of cyanide eluted was examined and the results are shown in Table 9. In the comparative example, similar to Example 5, hydraulic cement (addition rate: 17.6%) and sand (addition rate: 40%) were used instead of the treatment agent of this example.

【表】 実施例 12 工場廃液脱水ケーキスラツジ 第10表に示す亜鉛及び油分を含むスラツジ(50
Kg)に対して、実施例10と同様の前処理工程を行
う。この工程で亜鉛の大部分は硫酸亜鉛と、硫化
亜鉛になる。引き続き実施例10と同様に本処理を
行う。処理剤は実施例2を用い、添加量は10Kg
(添加率20%)を用いる。発熱時の処理物内部の
温度は80〜100℃である。溶出量の検査は養生2
日後に行い、その結果を第10表に示す。尚比較例
は実施例5と同様に、本実施例の処理剤にかえ
て、水硬性セメント(添加率20.0%)を用いた。
[Table] Example 12 Factory waste liquid dehydrated cake sludge Sludge containing zinc and oil shown in Table 10 (50
Kg) is subjected to the same pretreatment process as in Example 10. In this process, most of the zinc is converted to zinc sulfate and zinc sulfide. Subsequently, this process is performed in the same manner as in Example 10. The treatment agent used in Example 2 was added in an amount of 10 kg.
(addition rate 20%) is used. The temperature inside the treated product during exothermic generation is 80 to 100°C. Inspection of elution amount is curing 2
The results are shown in Table 10. In the comparative example, similar to Example 5, hydraulic cement (addition rate 20.0%) was used instead of the treatment agent of this example.

【表】 尚、油分の溶出量の測定方法は「産業廃棄物に
含まれる油分の検定方法」(昭和51年2月27日付
環境庁告示第3号、環水管120号)によつた。 実施例 13 硬質クロムメツキ六価クロム含有スラツジ 第11表に示す有害金属を含有するスラツジ(50
Kg)に対して、実施例5と同様に硫酸第1鉄5Kg
と64.2%濃度の硫酸5Kgを加えて40分間撹拌す
る。以下実施例5と同じ操作を行う。処理剤は実
施例3を用い、添加量は15Kg(添加率30%)を用
いる。発熱時の処理物内部の温度は80〜120℃で
ある。溶出量の検査は養生7日後に行い、その結
果を第11表に示す。 尚比較例は実施例5と同様に本実施例の処理剤
にかえて、水硬性セメント(添加率30%)を用い
た。
[Table] The method for measuring the amount of oil eluted was in accordance with the ``Method for Verifying Oil Contained in Industrial Waste'' (Environment Agency Notification No. 3, Kansuikan No. 120, dated February 27, 1976). Example 13 Hard chrome plating Sludge containing hexavalent chromium Sludge containing the toxic metals shown in Table 11 (50
Kg), similar to Example 5, ferrous sulfate 5Kg
Add 5 kg of 64.2% sulfuric acid and stir for 40 minutes. Hereinafter, the same operations as in Example 5 are performed. The treatment agent used in Example 3 was used, and the amount added was 15 kg (addition rate 30%). The temperature inside the treated product during exothermic generation is 80 to 120°C. The elution amount was tested 7 days after curing, and the results are shown in Table 11. In the comparative example, similar to Example 5, hydraulic cement (addition rate: 30%) was used instead of the treatment agent of this example.

【表】 実施例 14 水銀化合物溶液 第12表に示す水銀含有溶液(50Kg)に対して、
実施例10と同様の前処理を行う。但し、硫酸アル
ミニウムに換えて、硫酸第1鉄25Kgを用いる。こ
の工程で水銀の大部分は水に難溶性の硫酸水銀と
硫化水銀となる。引き続き、実施例10と同様に本
処理を行う。処理剤は実施例3を用い、添加量は
30Kg(添加率60%)を用いる。発熱時の処理物内
部の温度は120〜140℃である。溶出量の検査は養
生7日後に行い、その結果を第12表に示す。 尚、比較例は実施例と同様に本実施例の処理剤
にかえて水硬性セメント(添加率20.0%)、及び
砂(添加率40%)を用い行つた。
[Table] Example 14 Mercury compound solution For the mercury-containing solution (50Kg) shown in Table 12,
The same pretreatment as in Example 10 is performed. However, 25 kg of ferrous sulfate is used instead of aluminum sulfate. In this process, most of the mercury becomes mercury sulfate and mercury sulfide, which are sparingly soluble in water. Subsequently, this process is performed in the same manner as in Example 10. Example 3 was used as the processing agent, and the amount added was
Use 30Kg (addition rate 60%). The temperature inside the treated product during exothermic generation is 120 to 140°C. The elution amount was tested 7 days after curing, and the results are shown in Table 12. In the comparative example, similar to the example, hydraulic cement (addition rate: 20.0%) and sand (addition rate: 40%) were used instead of the treatment agent of the present example.

