JPS63243765A - Current detector - Google Patents

Current detector

Info

Publication number
JPS63243765A
JPS63243765A JP62075978A JP7597887A JPS63243765A JP S63243765 A JPS63243765 A JP S63243765A JP 62075978 A JP62075978 A JP 62075978A JP 7597887 A JP7597887 A JP 7597887A JP S63243765 A JPS63243765 A JP S63243765A
Authority
JP
Japan
Prior art keywords
magnetic field
current
acts
detected
pulse signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62075978A
Other languages
Japanese (ja)
Inventor
Akira Matsushita
昭 松下
Susumu Abe
晋 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP62075978A priority Critical patent/JPS63243765A/en
Priority to US07/175,787 priority patent/US4944270A/en
Publication of JPS63243765A publication Critical patent/JPS63243765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE:To obtain a small-sized inexpensive current detector having extremely high accuracy, by generating a pulse signal in the detection coil of a magnetism- sensitive element at the point of time when the next positive magnetic field acts when the negative magnetic field due to a current to the detected is larger than a bias magnetic field. CONSTITUTION:At first, a constant bias magnetic field HDC is always allowed to act on a magnetism-sensitive element 1. Herein, when the external magnetic field HAC generated by the AC current I to be detected flowing to an exciting coil 3 is smaller than the absolute value of the max. peak value thereof, any special phenomenon is not generated in the element 1. However, when the magnetic field HAC larger than HDC acts, at first, a negative magnetic field HR acts on the element 1 and a part low in coercive force is transformed in a negative direction and again reversed in a positive direction by a positive magnetic field HS acting in succession. This transformation speed is especially rapid. Therefore, since a steep pulse signal VS is induced in a detection coil 2 at the point of time when a limit magnetic field HL necessary for generating transformation acts, by detecting the signal VS, it is discriminated that the prescribed current to be detected is supplied.

Description

【発明の詳細な説明】 本発明は特殊な処理を施した複合磁性体から成る感磁要
素を用いた電流検知器に間する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a current detector using a magnetically sensitive element made of a specially treated composite magnetic material.

まず、本発明に用いられている感磁要素の概要−を説明
する。
First, an overview of the magnetically sensitive element used in the present invention will be explained.

例えば線状の強磁性体にひねり等の外部応力を加えて処
理したものは、線輪方向に単軸磁気異方性を備え、その
線心部付近に比較的0¥磁力の太きい部分を有し、これ
と隣接する外周部に保磁力の小さい部分をもつ複合磁性
体になる。あるいは磁気的性質の異なる複数の磁性層を
積層し単軸磁気異方性を備えるように処理して得られる
複合磁性体は、本発明で用いる感磁要素として次のよう
な特異性を有する。
For example, a wire-shaped ferromagnetic material processed by applying external stress such as twisting has uniaxial magnetic anisotropy in the direction of the wire, and has a thick part with relatively zero magnetic force near the wire core. It becomes a composite magnetic material having a portion with a small coercive force in the outer peripheral portion adjacent to this. Alternatively, a composite magnetic material obtained by laminating a plurality of magnetic layers having different magnetic properties and processing to have uniaxial magnetic anisotropy has the following specificity as a magnetically sensitive element used in the present invention.

すなわち、感磁要素の比較的保磁力の小さい部分の磁化
方向のみを外部磁界の作用方向に対応して正方向か負方
向かに転位しておくことができ、しかもその時の転位速
度が保磁力の大きい隣接部の磁化方向に対しては殊更に
急速であるという特異な性状をもつ。
In other words, it is possible to shift only the magnetization direction of the portion of the magnetically sensitive element with a relatively small coercive force to either the positive direction or the negative direction in response to the direction of action of the external magnetic field, and furthermore, the transposition speed at that time is equal to the coercive force. It has a unique property that it is particularly rapid in the direction of magnetization in the adjacent region where the magnetization is large.

故に、この時の急速な転位による磁束変化に基づき、感
磁要素に装着した検出コイルに急峻なパルス信号を誘起
させることができるというものである。
Therefore, based on the magnetic flux change caused by the rapid dislocation at this time, a steep pulse signal can be induced in the detection coil attached to the magnetic sensing element.

依って、その外部磁界として交流電流による負と正との
磁界を鎖交させるように構成しておき、パルス信号の誘
発時点を検知するようにすれば、その時の電流検知が可
能になる。
Therefore, by configuring the external magnetic field to interlink negative and positive magnetic fields caused by alternating current and detecting the triggering point of the pulse signal, it becomes possible to detect the current at that time.

