JP3093529B2 - DC current sensor - Google Patents

DC current sensor

Info

Publication number
JP3093529B2
JP3093529B2 JP05193950A JP19395093A JP3093529B2 JP 3093529 B2 JP3093529 B2 JP 3093529B2 JP 05193950 A JP05193950 A JP 05193950A JP 19395093 A JP19395093 A JP 19395093A JP 3093529 B2 JP3093529 B2 JP 3093529B2
Authority
JP
Japan
Prior art keywords
core
detection
current
current sensor
exciting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05193950A
Other languages
Japanese (ja)
Other versions
JPH0674978A (en
Inventor
川上  誠
茂 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP05193950A priority Critical patent/JP3093529B2/en
Publication of JPH0674978A publication Critical patent/JPH0674978A/en
Application granted granted Critical
Publication of JP3093529B2 publication Critical patent/JP3093529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、直流の漏電ブレーカ
ー等に使用する直流電流センサーに係り、構造が比較的
簡単であり、特に微小な電流の変化に対しても、優れた
検出能力を有する高感度の直流電流センサーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC current sensor used for a DC earth leakage breaker, etc., which has a relatively simple structure and has an excellent detection capability even for a minute change in current. It relates to a high-sensitivity DC current sensor.

【0002】[0002]

【従来の技術】最近は、インバーターを内蔵した電気機
器や電気自動車等、直流を使用した機器が増加している
が、これらの各種機器に組込まれている直流モータの負
荷を検知し、所要の制御を行うためのセンサーや、直流
漏電ブレーカー等に使用される直流電流センサーの必要
性が高まってきた。
2. Description of the Related Art Recently, devices using DC such as electric devices and electric vehicles with built-in inverters have been increasing. However, the load of a DC motor incorporated in these various devices is detected and required power is detected. There has been an increasing need for sensors for controlling and DC current sensors used for DC earth leakage breakers and the like.

【0003】交流の漏電ブレーカー等に用いられる電流
センサーとしては、カレントトランスを応用したものが
広く知られている。しかし、先に説明した直流を使用し
た機器に用いる漏電ブレーカー等にはこの構成を採用す
ることができず、従来から直流電流センサーとして知ら
れるシャント抵抗方式、マグアンプ方式、磁気マルチバ
イブレータ方式(特開昭47−1644号、特開昭53
−31176号、特開昭59−46859号)、ホール
素子方式等の採用が検討されている。
As a current sensor used for an AC leakage breaker or the like, a current sensor to which a current transformer is applied is widely known. However, this configuration cannot be adopted for the earth leakage breaker or the like used for the device using DC described above, and the shunt resistance method, the mag amplifier method, and the magnetic multivibrator method conventionally known as DC current sensors (Japanese Patent Application Laid-Open No. 47-1644, Japanese Unexamined Patent Publication No. 53
Japanese Patent Application Laid-Open No. 31176, JP-A-59-46859), and adoption of a Hall element system and the like are being studied.

【0004】シャント抵抗方式は、被検出導線に直列に
シャント抵抗を配置し、該シャント抵抗の両端部に発生
する電位差を検出する方式である。また、マグアンプ方
式、磁気マルチバイブレータ方式は、いずれもトロイダ
ル状に検出コイルを巻回してなる軟質磁性材料のコアを
用い、そのコアの内側に被検出導線を貫通させ、該被検
出導線に流れる直流電流にて軟質磁性材料のコアを飽和
磁束密度(Bs)以内で直流偏磁させることにより、予
めコアに巻回されたコイルに交流電流を通電することに
より発生した交番磁束が正、負の方向で飽和に達する時
間にアンバランスを発生させ、その変化を前記検出コイ
ルにて検出する方式である。
[0004] The shunt resistance method is a method in which a shunt resistor is arranged in series with a conductor to be detected, and a potential difference generated at both ends of the shunt resistor is detected. The mag-amp system and the magnetic multivibrator system each use a core of a soft magnetic material formed by winding a detection coil in a toroidal shape, penetrate a detected wire inside the core, and apply a direct current flowing through the detected wire. Alternating magnetic flux generated by applying an alternating current to a coil wound on the core in advance by direct current demagnetization of the core of the soft magnetic material within the saturation magnetic flux density (Bs) by electric current, in the positive and negative directions In this method, an unbalance is generated at the time when the saturation is reached, and the change is detected by the detection coil.

【0005】マグアンプ方式では予めコア内に磁束変化
を与えるため、コアに励磁コイルを巻回して所定値の交
流電流を通電する構成を採用するが、磁気マルチバイブ
レータ方式では検出コイルと接続する回路中の半導体等
の作用により自励発振させ、被検出電流に応じて発振波
形のデューティー比を変えて発振する構成からなってい
る。さらに、ホール素子方式は、一部にホール素子を配
置する空隙部を形成してなる軟質磁性材料のコアに直接
被検出導線をトロイダル状に巻回し、該被検出導線に流
れる直流電流の変化に基づくコア内の磁束変化を直接ホ
ール素子にて検知する構成からなっている。
The mag-amp system employs a configuration in which an exciting coil is wound around the core and an alternating current of a predetermined value is applied in order to apply a magnetic flux change in the core in advance. In the magnetic multivibrator system, a circuit connected to a detection coil is used. Self-excited oscillation by the action of the semiconductor or the like, and oscillates by changing the duty ratio of the oscillation waveform according to the current to be detected. Further, in the Hall element method, a detected wire is wound in a toroidal shape directly on a core of a soft magnetic material formed with a gap portion in which a Hall element is arranged, and a change in DC current flowing through the detected wire is obtained. This is configured to directly detect a change in magnetic flux in the core based on the Hall element.