【表】 実施例 15 PCB混入トランス冷却用オイル 第13表に示す有害物質を含有するトランス冷却
用オイルは実施例6と同様に前処理工程を経づ
に、そのまま実施例1の処理剤と混合して処理し
た。このときの処理剤の添加率は200%であつた。
溶出量の測定は養生後7日目に行つた。その結果
を第13表に示す。 尚、比較例は実施例6と同様に本実施例の処理
剤に換えて水硬性セメント(添加率30%)と砂
(添加率40%)を用いた。
[Table] Example 15 PCB-containing transformer cooling oil The transformer cooling oil containing the harmful substances listed in Table 13 was mixed with the treatment agent of Example 1 without going through the pretreatment process as in Example 6. and processed it. The addition rate of the processing agent at this time was 200%.
The elution amount was measured on the 7th day after curing. The results are shown in Table 13. In addition, in the comparative example, similar to Example 6, hydraulic cement (addition rate: 30%) and sand (addition rate: 40%) were used instead of the treatment agent of this example.

【表】 以上の実施例5〜15においても本発明の処理剤
及び処理方法は従来のセメント固化法に比較して
有害物質の固定能力を一段と向上させたものであ
ることが理解できた。 実施例 16 輸入果実(グレープフルーツ、レモン、オレン
ジ等)の処理 輸入果実不良品を廃棄処分するについて、果実
を破砕した泥状品(50Kg)は前処理工程を経ずに
そのまま実施例3の処理剤と混合し、実施例6と
同様に処理した。この時の処理剤の添加量は10Kg
(添加率は20%)である。 含水率の測定は養生3日目に行つた。その結果
を表14に示す。 尚比較例は実施例6と同様に、本実施例の処理
剤にかえて水硬性セメント(添加率20%)を用い
た。
[Table] In the above Examples 5 to 15, it was understood that the treatment agent and treatment method of the present invention further improved the ability to fix harmful substances compared to the conventional cement solidification method. Example 16 Treatment of imported fruits (grapefruit, lemon, orange, etc.) When disposing of defective imported fruits, the slurry (50 kg) obtained by crushing the fruits was directly treated with the treatment agent of Example 3 without going through the pretreatment process. and treated in the same manner as in Example 6. The amount of processing agent added at this time is 10 kg.
(addition rate is 20%). The moisture content was measured on the third day of curing. The results are shown in Table 14. In the comparative example, similar to Example 6, hydraulic cement (addition rate: 20%) was used instead of the treatment agent of this example.

【表】 実施例 17 農産廃棄物(大豆もやし、大根の葉、キヤベ
ツ、玉ねぎ、じやがいも)の処理 農産不良品を廃棄処分するについて農産物を破
砕した泥状品(50Kg)は前処理工程を経ずに、そ
のまま実施例3の処理剤を用いて、実施例6と同
様に処理した。この時の処理剤の添加量は5Kg
(添加率10%)である。 含水率の測定は養生3日目に行つた。その結果
を表15に示す。 尚、比較例は実施例6と同様に本実施例の処理
剤にかえて、水硬性セメント(添加率20%)を用
いた。養生3日目でも固化せず腐敗が進行した。
[Table] Example 17 Processing of agricultural waste (soybean sprouts, radish leaves, cabbage, onions, potatoes) Regarding the disposal of defective agricultural products, the slurry (50 kg) made by crushing agricultural products is processed in the pre-treatment process. The treatment was carried out in the same manner as in Example 6 using the treatment agent of Example 3 without further treatment. The amount of processing agent added at this time is 5 kg.
(addition rate 10%). The moisture content was measured on the third day of curing. The results are shown in Table 15. In addition, in the comparative example, similar to Example 6, hydraulic cement (addition rate 20%) was used instead of the treatment agent of this example. Even on the third day of curing, it did not harden and rot progressed.