しか1ノながら感磁要素のような複合磁性体においては
、その保磁力の大きい部分が、あらかじめどのように磁
化されていたかという前歴によって、前記パルス信号を
誘発するための外部磁界の大きさ、すなわち交流電流値
が必ずしも一定しないことがある。これは磁気ヒステリ
シス特性に基づく必然的現象ではあるが、電流検知器と
して利用するためには何等かの補正手段が必要になる。
However, in a composite magnetic material such as a magnetosensitive element, the magnitude of the external magnetic field for inducing the pulse signal depends on the prior history of how the part with a large coercive force has been magnetized in advance. That is, the alternating current value may not always be constant. Although this is an inevitable phenomenon based on magnetic hysteresis characteristics, some kind of correction means is required in order to use it as a current detector.

これに対し本発明の電流検知器は、次に述べるように簡
便な手段でその達成に成功したものである。すなわちそ
の概要は、感磁要素の保磁力の小さい部分を正方向に磁
化する程度の比較的小さい一定の大きさのバイアス磁界
を常時作用させておき、これに鎖交させる交流被検知電
流による負磁界が前記バイアス磁界より大きい時、次の
正磁界の作用時点において前記感磁要素に装着した検出
コイルにパルス信号を発生するように構成したものであ
る。
On the other hand, the current detector of the present invention has succeeded in achieving this by a simple means as described below. In other words, the outline is that a bias magnetic field of a relatively small constant magnitude that magnetizes the part of the magnetosensitive element with a small coercive force in the positive direction is constantly applied, and a negative When the magnetic field is larger than the bias magnetic field, a pulse signal is generated in the detection coil attached to the magnetically sensitive element at the time of application of the next positive magnetic field.

以下、本発明の実施例を図面について説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図は基本的な構成例で、1は前述の感磁要素、2は
これに装着された(例えばその周りに巻かれたり、また
は近くに配置された)検出コイルである。また3は交流
被検知電流■により外部磁界を発生する励磁コイルであ
る。そして4は感磁要素1の保磁力の小さい部分のみを
、常時正方向に磁化しておくためのバイアス磁界発生用
コイルで、5はその直流電源である。
FIG. 1 shows a basic configuration example, where 1 is the aforementioned magnetic sensing element, and 2 is a detection coil attached to it (for example, wound around it or placed nearby). Further, 3 is an excitation coil that generates an external magnetic field using the AC detected current (2). Reference numeral 4 denotes a bias magnetic field generating coil for always magnetizing only the portion of the magnetically sensitive element 1 with a small coercive force in the positive direction, and 5 is a DC power source thereof.

第2図に例示したタイムチャートに基づきその作用効果
を説明すると次のようになる。ます感磁要素1に、点線
6で示したように一定のバイアス磁界)(Dcを常時正
方向に作用させておく。
The operation and effect will be explained based on the time chart illustrated in FIG. 2 as follows. A constant bias magnetic field (Dc) is always applied to the magnetic sensing element 1 in the positive direction as shown by the dotted line 6.

いま励磁コイル3に流れる交流被検知電流Iによって発
生する外部磁界HACが、同図(a)の点線で示したー
Hpcのように最大波高値の絶対値がH[ICより小さ
い時は、実線で示したように合成磁界(HDC+HAC
)が総て正磁界になるから、感磁要素1には何ら格別な
現象を生じない。
When the absolute value of the maximum peak value is smaller than H[IC, the external magnetic field HAC generated by the AC detected current I flowing through the excitation coil 3 is indicated by the dotted line in Figure (a) -Hpc, the solid line As shown in the composite magnetic field (HDC+HAC
) are all positive magnetic fields, so no special phenomenon occurs in the magnetically sensitive element 1.

しかしながら同図(b)のように被検知電流■により発
生する外部磁界)(ae(この場合、その最大波高値の
絶対値はHDCより大きい)が作用すると、感磁要素1
には実線の合成磁界(HDC+HAC)が作用すること
になる。
However, as shown in (b) in the same figure, when an external magnetic field (ae) (in this case, the absolute value of the maximum peak value is larger than HDC) generated by the detected current () acts, the magnetically sensitive element 1
The composite magnetic field (HDC+HAC) shown by the solid line acts on the .

すなわち感磁要素1に対し、まず負磁界H11が作用し
て保磁力の小さい部分のみが負方向に転位される。この
保磁力の小さい部分は、引続いて作用する正磁界1(s
によって再び正方向に逆転せしめられる。しかるにこの
場合は保磁力の大きい隣接部と同一磁化の正方向に向け
られる時であるから、その転位速度は前述したように殊
更に急速である。
That is, first, a negative magnetic field H11 acts on the magnetically sensitive element 1, and only the portion with a small coercive force is transposed in the negative direction. This portion of small coercive force is affected by the subsequently acting positive magnetic field 1 (s
is reversed again in the positive direction. However, in this case, since the magnetization is directed in the same positive direction as that of the adjacent portion having a large coercive force, the dislocation speed is particularly rapid as described above.