【0006】[0006]

【発明が解決しようとする課題】しかし、上記の各方式
からなる直流電流センサーは、以下の理由により直流漏
電ブレーカー等の微小な電流の変化に対応できる構成と
は言い難く、高感度の直流電流センサーとして実用に至
っていないのが現状である。すなわち、シャント抵抗方
式では、シャント抵抗自体が被検出導線を含む回路中に
電気的な抵抗として配置されるため、該回路における電
気的な損失が増大し、電気的な効率が悪いという欠点を
有している。また、上記電気抵抗の両端に発生した電位
差を検出するための検出回路が被検出導線に直接接続さ
れるため、これら検出回路と被検出導線との電気的な絶
縁が困難であり、例えば、該検出回路とマイコン制御回
路等の応用回路と直接接続することができず、汎用性に
乏しいという欠点をも有している。
However, the DC current sensor of each of the above types cannot be said to have a configuration capable of coping with a minute current change such as a DC leakage breaker for the following reasons. At present, it has not been put to practical use as a sensor. In other words, the shunt resistor method has a disadvantage that the shunt resistor itself is arranged as an electrical resistor in a circuit including the detection target wire, so that the electrical loss in the circuit increases and the electrical efficiency is poor. doing. Further, since a detection circuit for detecting a potential difference generated at both ends of the electric resistance is directly connected to the detected conductor, it is difficult to electrically insulate these detection circuits and the detected conductor. There is also a drawback that the detection circuit cannot be directly connected to an application circuit such as a microcomputer control circuit, and the versatility is poor.

【0007】このような欠点を有するとともに、このシ
ャント抵抗方式を漏電ブレーカーに採用するためには、
被検出導線の回路中に2つのシャント抵抗を配置するこ
とが必要となるが、各々のシャント抵抗を同一特性に揃
えることは実質的に困難であり、高精度の電位差測定を
実現することができない。しかも、各々のシャント抵抗
に接続する検出回路にて測定される電位差を比較対照し
て、わずかな漏電を検出するためには互いの検出回路を
非常に複雑な電気回路にて接続することが必要となり、
実用性の高い直流電流センサーとして提供することは困
難である。
[0007] In addition to having such a drawback, in order to adopt this shunt resistance method in an earth leakage breaker,
Although it is necessary to arrange two shunt resistors in the circuit of the conductor to be detected, it is practically difficult to make each shunt resistor have the same characteristics, and it is not possible to realize highly accurate potential difference measurement. . In addition, it is necessary to connect each other's detection circuits with very complicated electric circuits to detect slight leakage by comparing and comparing the potential difference measured by the detection circuits connected to each shunt resistor. Becomes
It is difficult to provide a highly practical DC current sensor.

【0008】マグアンプ方式、磁気マルチバイブレータ
方式においては、検出回路と被検出導線との電気的な絶
縁が可能であるが、先に説明した通り、被検出導線に流
れる直流電流にて軟質磁性材料のコアをほぼ飽和磁束密
度(Bs)付近にまで飽和させるよう直流偏磁させるこ
とが必要である。パーマロイ等の公知の軟質磁性材料を
コアとして用いた場合、例えば、被検出導線に流れる電
流が数10mA程度の場合は、該被検出導線を軟質磁性
材料のコアに数10ターンから数100ターン以上巻回
する必要があり、本来、被検出導線の1ターン貫通を要
求される漏電ブレーカー等の直流電流センサーとして使
用することは困難であった。
In the mag-amp system and the magnetic multivibrator system, the detection circuit and the conductor to be detected can be electrically insulated. However, as described above, the direct current flowing through the conductor to be detected makes the soft magnetic material harder. It is necessary to perform DC bias so as to saturate the core to approximately the saturation magnetic flux density (Bs). When a known soft magnetic material such as Permalloy is used as the core, for example, when the current flowing through the detected wire is about several tens mA, the detected wire is connected to the soft magnetic material core by several tens to several hundred turns or more. It was necessary to wind the wire, and it was originally difficult to use it as a DC current sensor for an earth leakage breaker or the like that required one turn of the conducting wire to be detected.

【0009】ホール素子方式においても、これらの検出
能力は、ホール素子の特性によって必然的に決定される
ことから、現在公知のホール素子を用いた場合、例え
ば、被検出導線に流れる電流が数10mA程度の場合
は、該被検出導線を軟質磁性材料のコアに数100ター
ンから数1000ターン以上巻回する必要があり、上記
のマグアンプ方式、磁気マルチバイブレータ方式と同様
に、被検出導線の1ターン貫通を要求される漏電ブレー
カー等の直流電流センサーとして使用することは困難で
あった。
In the Hall element system, these detection capabilities are inevitably determined by the characteristics of the Hall element. Therefore, when a currently known Hall element is used, for example, the current flowing through the conductor to be detected is several tens mA. In this case, it is necessary to wind the wire to be detected around a core of a soft magnetic material from several hundred turns to several thousand turns or more. As in the case of the above-described mag-amplifier method and magnetic multivibrator method, one turn of the detected wire is required. It has been difficult to use as a DC current sensor such as an earth leakage breaker that requires penetration.

【0010】この発明は、上記の問題点を解消し、構造
が比較的簡単であり、直流の漏電ブレーカー等、特に微
小な電流の変化に対しても、優れた検出能力を有する高
感度の直流電流センサーの提供を目的とする。また、こ
の発明は、出力特性のヒステリシスを減少させて、微小
電流領域での検出感度を向上させることが可能な直流電
流センサーの提供を目的とする。
The present invention solves the above-mentioned problems, has a relatively simple structure, and has a high-sensitivity DC having excellent detection capability even for a DC leakage breaker or the like, especially even a minute change in current. The purpose is to provide a current sensor. Another object of the present invention is to provide a DC current sensor capable of reducing the hysteresis of output characteristics and improving the detection sensitivity in a minute current region.

【0011】[0011]

【課題を解決するための手段】発明者らは、検出コイル
をトロイダル状に巻回する環状の軟質磁性材料からなる
検出コアの内側に被検出導線を貫通配置し、これに直流
電流を流すと、その直流電流の方向に対して右回りの磁
場が発生し、検出コア内に磁束Φ0が発生するが、被検
出導線に流れる電流が直流であることから磁束Φ0は一
定であり、検出コイルには起電力が発生しないことに着
目し、上記検出コアの一部に磁気的なギャップを形成
し、この部分を磁性体にて開閉することで磁気スイッチ
を構成し、該磁気スイッチにて磁束Φ0を時間的に変化
(ON−OFF)させることによって検出コイルに起電
力を発生させることを検討した。
Means for Solving the Problems The present inventors dispose a lead to be detected inside a detection core made of an annular soft magnetic material around which a detection coil is wound in a toroidal shape, and apply a direct current to this. , the magnetic field clockwise is generated with respect to the direction of the DC current, but the magnetic flux [Phi 0 is generated in the detecting core, a magnetic flux [Phi 0 since the current flowing through the lead wire being detected is the DC is constant, the detection Focusing on the fact that no electromotive force is generated in the coil, a magnetic switch is formed by forming a magnetic gap in a part of the detection core and opening and closing this part with a magnetic material. The generation of electromotive force in the detection coil by changing the magnetic flux Φ 0 with time (ON-OFF) was studied.