【表】 此れ等の農産廃棄物を養生なしに固化するに
は、処理剤の添加量を20Kg以上(添加率40%以
上)を必要としたが再利用として破砕し、土壌改
良剤又は飼料として利用するには本実施例の如
く、養生固化する事が望ましいが、処理前にすで
に腐敗している場合は養生中も悪臭が激しいので
処理剤の添加率を50%以上として、養生なしに固
化処理する事が必要である。 実施例 18 漁腸骨・漁死体の処理 養殖魚場でのハマチ等の死体、魚加工場での魚
のアラ等の漁腸骨・魚死体(50Kg)は原状のま
ま、前処理工程を経ずに、実施例4の処理剤を用
い、実施例6と同様に処理した。この時の処理材
の添加量は5Kg(添加率10%)である。ここで問
題になるのは、添加される水分の量で魚死体は殆
ど脂肪で水分が少ない故、散布する水分が少ない
と、充分な発熱が得られない。発熱温度は50〜70
℃で継続するが、最終の段階で、発熱固化の助剤
として硫酸アルミニウム粉末を2〜3Kg加える
と、温度が90〜100℃となり、魚肉、皮等の分解
が完成する。含水率の測定は養生2日目に行つ
た。その結果を表16に示す。尚比較例は実施例6
と同様に本実施例の処理剤にかえて水硬性セメン
ト(添加率15%)を用いたが養生2日目でも充分
な固化が得られず、且つ腐敗が進行した。
[Table] In order to solidify agricultural waste such as this without curing, it is necessary to add more than 20 kg of processing agent (addition rate of more than 40%), but it can be crushed for reuse and used as soil conditioner or feed. It is desirable to cure and solidify as shown in this example, but if the product is already rotten before treatment, the odor will be strong even during curing. It is necessary to solidify it. Example 18 Processing of fish iliac bones/fish carcasses Fishery iliac bones/fish carcasses (50 kg) such as yellowtail carcasses from aquaculture farms and fish guts (50 kg) from fish processing plants are treated in their original state without undergoing any pre-treatment process. Then, the same treatment as in Example 6 was carried out using the treatment agent of Example 4. The amount of treated material added at this time was 5 kg (addition rate 10%). The problem here is that the amount of water added makes it difficult to generate enough heat because fish carcasses are mostly fat and contain little water. The fever temperature is 50-70
At the final stage, 2 to 3 kg of aluminum sulfate powder is added as an exothermic solidification aid, and the temperature reaches 90 to 100°C, completing the decomposition of fish meat, skin, etc. The moisture content was measured on the second day of curing. The results are shown in Table 16. The comparative example is Example 6.
Similarly, hydraulic cement (addition rate: 15%) was used instead of the treatment agent of this example, but sufficient solidification was not obtained even on the second day of curing, and decay progressed.

【表】 実施例 19 各種煮汁のスカム(浮上油脂)の処理 魚腸骨、魚体およびブロイラー解体時の血、
頭、首、足、内蔵物等の脱脂の為の煮汁のスカム
(50Kg)は、前処理工程を経ずにそのまま実施例
4の処理剤を用いて、実施例6と同様に処理し
た。この時の処理剤の添加量は10Kg(添加率20
%)である。発熱温度は60〜70℃で継続するが、
最終の段階で発熱固化の助剤として硫酸アルミニ
ウム粉末を2〜5Kg(添加率4〜10%)を加える
と温度が90〜100℃となり、処理品の分解が完全
に行われ急速に固化する。 含水率の測定は、養生4日目に行つた。その結
果を表17に示す。 なお、比較例は、実施例6と同様に本実施例の
処理剤に換えて水硬性セメント(添加率20%)で
行つたが、養生4日目でも充分な固化が得られ
ず、且つ腐敗が進行した。
[Table] Example 19 Treatment of scum (surfacing oil and fat) from various broths Fish iliac bones, fish bodies, and blood when dissecting broilers,
The scum (50 kg) of broth for defatting the head, neck, legs, internal organs, etc. was treated in the same manner as in Example 6 using the treatment agent of Example 4 without going through the pretreatment process. The amount of processing agent added at this time is 10 kg (addition rate 20
%). The exothermic temperature continues at 60-70℃,
At the final stage, when 2 to 5 kg of aluminum sulfate powder (addition rate of 4 to 10%) is added as an exothermic solidification aid, the temperature reaches 90 to 100°C, and the treated product is completely decomposed and solidified rapidly. The moisture content was measured on the fourth day of curing. The results are shown in Table 17. In addition, in the comparative example, similar to Example 6, hydraulic cement (addition rate 20%) was used instead of the treatment agent of this example, but sufficient solidification was not obtained even on the 4th day of curing, and rotting occurred. progressed.