故に転位を生じるに必要なの限界磁界HLが作用した時
点において、同図の下段に併記したように急峻なパルス
信号Vsを検出コイル2の両端に誘起するので、このパ
ルス信号の検出によって、あらかじめ規定しておいた被
検知電流が通電したことが判る。
Therefore, at the time when the critical magnetic field HL required to cause a dislocation acts, a steep pulse signal Vs is induced at both ends of the detection coil 2, as shown in the lower part of the figure. It can be seen that the detected current that had been set has been applied.

以上の実施例では一定のバイアス磁界を常時作用させて
おく手段として、直流電流による場合を述べたが、この
作用と全く同様の効果は第3図に例示したように、感磁
要素10近くに永久磁石7を配置することによっても得
られる。
In the above embodiments, a direct current was used as a means for constantly applying a constant bias magnetic field, but an effect exactly similar to this effect can be obtained near the magnetically sensitive element 10, as illustrated in FIG. It can also be obtained by arranging permanent magnets 7.

なお、実際の配線末端部に本発明の電流検知器を設置し
た場合、それが正常に動作する状態にあるかどうかのチ
ェックを必要とすることがある。
Note that when the current detector of the present invention is installed at the end of an actual wiring, it may be necessary to check whether it is in a normal operating state.

このような場合には、例えば同図に併記したように正方
向磁界の作用をする永久磁石8を付加しておき、これと
通常は接触させである閉磁路用補磁子9(斜線で図示)
を、操作金具10(または押ボタンなど)によフて引き
離すようにする。このとき永久磁石8の正磁界が感磁要
素1に作用するから、パルス信号Vsが誘起され、この
信号を検知することによって正常動作状態にあることが
確認できる。またこれとは別にチェック用励磁コイル(
図示せず)を設置しておき、これに遠隔指令にもとづき
通電して磁界を発生させる方法などの手段を適用しても
よい。
In such a case, for example, as shown in the same figure, a permanent magnet 8 that acts as a positive magnetic field is added, and a closed magnetic circuit compensator 9 (shown with diagonal lines in the diagram), which is normally in contact with the permanent magnet 8, is added. )
are pulled apart using the operating fitting 10 (or push button, etc.). At this time, since the positive magnetic field of the permanent magnet 8 acts on the magnetic sensing element 1, a pulse signal Vs is induced, and by detecting this signal, it can be confirmed that the device is in a normal operating state. In addition to this, an excitation coil for checking (
It is also possible to apply a method such as a method in which a magnetic field (not shown) is installed and a magnetic field is generated by energizing the magnetic field based on a remote command.

次に第4図に例示したように電カケープル11の如き大
電流を通電する配線または装置類に対しては、配電盤内
部において端子12により接続し、変流器鉄心13を介
した2次電流lを励磁コイル14に通電することにより
、前述と同様の磁化作用を感磁要素1に与えればよい。
Next, as illustrated in FIG. 4, wires or devices that carry large currents, such as the power cable 11, are connected by terminals 12 inside the switchboard, and secondary currents l through the current transformer core 13 are connected. By energizing the excitation coil 14, the same magnetizing effect as described above may be applied to the magnetic sensing element 1.

rは励磁電流調整用抵抗である。r is an excitation current adjustment resistor.

この場合にも、例えば電カケープル11の制限電流値に
おいて検出コイル2にパルス信号Vsを発生するように
しておけば、電流検知器としての作用効果が得られるこ
とはいうまでもない。
In this case as well, it goes without saying that if the pulse signal Vs is generated in the detection coil 2 at the limited current value of the power cable 11, for example, the effect as a current detector can be obtained.

従って上述の各実施例において、あらかじめ規定してお
く検知電流を、線路の制限電流と対応させておけば、極
めて精度の高い過電流検知器として動作させることがで
きる。
Therefore, in each of the embodiments described above, if the predefined detection current is made to correspond to the limited current of the line, it is possible to operate the overcurrent detector with extremely high accuracy.

以上に述べたように、本発明の電流検知器は構造が比較
的簡単かつ小型にでき、規定の電流を任意に設定できる
うえ極めて正確に動作する。しかも安価に提供すること
ができるので、多数の配線末端部の種々の負荷に対する
センサとして適用できる効用がある。
As described above, the current detector of the present invention has a relatively simple and compact structure, can set a prescribed current as desired, and operates extremely accurately. Moreover, since it can be provided at a low cost, it can be used as a sensor for various loads at the end portions of a large number of wirings.