【0012】さらに、発明者らは、上記の構成をより実
現性の高いものとすべく種々検討した結果、機械的な磁
気スイッチにかえて、被検出導線に流れる直流電流によ
って検出コア内に発生する周方向の磁束に対して、略直
交方向に発生する磁束によって前記検出コアの一部に周
期的に磁気的なギャップを形成する手段を配置し、実質
的に上記の磁気スイッチと同様な作用を実現することに
よって、目的が達成できることを確認した。例えば、検
出コアの一部に周期的に磁気的なギャップを形成する手
段としては、被検出導線に流れる直流電流によって前記
検出コア内に発生する周方向の磁束に対して、略直交方
向に発生する磁束によって検出コアの一部を磁気的に飽
和させ、周方向の磁束による磁路を周期的に遮断する構
成が採用できる。
Further, the present inventors have conducted various studies to make the above configuration more feasible. As a result, instead of using a mechanical magnetic switch, a DC current generated in a detection target wire is generated in a detection core. Means for periodically forming a magnetic gap in a part of the detection core by a magnetic flux generated in a substantially orthogonal direction with respect to a circumferential magnetic flux to be provided, and have substantially the same operation as the above magnetic switch. It has been confirmed that the objective can be achieved by realizing. For example, as means for periodically forming a magnetic gap in a part of the detection core, a magnetic flux generated in the detection core in a direction substantially orthogonal to a circumferential magnetic flux generated in the detection core by a DC current flowing through the detected wire. It is possible to employ a configuration in which a part of the detection core is magnetically saturated by the generated magnetic flux and the magnetic path by the circumferential magnetic flux is periodically interrupted.

【0013】この発明にて提案する直流電流センサーの
基本的な構成の一つとして、環状の軟質磁性材料からな
る検出コアの一部に検出コアの周方向に対して励磁コア
交差接続するコア交差部を設けて環状の軟質磁性材
料からなる励磁コアと前記検出コアとを一体的に配置
し、各コアにそれぞれトロイダル状に巻回した検出コイ
ルと励磁コイルを配置した構成からなり、さらに検出コ
ア内側に非接触検出する直流電流が流れる被検出導線を
貫通配置した構成からなる直流電流センサーがある。特
に、上記構成において、励磁コアを検出コアの周方向に
対して直角方向に励磁可能にし、励磁コアが検出コアの
周方向に対して検出コアと直交接続するコア直交部を周
期的に磁気的に飽和させる励磁コイルへの交流電流印加
手段を有し、励磁時に被検出導線を流れる直流電流に基
づき検出コアに発生する磁束を変調可能となし、検出コ
イルに励磁電流の2倍の周波数の起電力を出力させて被
検出導線を流れる直流電流を検出することができる。
One of the basic constitutions of the DC current sensor proposed in the present invention is that an exciting core is provided in a part of a detecting core made of an annular soft magnetic material in a circumferential direction of the detecting core.
Provided core intersection which intersects connected, and the detecting core and the exciting core consisting of an annular soft magnetic material integrally disposed, were placed detecting coil and the exciting coil wound in a toroidal shape to each core There is a DC current sensor having a configuration in which a detection target wire through which a DC current for non-contact detection flows flows through the inside of the detection core. In particular, in the above configuration, the exciting core can be excited in a direction perpendicular to the circumferential direction of the detecting core, and the exciting core periodically connects a core orthogonal portion that is orthogonally connected to the detecting core in the circumferential direction of the detecting core. Means for applying AC current to the exciting coil that saturates the magnetic flux generated in the detection core based on the DC current flowing through the conductor to be detected during excitation. Electric power can be output to detect a direct current flowing through the detected conductor.

【0014】換言すると、上記の被検出導線を流れる直
流電流を非接触にて検出するこの発明の直流電流センサ
ーは、内側に前記被検出導線を貫通配置する環状の軟質
磁性材料からなる検出コアに、検出コイルをトロイダル
状に巻回配置するとともに、該検出コアの一部に検出コ
アの周方向に対して直角方向に接続して環状を形成する
軟質磁性材料からなる励磁コアを一体的に配置してな
り、かつ、該励磁コアに励磁コイルをトロイダル状に巻
回配置して直流電流センサーを構成し、前記励磁コイル
に交流電流を印加することによって励磁コアを検出コア
の周方向に対して直角方向に励磁し、検出コアと励磁コ
アとのコア直交部を周期的に磁気的に飽和させることに
よって、被検出導線を流れる直流電流に基づき検出コア
に発生する磁束を変調し、検出コイルに励磁電流の2倍
の周波数の起電力を出力させることにより、被検出導線
を流れる直流電流を検出する構成からなるものである。
In other words, the direct current sensor of the present invention for detecting the direct current flowing through the detected conductor in a non-contact manner is provided with a detection core made of an annular soft magnetic material having the detected conductor penetrating therethrough. And a detection coil wound in a toroidal shape, and an excitation core made of a soft magnetic material that is connected to a part of the detection core in a direction perpendicular to the circumferential direction of the detection core to form an annular shape is integrally disposed. A DC current sensor is formed by winding an exciting coil around the exciting core in a toroidal manner, and applying an AC current to the exciting coil causes the exciting core to move in the circumferential direction of the detection core. The magnetic flux generated in the detection core based on the DC current flowing through the wire to be detected is changed by exciting in a perpendicular direction and periodically magnetically saturating the orthogonal portion between the detection core and the excitation core. And by outputting the electromotive force of twice the frequency of the excitation current in the detection coil is made of a configuration for detecting a DC current flowing through the lead wire being detected.