【表】 実施例 20 蓄産ふん(1)鶏ふんの処理 鶏ふん(50Kg)を前処理工程を経ずにそのまま
実施例2の処理剤を用いて実施例6と同様に処理
した。鶏ふん自身は固化しようとする性質がある
が、その性状は、飼料の種類、夏冬の時期によつ
ても、又醗酵の度合によつても異なる。その為処
理剤の添加量も異なるが、一般に排泄後1〜2日
目のふんを処理するのが望ましく、この場合の処
理剤の添加量は4〜5Kg(添加率8〜10%)であ
る。発熱温度は80〜90℃で継続する。 含水率の測定は養生4日目で行つた。その結果
を表18に示す。比較例は実施例6と同様に、本実
施例の処理材に換えて水硬性セメント(添加率20
%)で行つたが養生4日目でも充分な固化が得ら
れず、且つ悪臭が残り醗酵が進行した。
[Table] Example 20 Farmed Manure (1) Treatment of Chicken Manure Chicken manure (50 kg) was treated in the same manner as in Example 6 using the treatment agent of Example 2 without going through the pretreatment process. Chicken manure itself has a tendency to solidify, but its properties vary depending on the type of feed, the season of summer and winter, and the degree of fermentation. Therefore, the amount of treatment agent added varies, but it is generally desirable to treat feces on the first to second day after excretion, and in this case the amount of treatment agent added is 4 to 5 kg (addition rate 8 to 10%). . The exothermic temperature continues at 80-90℃. The moisture content was measured on the fourth day of curing. The results are shown in Table 18. In the comparative example, similar to Example 6, hydraulic cement (addition rate 20
%), but sufficient solidification was not obtained even on the 4th day of curing, and a bad odor remained and fermentation progressed.

【表】 この様に処理した鶏ふんは、石灰肥料又は土壌
改良剤として有効利用ができる。 実施例 21 蓄産ふん(2)豚、牛、家鴨のふんの処理 豚ふん(ふんと尿の混合及び水洗い水)、牛ふ
ん(流下式でふんと尿の混合)および家鴨ふん
(ふんと尿の場合)は、いずれも含水率90%以上
である。此れ等のふん尿を前処理工程を経ずに、
そのまま実施例2の処理剤を用いて実施例6と同
様に処理した。ふん尿の性状は飼料の種類、夏冬
の時期、醗酵の度合、含水量によつても異なる
が、一般に醗酵の少ない排泄後1〜2日目のもの
を処理するのが望ましく、此の場合の処理剤の添
加量は5〜10Kg(添加率10〜20%)である。発熱
温度は90〜100℃で継続する。 含水率の測定は、養生4日目で行つた。その結
果を表19に示す。比較例は、実施例6と同様に、
本実施例の処理剤にかえて水硬性セメント(添加
率20%)で行つたが、養生4日目でも充分な固化
がえられず、且つ悪臭が残り、醗酵が進行した。
[Table] Chicken manure treated in this way can be effectively used as lime fertilizer or soil conditioner. Example 21 Livestock dung (2) Treatment of dung from pigs, cows, and domestic ducks Pig dung (mixture of dung and urine and washing water), cow dung (mixture of dung and urine using a flowing system), and duck dung (in the case of dung and urine) ) all have a moisture content of 90% or more. This kind of manure can be processed without going through any pre-treatment process.
It was treated in the same manner as in Example 6 using the treatment agent of Example 2 as it was. The properties of manure vary depending on the type of feed, the season of summer and winter, the degree of fermentation, and the water content, but it is generally preferable to treat manure that has undergone less fermentation and is 1 to 2 days old after excretion. The amount of processing agent added is 5 to 10 kg (addition rate 10 to 20%). The exothermic temperature continues at 90-100℃. The moisture content was measured on the fourth day of curing. The results are shown in Table 19. The comparative example is similar to Example 6,
Hydraulic cement (addition rate 20%) was used instead of the treatment agent of this example, but sufficient solidification was not achieved even on the 4th day of curing, a bad odor remained, and fermentation progressed.

【表】 実施例 22 活性汚泥・脱水ケーキの処理 人糞とし尿のみを処理した消化汚泥・脱水ケー
キは腐敗することがなく、1ケ月でもその状態を
維持する。又、人糞、雨水、都市下水、工場廃液
等を一括処理した下水汚泥の脱水ケーキは未消化
汚泥のため、腐敗が生じ悪臭を放し、醗酵を始め
る性状である。いずれも含水率85%以上である。 此れ等の下水汚泥(50Kg)を前処理工程を経ず
に、そのまま実施例4の処理剤を用いて実施例6
と同様に処理した。処理剤の添加量7.5Kg(添加
率15%)で処理物内部の温度は100〜120℃で継続
する。 含水率の測定は養生7日目で行つた。その結果
を表20に示す。比較例は実施例6と同様に本実施
例の処理剤に換えて水硬性セメント(添加率20
%)で行つたが養生7日目でも充分な固化が得ら
れず、且つ悪臭が残り醗酵が進行した。
[Table] Example 22 Treatment of activated sludge and dehydrated cake Digested sludge and dehydrated cake treated with only human feces and human urine do not rot and remain in that state for even one month. In addition, the dehydrated cake of sewage sludge obtained by collectively processing human excrement, rainwater, city sewage, factory waste liquid, etc. is undigested sludge, so it rots, releases a bad odor, and begins to ferment. All have a moisture content of 85% or more. This sewage sludge (50Kg) was treated in Example 6 using the treatment agent of Example 4 without undergoing any pretreatment process.
processed in the same way. When the amount of processing agent added is 7.5 kg (addition rate: 15%), the temperature inside the treated product continues at 100 to 120°C. The moisture content was measured on the 7th day of curing. The results are shown in Table 20. In the comparative example, similar to Example 6, hydraulic cement (addition rate 20
%), but sufficient solidification was not obtained even on the 7th day of curing, and a bad odor remained and fermentation progressed.