故に広範囲に分散する多数の負荷から検知できるように
配置したセンサからのパルス信号を、光信号に変換し、
光フアイバケーブルの配線網を構成して集中監視制御を
行うことなど多様な利用をはかることができる。
Therefore, the pulse signal from a sensor placed so that it can be detected from a large number of loads distributed over a wide area is converted into an optical signal,
It can be used in a variety of ways, such as by configuring an optical fiber cable network for centralized monitoring and control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図および第4図は本発明の電流検知器 の構成を示す実施例であり、第2図は動作を説明するた
めの作用磁界およびパルス信号のタイムチャートを例示
したものである。 1:感磁要素、    2:検出コイル、3:励磁コイ
ル、   4:バイアス磁界発生用5:直流電源、  
    コイル、 6:バイアス磁界、  7.8:永久磁石、9:補磁子
、     11:電カケープル、12: 端子、  
    13: 鉄心、14: 励磁コイル
1, 3, and 4 are examples showing the configuration of the current detector of the present invention, and FIG. 2 is an example of a time chart of the working magnetic field and pulse signal to explain the operation. be. 1: Magnetic sensing element, 2: Detection coil, 3: Excitation coil, 4: Bias magnetic field generation 5: DC power supply,
Coil, 6: Bias magnetic field, 7.8: Permanent magnet, 9: Compensator, 11: Electric cable, 12: Terminal,
13: Iron core, 14: Excitation coil

Claims (1)

【特許請求の範囲】[Claims] 単軸磁気異方性を備えた複合磁性体から成る感磁要素に
対し、その保磁力の小さい部分のみを正方向に磁化する
程度の一定のバイアス磁界を常時作用させておき、これ
に鎖交させる交流被検知電流による負磁界が前記バイア
ス磁界より大きい時、次の正磁界の作用時点において前
記感磁要素に装着した検出コイルにパルス信号を発生す
るように構成したことを特徴とする電流検知器
A constant bias magnetic field that magnetizes only the part with small coercive force in the positive direction is constantly applied to the magnetosensitive element made of a composite magnetic material with uniaxial magnetic anisotropy, and this is linked. Current detection characterized in that, when a negative magnetic field caused by an alternating current to be detected is larger than the bias magnetic field, a pulse signal is generated in a detection coil attached to the magnetically sensitive element at the time of application of the next positive magnetic field. vessel
JP62075978A 1987-03-31 1987-03-31 Current detector Pending JPS63243765A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62075978A JPS63243765A (en) 1987-03-31 1987-03-31 Current detector
US07/175,787 US4944270A (en) 1987-03-31 1988-03-31 Asymmetrical excitation type magnetic device and method of manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075978A JPS63243765A (en) 1987-03-31 1987-03-31 Current detector

Publications (1)

Publication Number Publication Date
JPS63243765A true JPS63243765A (en) 1988-10-11

Family

ID=13591848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075978A Pending JPS63243765A (en) 1987-03-31 1987-03-31 Current detector

Country Status (1)

Country Link
JP (1) JPS63243765A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160638A (en) * 2012-02-06 2013-08-19 Nippon Soken Inc Current detector
CZ305363B6 (en) * 2006-10-06 2015-08-19 Mega - Měřící Energetické Aparáty, A.S. Flexible sensor of alternating current

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ305363B6 (en) * 2006-10-06 2015-08-19 Mega - Měřící Energetické Aparáty, A.S. Flexible sensor of alternating current
JP2013160638A (en) * 2012-02-06 2013-08-19 Nippon Soken Inc Current detector

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
US4746891A (en) High saturation three coil current transformer
JPH07110345A (en) Demagnetizing method for zero flux control type current sensor
US6639770B2 (en) Current transformer and method for correcting asymmetries therein
JPS63243765A (en) Current detector
JP3518260B2 (en) Transformer, DC bias detection element of transformer, and DC bias evaluation device
JPH0131591B2 (en)
JP2586156B2 (en) AC / DC dual-purpose current detection method
JPH0315710B2 (en)
JP2978637B2 (en) Quench detection device for superconducting winding
CA2112656A1 (en) Internal stress relaxation method in magnetic field sensor head cores
JPH08233927A (en) Thin film flux gate magnetic sensor and manufacture thereof
JPS633616A (en) Failure current detector
JP3093529B2 (en) DC current sensor
GB2370363A (en) Measuring DC component of AC current
JPH1068744A (en) Direct current sensor
KR102678077B1 (en) Embedded Residual Current Filter Device
SU678582A1 (en) Device for protecting electric installation with magnetic core from interturn short-circuitings
JP2000055940A (en) Dc current sensor
JP3746359B2 (en) DC current sensor
JPH0269670A (en) Current detecting system
JP2531294B2 (en) Leakage detector
JPH0529167A (en) Current transformer
JPS6126293B2 (en)
JPH01141364A (en) Instrument for measuring ac current