【0015】[0015]

【作用】以下、この発明の直流電流センサーの作用を図
面に基づいて詳細に説明する。図1Aは、この発明の直
流電流センサーの一実施例の概要を示す斜視説明図であ
り、図1Bは、その一部断面説明図である。図2及び図
3は、この構成における励磁電流と検出コアを通過する
磁束、さらに検出コアに発生する起電力の関係を示して
いる。図1において、1は環状の軟質磁性材料からなる
検出コア2の内側に貫通配置する被検出導線である。3
は該検出コア2の所定位置にトロイダル状に巻回する検
出コイルであり、被検出導線1と電気的な絶縁を確保し
て所定の検出回路(図示せず)に接続する。4は環状の
軟質磁性材料からなる励磁コアであり、所定位置にトロ
イダル状に巻回する励磁コイル5を配置している。しか
も、励磁コア4は、前記検出コア2周方向の一部に、該
検出コア2の周方向に対して直角方向に接続する構成を
採り後述する作用により、図中斜線部、すなわち検出コ
ア2と励磁コア4のコア直交部6に磁気的な飽和部を形
成する。
The operation of the DC current sensor according to the present invention will be described below in detail with reference to the drawings. FIG. 1A is a perspective explanatory view showing an outline of an embodiment of a DC current sensor of the present invention, and FIG. 1B is a partial sectional explanatory view thereof. 2 and 3 show the relationship between the exciting current, the magnetic flux passing through the detection core, and the electromotive force generated in the detection core in this configuration. In FIG. 1, reference numeral 1 denotes a detection target wire penetratingly disposed inside a detection core 2 made of an annular soft magnetic material. 3
Is a detection coil wound in a toroidal shape at a predetermined position of the detection core 2, which is electrically insulated from the detection target wire 1 and is connected to a predetermined detection circuit (not shown). Reference numeral 4 denotes an excitation core made of an annular soft magnetic material, and an excitation coil 5 wound in a toroidal shape is disposed at a predetermined position. In addition, the exciting core 4 is connected to a part of the detecting core 2 in the circumferential direction in a direction perpendicular to the circumferential direction of the detecting core 2. And a magnetically saturated portion is formed in the core orthogonal portion 6 of the exciting core 4.

【0016】図1の構成において、被検出導線1に直流
電流Iが流れると、検出コア2内に直流電流Iの方向に
対して右回りの磁場が発生し、検出コア内に磁束Φ0
発生する。この時、励磁コイル5に所定の交流電流を通
電して励磁コア4に周期的に図中α方向に変化する磁束
を発生し、該励磁コア4を周期的に磁気的に飽和する
と、検出コア2の周方向の一部であるコア直交部6(図
中斜線部)は比透磁率μが低下し極めて1に近い所謂実
質的な磁気的なギャップとなり、検出コア内の磁束Φ0
をΦ1にまで減少させる。ここで、励磁コイル5に通電
する交流電流を周波数f0とし、その電流のピーク値近
傍で励磁コア4が飽和するようにすると、図2に示すよ
うに被検出導線1に流れる直流電流Iがプラス(+)の
向き(図中上向き)の場合、図3に示すように被検出導
線1に流れる直流電流Iがマイナス(−)の向き(図中
下向き)の場合ともに、励磁電流1周期で2回励磁コア
4が飽和することとなる。図2に示すように被検出導線
1に流れる直流電流Iがプラス(+)の向き(図中上向
き)の場合、この飽和により、検出コア2に発生した被
検出導線1に流れる直流電流Iによって発生する磁束Φ
0は、図2のBに示すように2f0の周波数でΦ1にまで
減少する。すなわち、2f0で変調されることとなる。
従って、上記磁束の変化に伴い図2のCに示すように周
波数2f0の電圧VDETが検出コイル3に発生することに
なる。
In the configuration shown in FIG. 1, when a DC current I flows through the detected conductor 1, a magnetic field clockwise in the direction of the DC current I is generated in the detection core 2, and a magnetic flux Φ 0 is generated in the detection core. Occur. At this time, when a predetermined alternating current is applied to the exciting coil 5 to generate a magnetic flux periodically changing in the α direction in the drawing in the exciting core 4 and the exciting core 4 is periodically magnetically saturated, the detecting core The core orthogonal portion 6 (shaded portion in the figure), which is a part in the circumferential direction of 2, has a reduced relative magnetic permeability μ, and becomes a so-called substantial magnetic gap extremely close to 1, resulting in a magnetic flux Φ 0 in the detection core.
To Φ 1 . Here, when an alternating current flowing through the exciting coil 5 is set to a frequency f 0 and the exciting core 4 is saturated near a peak value of the current, the direct current I flowing through the detected conducting wire 1 becomes as shown in FIG. In the case of the plus (+) direction (upward in the figure), the DC current I flowing through the detected wire 1 is in the minus (-) direction (downward in the figure) as shown in FIG. The excitation core 4 is saturated twice. As shown in FIG. 2, when the DC current I flowing through the detected conductor 1 is in a positive (+) direction (upward in the drawing), the saturation causes the DC current I generated in the detection core 2 and flowing through the detected conductor 1. Generated magnetic flux Φ
0 decreases to Φ 1 at a frequency of 2f 0 as shown in FIG. 2B. That is, modulation is performed at 2f 0 .
Accordingly, a voltage V DET having a frequency of 2f 0 is generated in the detection coil 3 as shown in FIG.