【表】 養生固化したものは、燃料に石灰肥料に利用さ
れる。 実施例 23 人糞生し尿及び一般家庭浄化槽汚泥の処理 人糞生し尿及び浄化槽汚泥の直接処理は一般に
は焼却法が用いられるが、悪臭の問題で焼却炉の
新設更新が難しく、又、海洋投棄も困難となりつ
つある。 生し尿と汚泥は破砕機にて粉砕し、ロ過し、凝
集沈殿槽にて高分子系凝固剤を加え、強力に凝固
させる。高性能スクリユープレスで脱水80%台の
脱水ケーキにする。 此の脱水ケーキ(50Kg)をそのまま実施例4の
処理剤を用いて実施例6と同様に処理した。処理
剤の添加量15Kg(添加量30%)で処理物内部の温
度は90〜110℃である。含水率の測定は、養生7
日目で行つた。その結果を表21に示す。比較例は
実施例6と同様に本実施例の処理剤に換えて水硬
性セメント(添加率30%)で行つたが、養生7日
目でも充分な固化が得られず、悪臭が残り、醗酵
が進行した。
[Table] After curing and solidification, it is used as fuel and lime fertilizer. Example 23 Treatment of raw human excreta and septic tank sludge The incineration method is generally used for direct treatment of raw human excreta and septic tank sludge, but it is difficult to install new incinerators due to the problem of bad odor, and it is difficult to dispose of it in the ocean. is becoming increasingly difficult. Human waste and sludge are crushed in a crusher, filtered, and strongly coagulated in a coagulation and sedimentation tank by adding a polymeric coagulant. Make a dehydrated cake with 80% dehydration using a high-performance screw press. This dehydrated cake (50 kg) was treated in the same manner as in Example 6 using the treatment agent of Example 4. When the amount of processing agent added is 15 kg (added amount: 30%), the temperature inside the treated product is 90 to 110°C. Measurement of moisture content is carried out at curing 7.
I went on the first day. The results are shown in Table 21. In the comparative example, similar to Example 6, hydraulic cement (addition rate 30%) was used instead of the treatment agent of this example, but sufficient solidification was not obtained even on the 7th day of curing, a bad odor remained, and fermentation progressed.

【表】 養生固化したものは、肥料に、また燃料に利用
される。 実施例 24 船底付着貝殻(かき、2枚貝)の処理 船底に付着した貝殻は腐敗が激しく悪臭を出
す。この貝殻(50Kg)を、そのまま実施例4の処
理剤を用いて、実施例6と同様に処理した。処理
剤の添加量20Kg(添加率40%)である。 処理物内部の温度は90〜110℃で継続する。完
全に粉体化し、悪臭は殆ど感じられない。 含水率の測定は、養生2日目で行つた。その結
果を表22に示す。比較例は実施例6と同様に本実
施例の処理剤に換えて水硬性セメント(添加率40
%)で行つたが、養生2日目では充分な固化にい
たらず、悪臭の発生が強い。
[Table] After curing and solidification, it is used as fertilizer and fuel. Example 24 Treatment of shells (oysters, bivalves) attached to the bottom of a ship Shells attached to the bottom of a ship are highly decomposed and emit a foul odor. This shell (50 kg) was treated in the same manner as in Example 6 using the treatment agent of Example 4 as it was. The amount of processing agent added was 20 kg (addition rate 40%). The temperature inside the processed material continues at 90-110°C. It is completely powdered and there is almost no bad odor. The moisture content was measured on the second day of curing. The results are shown in Table 22. In the comparative example, similar to Example 6, hydraulic cement (addition rate 40
%), but on the second day of curing, it was not sufficiently solidified and a strong odor was generated.