【0017】また、図3に示すように被検出導線1に流
れる直流電流Iがマイナス(−)の向き(図中下向き)
の場合も、直流電流Iがプラス(+)の向き(図中上向
き)の場合と実質的に同様な作用となるが、直流電流I
の向きが反対となることから、検出コア2に発生する磁
束の向きも反対となり、検出コイル3に発生する周波数
2f0の電圧VDETの位相がそれぞれ180度異なること
になる。しかし、被検出導線1に流れる直流電流Iの向
きにかかわらず、いずれの場合も磁束Φ0 ∝ 直流電
流I、電圧VDET ∝ 磁束Φ0との関係から電圧VDET
∝ 直流電流Iとなり、被検出導線1に流れる直流電流
Iに比例した起電力を検出コイル3によって検出するこ
とが可能となり、被検出導線1に流れる直流電流Iの絶
対値を知ることができる。
Further, as shown in FIG. 3, the DC current I flowing through the conductor 1 to be detected is negative (-) (downward in the figure).
In this case, the operation is substantially the same as that in the case where the DC current I is in the plus (+) direction (upward in the figure).
Are opposite, the direction of the magnetic flux generated in the detection core 2 is also opposite, and the phases of the voltage V DET of the frequency 2f 0 generated in the detection coil 3 are different from each other by 180 degrees. However, regardless of the direction of the DC current I flowing through the lead wire being detected 1, a magnetic flux in both cases [Phi 0 alpha DC current I, voltage V DET from the relationship between the voltage V DET alpha flux [Phi 0
(4) The DC current I is generated, and an electromotive force proportional to the DC current I flowing through the detected wire 1 can be detected by the detection coil 3, and the absolute value of the DC current I flowing through the detected wire 1 can be known.

【0018】さらに、検出コア2と励磁コア4とは互い
に直角方向に接続されていることから、基本的には励磁
コア4内の励磁磁束は検出コア2側に漏洩することはな
く、検出コイル3を通過しないことから、検出コイル3
には励磁コイル5に印加する励磁電流による起電力は発
生することなく、被検出導線1に流れる直流電流I=0
の時は、VDET=0となる。また、検出コイル3に発生
する起電力VDETの周波数は2f0であり、励磁コイル5
に印加する励磁電流の周波数f0と異なることから、た
とえ、検出コア2と励磁コア4との形状寸法等の精度に
よって励磁コア4内の励磁磁束が漏洩されて検出コイル
3にて検出されても、漏れ成分はその周波数がf0であ
ることから、周波数判別フィルター等により容易に分離
できるため、高感度の直流電流センサーとして使用する
ことができることを確認した。
Further, since the detecting core 2 and the exciting core 4 are connected at right angles to each other, basically, the exciting magnetic flux in the exciting core 4 does not leak to the detecting core 2 side, and the detecting coil 3, the detection coil 3
Does not generate an electromotive force due to the exciting current applied to the exciting coil 5, and the DC current I = 0 flowing through the conductive wire 1 to be detected.
At this time, V DET = 0. The frequency of the electromotive force V DET generated in the detection coil 3 is 2f 0 ,
Is different from the frequency f 0 of the excitation current applied to the detection coil 3, the excitation magnetic flux in the excitation core 4 is leaked and detected by the detection coil 3 due to the accuracy of the shape and dimensions of the detection core 2 and the excitation core 4. Since the frequency of the leak component is f 0 , the leak component can be easily separated by a frequency discriminating filter or the like, so that it has been confirmed that the leak component can be used as a highly sensitive DC current sensor.

【0019】さらに、発明者らは、図1に示す直流電流
センサーの小型化を検討して、検出コア2と励磁コア4
との直交部のみを磁気的に飽和させ、かつ該直交部以外
の励磁コア4部を磁気的に未飽和とさせる構成からなる
直流電流センサーを併せて提案する。すなわち、図4に
示すように励磁コア4の幅Wを一定にすると、検出コア
2と励磁コア4との直交部、所謂図中斜線部6を磁気的
に飽和させるためには、励磁コア4全体を飽和させなけ
ればならず、励磁電流が大きくなり、励磁回路が大型化
するとともに励磁コア4のコアロス(鉄損)による発熱
が大きくなり検出コイル3における出力の温度ドリフト
等を招くことが懸念される。なお、図中矢印は磁束の分
布状態を模式的に示したものである。そこで、本発明者
は、図5から図8に示すような種々の構成により、上記
検出コア2と励磁コア4とのコア直交部6のみを磁気的
に飽和させる構成を提案する。
Further, the present inventors have studied the miniaturization of the DC current sensor shown in FIG.
The present invention also proposes a DC current sensor having a configuration in which only the orthogonal portion of the above is magnetically saturated and the exciting core 4 other than the orthogonal portion is magnetically unsaturated. That is, when the width W of the excitation core 4 is fixed as shown in FIG. 4, the magnetic core 4 is required to magnetically saturate an orthogonal portion between the detection core 2 and the excitation core 4, a so-called hatched portion 6 in the drawing. It is necessary to saturate the whole, and the exciting current becomes large, the exciting circuit becomes large, and heat generation due to the core loss (iron loss) of the exciting core 4 becomes large, which may cause a temperature drift of the output of the detection coil 3 and the like. Is done. The arrows in the figure schematically show the distribution state of the magnetic flux. Therefore, the present inventor proposes a configuration in which only the core orthogonal portion 6 between the detection core 2 and the excitation core 4 is magnetically saturated by various configurations as shown in FIGS.

【0020】図5の構成は、励磁コア4側の検出コア2
との接続部の板幅を絞ることによって該接続部の断面積
を小さくし図中斜線部のコア直交部6のみを磁気的に飽
和させ、他の部分を未飽和とさせる構成である。図中矢
印は図4と同様に磁束の分布状態を模式的に示したもの
であり、コア直交部6は図4の場合と同様に磁束密度が
大であり磁気的に飽和しているが、それ以外の部分では
磁束密度が小であり飽和していない、すなわち未飽和で
あることを示している。図6の構成は、図中斜線部のコ
ア直交部6に複数の所定内径寸法を有する貫通孔7を設
け、コア直交部6における検出コア2の周方向と直角方
向の断面積を部分的に狭くすることにより実質的に図5
の構成と同様な効果を得ることができる。図7のA,B
の構成は、コア直交部6を除く励磁コア4の内側に環状
の軟質磁性材料8を固着して励磁コア4の厚さを変化さ
せることによって、実質的に図5の構成と同様な効果を
得ることができる。図8のA,Bの構成は、検出コア2
と励磁コア4との材質を変えることによって実質的に図
5の構成と同様な効果を得ることを目的にしたもので、
予め飽和磁束密度Bsの高い材料(励磁コア4側)の薄
板中央部に比較的飽和磁束密度Bsの低い材料(検出コ
ア2側)をストライプ状に圧接して一体化したクラッド
材から打ち抜き等により、図9に示すような十字型のコ
ア材を得、各端部を接続することによってセンサーを構
成する。検出コア2と励磁コア4との直交部のみに他の
部分より飽和磁束密度Bsの低い材料を部分的に圧接す
ることによっても同様な効果を得ることができる。以上
に示すいずれの構成においても、検出コア2と励磁コア
4とのコア直交部6のみを磁気的に飽和させ、励磁コア
4の他の部分を未飽和とすることにより、該未飽和部分
のコアロス(鉄損)を低減することができる。
FIG. 5 shows a configuration of the detection core 2 on the excitation core 4 side.
The cross-sectional area of the connecting portion is reduced by narrowing the plate width of the connecting portion, so that only the core orthogonal portion 6 in the hatched portion in the drawing is magnetically saturated and the other portions are not saturated. The arrows in the figure schematically show the distribution state of the magnetic flux as in FIG. 4, and the core orthogonal part 6 has a large magnetic flux density and is magnetically saturated as in FIG. The other portions indicate that the magnetic flux density is small and not saturated, that is, it is not saturated. In the configuration of FIG. 6, a plurality of through-holes 7 having a predetermined inner diameter are provided in a core orthogonal portion 6 indicated by oblique lines in the figure, and the cross-sectional area of the core orthogonal portion 6 in a direction perpendicular to the circumferential direction of the detection core 2 is partially reduced. FIG. 5
The same effect as the configuration described above can be obtained. A, B in FIG.
5 has a substantially same effect as the configuration shown in FIG. 5 by fixing an annular soft magnetic material 8 inside the excitation core 4 except for the core orthogonal portion 6 and changing the thickness of the excitation core 4. Obtainable. The configuration of A and B in FIG.
The purpose of the present invention is to obtain substantially the same effect as the configuration shown in FIG.
A material having a relatively low saturation magnetic flux density Bs (the detection core 2 side) is pressed in a striped shape in advance to the center of a thin plate of a material having a high saturation magnetic flux density Bs (the excitation core 4 side) in a striped manner, for example, by punching from a clad material. A cross-shaped core material as shown in FIG. A similar effect can be obtained by partially pressing a material having a lower saturation magnetic flux density Bs than other portions only in the orthogonal portion between the detection core 2 and the excitation core 4. In any of the configurations described above, only the core orthogonal portion 6 between the detection core 2 and the excitation core 4 is magnetically saturated, and the other portion of the excitation core 4 is unsaturated, so that the unsaturated portion is Core loss (iron loss) can be reduced.

【0021】従って、図5から図8に示す構成では、図
4に示す構成に比べ、励磁コイル5に印加する励磁電流
を小さくすることができ、励磁回路の構成が簡単となり
小型化が達成できる。すなわち、センサー全体としての
消費電力も低減でき、小型機器等への適用範囲が広くな
る。また、励磁コア4における温度上昇が少ないため、
該励磁コア4を構成する軟質磁性材料の磁気特性の変化
が少なく、検出コイル3における出力の温度ドリフトも
低減でき、センサーとしての検出精度の安定性が向上す
る。
Therefore, in the configurations shown in FIGS. 5 to 8, the excitation current applied to the excitation coil 5 can be reduced as compared with the configuration shown in FIG. 4, and the configuration of the excitation circuit can be simplified and the size can be reduced. . That is, the power consumption of the entire sensor can be reduced, and the range of application to small devices and the like is widened. Further, since the temperature rise in the excitation core 4 is small,
The change in the magnetic characteristics of the soft magnetic material constituting the excitation core 4 is small, the temperature drift of the output of the detection coil 3 can be reduced, and the stability of detection accuracy as a sensor is improved.

【0022】この発明は、さらに改良された直流電流セ
ンサーを提案する。上記構成の直流電流センサーにおい
て、さらに微小電流の検出を可能とすべく検討したとこ
ろ、検出コア2として高透磁率材料として知られるパー
マロイC(78%Ni−5Mo−4Cu−balFe)
を用いても被検出導線1に流れる直流電流が例えば±5
0mA程度以下の微小電流領域では該直流電流の増加あ
るいは減少時に同一電流値であっても、検出コイルでの
出力電圧(起電力)が異なる、所謂ヒステリシス現象が
発生し、特に前記直流電流が零付近(±20mA)で
は、直流電流の増加に伴い出力電圧が減少する“逆転領
域”が発生することが確認できた。この逆転領域の発生
により測定時の基準レベルが変動し、微小電流領域にお
ける測定では、その都度その測定値が異なり正確な値が
求まらないという不都合が発生する。上記“逆転領域”
の発生は検出コア2を構成する軟質磁性材料の保磁力に
よるものと考えられ、この影響を低減するためには検出
コア2の半径r(図1のB参照)を小さくすることが必
要であるが、被検出導体の外径寸法や貫通配置する本数
に制限を受け、好ましくない。
The present invention proposes a further improved direct current sensor. In the DC current sensor having the above-described configuration, a study was conducted to enable detection of a very small current. As a result, permalloy C (78% Ni-5Mo-4Cu-balFe) known as a high magnetic permeability material was used as the detection core 2.
Is used, the DC current flowing through the detection target wire 1 is, for example, ± 5.
In a minute current region of about 0 mA or less, a so-called hysteresis phenomenon occurs in which the output voltage (electromotive force) of the detection coil differs, even when the DC current increases or decreases, even when the DC current increases or decreases. In the vicinity (± 20 mA), it was confirmed that a “reverse region” in which the output voltage decreased with an increase in the DC current occurred. Due to the occurrence of the reverse region, the reference level at the time of measurement fluctuates, and in the measurement in the minute current region, the measured value is different each time, and an inconvenience that an accurate value cannot be obtained occurs. Above "reversal area"
Is considered to be caused by the coercive force of the soft magnetic material constituting the detection core 2. To reduce this effect, it is necessary to reduce the radius r of the detection core 2 (see FIG. 1B). However, it is not preferable because the outer diameter of the conductor to be detected and the number of through conductors are limited.