【表】 処理品は鶏の飼料に利用できる。 以上述べた実施例16〜24はその対象物が高含有
水分のものか、あるいは1及び腐蝕し易いもので
あるが、本発明の処理剤を用いて処理することに
より、含有水分は蒸発除去され、残留した水分も
殆どが結晶水となるので外観上乾燥した粉体状態
となり、取扱いが簡便となる。また、腐蝕し易い
ものも処理中の高温で殺菌されるので処理物は何
等腐敗臭を有さないことが理解でき、このものを
土として土壌中へ還元することが可能となる。 比較例 第23表に示す配合組成の処理剤(比較例)と、
実施例1〜4の処理剤とを上記実施例に用いた撹
拌機1を用いて汚泥廃棄物に対する処理能力につ
いて比較した。 このときに用いられた汚泥廃棄物は水分65%の
活性汚泥である。 汚泥は実施例6と同じように前処理工程を経ず
に、そのままの状態で処理剤と混合して処理し
た。 このときの処理剤の添加率は20%であつた。こ
の処理剤と汚泥との混合時における混合系の内部
温度を測定したところ第24表の結果を得た。
[Table] Processed products can be used as chicken feed. In Examples 16 to 24 described above, the objects have high moisture content or are easily corroded, but by treating with the treatment agent of the present invention, the moisture content can be removed by evaporation. Since most of the remaining moisture becomes crystallization water, the product appears as a dry powder and is easy to handle. Furthermore, since materials that are easily corroded are sterilized at high temperatures during treatment, it can be understood that the treated materials do not have any putrid odor, and this material can be returned to the soil as soil. Comparative example A treatment agent (comparative example) with the composition shown in Table 23,
The treatment agents of Examples 1 to 4 were compared in terms of treatment ability for sludge waste using the agitator 1 used in the above examples. The sludge waste used at this time was activated sludge with a moisture content of 65%. As in Example 6, the sludge was treated as it was by mixing it with a treatment agent without undergoing any pretreatment process. The addition rate of the processing agent at this time was 20%. When the internal temperature of the mixing system was measured when this treatment agent and sludge were mixed, the results shown in Table 24 were obtained.

【表】【table】

【表】【table】

【表】 第24表からも解るように、比較例の処理剤は実
施例1乃至4の処理剤に比べて混合系の内部温度
が極めて低く処理物の加熱水分蒸発能力に欠け
る。このため比較例の処理剤は高含有水分の廃棄
物又は有害物の固定化等に熱を必要とする処理に
対しては何等処理能力を有していないのに対して
実施例1乃至4はその高い内部温度により充分に
水分を蒸発又は加熱させることができるので上記
の廃棄物に対しても有効に処理能力を発揮する。
[Table] As can be seen from Table 24, compared to the processing agents of Examples 1 to 4, the processing agents of Comparative Examples have an extremely low internal temperature of the mixing system and lack the ability to heat and evaporate moisture from the treated material. For this reason, the processing agents of Comparative Examples do not have any processing ability for processing that requires heat for fixing high-moisture content waste or harmful substances, whereas Examples 1 to 4 The high internal temperature allows moisture to be sufficiently evaporated or heated, so that it exhibits effective processing ability even for the above-mentioned wastes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の処理に用いた撹拌機の一部破
断斜視図、第2図は同上X―X線断面図である。 1…撹拌機、2…反応筐、14…撹拌翼。
FIG. 1 is a partially cutaway perspective view of the stirrer used in the treatment of the present invention, and FIG. 2 is a sectional view taken along line X--X of the same. 1... Stirrer, 2... Reaction box, 14... Stirring blade.

Claims (1)