【0023】発明者は上記構成からなる直流電流センサ
ーに、さらなる改良を重ね、特に検出コア2に接続する
励磁コア4の接続部の幅d(図1のB参照)を長くすることに
よって、検出コア2の磁路長に対する励磁コア4の接続部
の幅の比率を大きくし、反磁場の効果により励磁コア4
の残留磁束密度を小さくするとともに、励磁コア4に所
定方向の磁束を発生させる励磁コイル5を検出コア2の外
周で、該検出コア2の周方向に巻回することによって、
励磁コイル5による検出コア2の脱磁効果をも併せ持つ構
成とし、上記“逆転領域”の発生を大幅に低減した直流
電流センサーの提供を可能としたのである。すなわち、
この発明は、環状の軟質磁性材料からなる検出コアの一
部に検出コアの周方向に対して励磁コアと交差接続する
コア交差部を設けて環状の軟質磁性材料からなる励磁
コアと前記検出コアとを一体的に配置し、検出コアに検
出コイルをトロイダル状に巻回配置し、かつ検出コアの
外周に該検出コアの周方向に巻回する励磁コイルを巻回
配置した構成からなり、さらに検出コア内側に非接触検
出する直流電流が流れる被検出導線を貫通配置した構成
からなる直流電流センサーである。
The inventor has made further improvements to the DC current sensor having the above-described structure, and in particular, has increased the width d (see FIG. 1B) of the connection portion of the excitation core 4 connected to the detection core 2 to detect the current. The ratio of the width of the connecting portion of the exciting core 4 to the magnetic path length of the core 2 is increased.
By reducing the residual magnetic flux density of the excitation core 5 and winding the excitation coil 5 for generating a magnetic flux in a predetermined direction on the excitation core 4 around the detection core 2 in the circumferential direction of the detection core 2,
The configuration also has the demagnetizing effect of the detection core 2 by the exciting coil 5, and it is possible to provide a DC current sensor in which the occurrence of the "reverse rotation region" is significantly reduced. That is,
The present invention provides an exciting core made of an annular soft magnetic material , wherein a core intersecting portion that cross-connects with an exciting core in a circumferential direction of the detecting core is provided on a part of the sensing core made of an annular soft magnetic material. A core is integrally disposed, a detection coil is wound around the detection core in a toroidal shape, and an excitation coil wound around the detection core in the circumferential direction of the detection core is arranged around the detection core, Further, the DC current sensor has a configuration in which a detection conducting wire through which a DC current for non-contact detection flows is penetrated inside the detection core.

【0024】特に、上記の構成において、励磁コアを検
出コアの周方向に対して直角方向に励磁可能にし、励磁
コアが検出コアの周方向に対して検出コアと直交接続す
るコア直交部を周期的に磁気的に飽和させる励磁コイル
への交流電流印加手段を有し、励磁時に被検出導線を流
れる直流電流に基づき検出コアに発生する磁束を変調可
能となし、検出コイルに励磁電流の2倍の周波数の起電
力を出力させて被検出導線を流れる直流電流を検出する
ことができる。換言すると、上記の被検出導線を流れる
直流電流を非接触にて検出するこの発明の直流電流セン
サーは、内側に前記被検出導線を貫通配置する環状の軟
質磁性材料からなる検出コアに、検出コイルをトロイダ
ル状に巻回配置するとともに、該検出コアの一部に、検
出コアの周方向に対して直角方向に接続して環状を形成
する軟質磁性材料からなる励磁コアを一体的に配置して
なり、かつ検出コアの外周に該検出コアの周方向に巻回
する励磁コイルを巻回配置して直流電流センサーを構成
し、前記励磁コイルに交流電流を印加することによって
励磁コアを検出コアの周方向に対して直角方向に励磁
し、検出コアと励磁コアとの直交部を周期的に磁気的に
飽和させることによって、被検出導線を流れる直流電流
に基づき検出コアに発生する磁束を変調し、検出コイル
に励磁電流の2倍の周波数の起電力を出力させることに
より、被検出導線を流れる直流電流を検出する構成から
なるものである。
In particular, in the above configuration, the exciting core can be excited in a direction perpendicular to the circumferential direction of the detecting core, and the exciting core has a period perpendicular to the core orthogonally connected to the detecting core in the circumferential direction of the detecting core. Means for applying an alternating current to the exciting coil that magnetically saturates the magnetic field, and the magnetic flux generated in the detecting core can be modulated based on the direct current flowing through the wire to be detected during excitation. The DC current flowing through the conductor to be detected can be detected by outputting an electromotive force having a frequency of. In other words, the direct current sensor according to the present invention, which detects the direct current flowing through the detected conductor in a non-contact manner, includes a detecting coil made of an annular soft magnetic material having the detected conductor penetrating therethrough. Is wound in a toroidal shape, and an excitation core made of a soft magnetic material that is connected to a direction perpendicular to the circumferential direction of the detection core and forms an annular shape is arranged integrally with a part of the detection core. A DC current sensor is formed by winding an excitation coil wound in the circumferential direction of the detection core on the outer periphery of the detection core, and the excitation core is formed by applying an AC current to the excitation coil. The magnetic flux generated in the detection core based on the DC current flowing through the wire to be detected is excited by exciting in a direction perpendicular to the circumferential direction and periodically magnetically saturating an orthogonal portion between the detection core and the excitation core. Tone, and by outputting the electromotive force of twice the frequency of the excitation current in the detection coil is made of a configuration for detecting a DC current flowing through the lead wire being detected.