【特許請求の範囲】 1 生石灰粉末40.0〜56.0重量部、硅酸苦土石灰
粉末5.0〜14.0重量部、滑石粉末3.5〜6.5重量部、
炭酸石灰粉末12.5〜18.0重量部、クレイ粉末1.0〜
3.0重量部、アルミン酸カルシウム粉末9.0〜11.0
重量部、及び三酸化イオウ50重量%以上含有粉末
8.5〜11.5重量部を配合したことを特徴とする廃
棄物の処理材。 2 上記生石炭粉末は酸化カルシウム95%以上含
有粉末であり、上記硅酸苦土石灰粉末は酸化カル
シウム53%以上、二酸化硅素30%以上含有粉末で
あり、上記滑石粉末は二酸化硅素35%以上、酸化
マグネシウム30%以上含有粉末であり、上記重質
炭酸石灰粉末は酸化カルシウム50%以上含有粉末
であり、上記クレイ粉末は二酸化硅素76%以上、
酸化アルミニウム14%以上含有粉末であり、上記
アルミン酸カルシウム粉末は酸化アルミニウム50
%以上、酸化カルシウム30%以上含有粉末であ
り、上記三酸化イオウ50%以上含有粉末は酸化ア
ルミニウム25%以上、三酸化イオウ65%以上含有
無水硫酸アルミニウム粉末あるいは三酸化イオウ
55%以上、水酸化カルシウム2%以下含有焼石膏
粉末である特許請求の範囲第1項記載の廃棄物の
処理剤。 3 生石灰粉末40.0〜56.0重量部、硅酸苦土石灰
粉末5.0〜14.0重量部、滑石粉末3.5〜6.5重量部、
炭酸石灰粉末12.5〜18.0重量部、クレイ粉末1.0〜
3.0重量部、アルミン酸カルシウム粉末9.0〜11.0
重量部、及び三酸化イオウ50重量%以上含有粉末
8.5〜11.5重量部を配合した処理剤と被処理廃棄
物とを混合するとともに脱水粉体化することを特
徴とする廃棄物の処理方法。 4 上記生石灰粉末は酸化カルシウム95%以上含
有粉末であり、上記硅酸苦土石灰粉末は酸化カル
シウム53%以上、二酸化硅素30%以上含有粉末で
あり、上記滑石粉末は2酸化硅素35%以上、酸化
マグネシウム30%以上含有粉末であり、上記重質
炭酸石灰粉末は酸化カルシウム50%以上含有粉末
であり、上記クレイ粉末は二酸化硅素76%以上、
酸化アルミニウム14%以上含有粉末であり、上記
アルミン酸カルシウム粉末は酸化アルミニウム50
%以上、酸化カルシウム30%以上含有粉末であ
り、上記三酸化イオウ50%以上含有粉末は酸化ア
ルミニウム25%以上、三酸化イオウ65%以上含有
無水硫酸アルミニウム粉末あるいは三酸化イオウ
55%以上、水酸化カルシウム2%以下含有焼石膏
粉末である特許請求の範囲第3項記載の廃棄物の
処理方法。
[Claims] 1. 40.0 to 56.0 parts by weight of quicklime powder, 5.0 to 14.0 parts by weight of magnesium silicate lime powder, 3.5 to 6.5 parts by weight of talc powder,
Lime carbonate powder 12.5~18.0 parts by weight, clay powder 1.0~
3.0 parts by weight, calcium aluminate powder 9.0-11.0
parts by weight, and powder containing 50% by weight or more of sulfur trioxide
A waste treatment material characterized by containing 8.5 to 11.5 parts by weight. 2 The above-mentioned raw coal powder is a powder containing 95% or more of calcium oxide, the above-mentioned magnesium silicate lime powder is a powder containing 53% or more of calcium oxide, 30% or more of silicon dioxide, and the above-mentioned talcum powder is a powder containing 35% or more of silicon dioxide, The above-mentioned heavy carbonate lime powder is a powder containing 30% or more of magnesium oxide, the above-mentioned clay powder is a powder containing 50% or more of calcium oxide, and the above-mentioned clay powder contains 76% or more of silicon dioxide.
It is a powder containing 14% or more of aluminum oxide, and the above calcium aluminate powder contains 50% or more of aluminum oxide.
% or more, powder containing 30% or more of calcium oxide, and the powder containing 50% or more of sulfur trioxide is anhydrous aluminum sulfate powder or sulfur trioxide containing 25% or more of aluminum oxide, 65% or more of sulfur trioxide.
The waste treatment agent according to claim 1, which is calcined gypsum powder containing 55% or more and 2% or less of calcium hydroxide. 3 Quicklime powder 40.0 to 56.0 parts by weight, magnesium silicate lime powder 5.0 to 14.0 parts by weight, talcum powder 3.5 to 6.5 parts by weight,
Lime carbonate powder 12.5~18.0 parts by weight, clay powder 1.0~
3.0 parts by weight, calcium aluminate powder 9.0-11.0
parts by weight, and powder containing 50% by weight or more of sulfur trioxide
A method for treating waste, which comprises mixing a treatment agent containing 8.5 to 11.5 parts by weight with waste to be treated, and dehydrating the waste to powder. 4 The above-mentioned quicklime powder is a powder containing 95% or more of calcium oxide, the above-mentioned magnesium silicate lime powder is a powder containing 53% or more of calcium oxide, 30% or more of silicon dioxide, and the above-mentioned talcum powder is a powder containing 35% or more of silicon dioxide, The above-mentioned heavy carbonate lime powder is a powder containing 30% or more of magnesium oxide, the above-mentioned clay powder is a powder containing 76% or more of silicon dioxide,
It is a powder containing 14% or more of aluminum oxide, and the above calcium aluminate powder contains 50% or more of aluminum oxide.
% or more, powder containing 30% or more of calcium oxide, and the powder containing 50% or more of sulfur trioxide is anhydrous aluminum sulfate powder or sulfur trioxide containing 25% or more of aluminum oxide, 65% or more of sulfur trioxide.
The waste treatment method according to claim 3, wherein the waste is a calcined gypsum powder containing 55% or more and 2% or less of calcium hydroxide.
JP59187764A 1984-09-07 1984-09-07 Waste treating agent and treatment of waste Granted JPS6164387A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59187764A JPS6164387A (en) 1984-09-07 1984-09-07 Waste treating agent and treatment of waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59187764A JPS6164387A (en) 1984-09-07 1984-09-07 Waste treating agent and treatment of waste

Publications (2)

Publication Number Publication Date
JPS6164387A JPS6164387A (en) 1986-04-02
JPS6324427B2 true JPS6324427B2 (en) 1988-05-20

Family

ID=16211794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59187764A Granted JPS6164387A (en) 1984-09-07 1984-09-07 Waste treating agent and treatment of waste

Country Status (1)

Country Link
JP (1) JPS6164387A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674657A (en) * 2012-06-11 2012-09-19 安徽国祯环保节能科技股份有限公司 Sludge dewatering method for urban sewage plant
CN105668954A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Destabilizing reagent and a method therewith for treating polymer-bearing oil sludge in oil field

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290144A (en) * 1995-04-24 1996-11-05 Kinki Kankyo Center Kk Treating agent of harmful material and its treatment
CN1705625A (en) * 2004-02-23 2005-12-07 野口和利 Compost, and method and apparatus for producing the same
JP4678229B2 (en) * 2005-05-11 2011-04-27 戸田工業株式会社 Heavy metal insolubilizer, method for insolubilizing heavy metals in fly ash
JP5315096B2 (en) * 2009-03-06 2013-10-16 吉野石膏株式会社 Heavy metal insolubilization method and heavy metal insolubilization solidification material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104462A (en) * 1976-02-29 1977-09-01 Taku Yamada Method and apparatus for disposing industrial wastes and solidifying agent therefor
JPS57201576A (en) * 1981-05-30 1982-12-10 Osamu Kurachi Chemical treatment of industrial waste

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104462A (en) * 1976-02-29 1977-09-01 Taku Yamada Method and apparatus for disposing industrial wastes and solidifying agent therefor
JPS57201576A (en) * 1981-05-30 1982-12-10 Osamu Kurachi Chemical treatment of industrial waste

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674657A (en) * 2012-06-11 2012-09-19 安徽国祯环保节能科技股份有限公司 Sludge dewatering method for urban sewage plant
CN105668954A (en) * 2014-11-20 2016-06-15 中国石油化工股份有限公司 Destabilizing reagent and a method therewith for treating polymer-bearing oil sludge in oil field
CN105668954B (en) * 2014-11-20 2018-12-28 中国石油化工股份有限公司 A method of it breaking steady medicament and breaks steady chemicals treatment oil field polymer-containing oil sludge using this

Also Published As

Publication number Publication date
JPS6164387A (en) 1986-04-02

Similar Documents

Publication Publication Date Title
US4226712A (en) Method and apparatus for treating water containing wastes
RU2293070C2 (en) Method of complex processing and utilization of waste water sediments
US4295972A (en) Method for treating water containing wastes
KR20130123276A (en) Method for treating wastewater and composting of organic wastes
JPS6324427B2 (en)
CN107586003A (en) Sludge treating agent and method for sludge treatment
DK166580B1 (en) PROCEDURE FOR THE CONVERSION OF AMMONIUM-containing FERTILIZERS OR SIMILAR
JP2005232341A (en) Treatment agent of hexavalent chromium-containing soil
KR19990073569A (en) method for manufacturing compost by using sewage sluge
KR20130123799A (en) Method for treating organic waste matter
KR101069239B1 (en) Changing Method of Organic and Inorganic Slurry Using Sulfuric Acid
KR870001355B1 (en) Method for treating waste material
JP4341133B2 (en) Recycling method by chemical treatment of garbage, materials made by the method, and garbage processing recycling system for implementing the method
RU2093498C1 (en) Method of manufacturing complex organomineral fertilizer
KR102223941B1 (en) The method of high-calcium manure using organic waste and its apparatus
JP2008207985A (en) Manufacturing process of fertilizer or the like using waste water slurry or the like from farming village and manufacturing apparatus of the fertilizer or the like
JP3742977B2 (en) Solidification method of pig dung sludge
JP7515213B1 (en) Method for producing treated concrete sludge containing organic matter
JP2004197047A (en) Soil modifier
JPS6317986A (en) Soil improving material and production thereof
CA2212987A1 (en) Method of stabilizing odors in manure
JPH0824900A (en) Waste water and sludge treatment agent, and treatment of waste water and sludge using the agent
JPS63230586A (en) Improved fertilizer
RU2791150C1 (en) Method for cleaning pig drains
RU2132320C1 (en) Method of preparing fertilizer from organic waste