【0025】以上の構成からなるこの発明の直流電流セ
ンサーを図10によって詳細に説明する。図10は、こ
の発明の他の基本的な構成からなる直流電流センサーの
概要を示す斜視説明図である。図10において、1は被
検出導線であり、ほぼ楕円環状の軟質磁性材料からなる
検出コア2の内側に貫通配置している。3は検出コイル
であり、検出コア2にトロイダル状に巻回配置してい
る。また、4は該検出コア2の一部に、検出コア2の周
方向に対して直角方向に接続してほぼ楕円環状を形成し
一体的に配置する軟質磁性材料からなる励磁コアであ
る。この構成では検出コア2に接続する励磁コア4の接
続部の幅dを長くすることによって、図1に示す構成よ
りも検出コア2の磁路長に対する励磁コア4のコア直交
部6の幅dの比率を大きくしている。また、図1に示す
構成では、励磁コイル5は励磁コア4にトロイダル状に
巻回配置した構成であったが、この発明の構成では図示
の如く、検出コアの外周に該検出コアの周方向に巻回配
置している。
The DC current sensor according to the present invention having the above configuration will be described in detail with reference to FIG. FIG. 10 is a perspective explanatory view showing an outline of a DC current sensor having another basic configuration of the present invention. In FIG. 10, reference numeral 1 denotes a conductor to be detected, which is penetrated inside a detection core 2 made of a soft magnetic material having a substantially elliptical ring shape. Reference numeral 3 denotes a detection coil, which is wound around the detection core 2 in a toroidal shape. Reference numeral 4 denotes an excitation core made of a soft magnetic material that is connected to a part of the detection core 2 in a direction perpendicular to the circumferential direction of the detection core 2 to form a substantially elliptical ring and to be integrally disposed. In this configuration, by increasing the width d of the connection portion of the excitation core 4 connected to the detection core 2, the width d of the core orthogonal portion 6 of the excitation core 4 with respect to the magnetic path length of the detection core 2 as compared with the configuration shown in FIG. To increase the ratio. In the configuration shown in FIG. 1, the excitation coil 5 is wound around the excitation core 4 in a toroidal shape. However, in the configuration of the present invention, as shown in FIG. It is wound around.

【0026】このような構成において、被検出導線1に
直流電流Iが流れると、検出コア2内に直流電流Iの方
向に対して右回りの磁場が発生し、検出コア2内に磁束
Φ0が発生する。この時、励磁コイル5に所定の交流電
流を通電して励磁コア4に周期的に図中α方向に変化す
る磁束を発生し、該励磁コア4を周期的に磁気的に飽和
すると、検出コア2の周方向の一部である図中斜線部の
コア直交部6は比透磁率μが極めて1に近い所謂実質的
な磁気的なギャップとなり、検出コア内の磁束Φ0をΦ1
にまで減少させる。ここで、励磁コイル5に通電する交
流電流を周波数f0とし、その電流のピーク値近傍で励
磁コア4が飽和するようにすると、先に説明した図1の
構成からなる直流電流センサーの検出コイル3への起電
力発生のメカニズムと同様なメカニズムにて、周波数2
0の電圧VDETが検出コイル3に発生することとなるの
である。さらに、前記の如く、検出コア2に接続する励
磁コア4のコア直交部6の幅dを長くすることによって
検出コア2の磁路長に対する励磁コア4のコア直交部6
の幅dの比率を大きくしていることから、磁気的なギャ
ップの比率が大きくなり反磁場の効果により検出コア2
内の残留磁束密度を小さくでき、しかも検出コア2の外
周に巻回する励磁コイルの脱磁効果によって、上記“逆
転領域”の発生を大幅に低減することができるのであ
る。
In such a configuration, when a DC current I flows through the conductive wire 1 to be detected, a magnetic field clockwise in the direction of the DC current I is generated in the detection core 2, and a magnetic flux Φ 0 is generated in the detection core 2. Occurs. At this time, when a predetermined alternating current is applied to the exciting coil 5 to generate a magnetic flux periodically changing in the α direction in the drawing in the exciting core 4 and the exciting core 4 is periodically magnetically saturated, the detecting core 2 is a so-called substantial magnetic gap whose relative magnetic permeability μ is extremely close to 1, and the magnetic flux Φ 0 in the detection core is changed to Φ 1.
Reduce to. Here, when the alternating current flowing through the exciting coil 5 is set to the frequency f 0 and the exciting core 4 is saturated near the peak value of the current, the detection coil of the DC current sensor having the configuration of FIG. By the same mechanism as that for generating electromotive force to
The voltage V DET of f 0 is generated in the detection coil 3. Further, as described above, by increasing the width d of the core orthogonal portion 6 of the excitation core 4 connected to the detection core 2, the core orthogonal portion 6 of the excitation core 4 with respect to the magnetic path length of the detection core 2 is increased.
Are increased, the ratio of the magnetic gap is increased, and the detection core 2
Thus, the occurrence of the "reverse rotation region" can be greatly reduced by the demagnetizing effect of the exciting coil wound around the outer periphery of the detection core 2.

【0027】図1及び図10に示すこの発明の基本的の
構成をさらに改良することによって電磁気的のアンバラ
ンス等を低減し、ノイズ発生の低減や、S/N比の向上
等を可能とすることができる。特に図11、図13、図
14、図18及び図19に示すこの発明の他の実施例は
上記効果を備え、安定した測定を実現することができる
効果的な構成である。すなわち、図1及び図10に示す
この発明の基本的の構成においては、検出コア2に接続
する励磁コア4が1つであることから、また検出コイル
3の位置も1箇所であることから直流電流センサーとし
ての電磁気的のバランスが取り難いものであるが、これ
ら励磁コア4、検出コイル3の電磁気的のバランス配置
を考慮した構成が図11から図19にて説明する構成で
ある。
By further improving the basic configuration of the present invention shown in FIGS. 1 and 10, electromagnetic imbalance and the like can be reduced, and noise can be reduced and the S / N ratio can be improved. be able to. In particular, the other embodiments of the present invention shown in FIGS. 11, 13, 14, 18, and 19 have the above-mentioned effects and have an effective configuration capable of realizing stable measurement. That is, in the basic configuration of the present invention shown in FIGS. 1 and 10, the number of the excitation cores 4 connected to the detection core 2 is one, and the position of the detection coil 3 is one. Although the electromagnetic balance of the current sensor is difficult to achieve, the configuration considering the electromagnetic balance arrangement of the excitation core 4 and the detection coil 3 is the configuration described with reference to FIGS.

【0028】図11において、1は被検出導線であり、
矩形枠状の検出コア2の内側中央部に貫通配置してい
る。この矩形枠状の検出コア2のそれぞれ対向位置にあ
る短辺部には一対の検出コイル3a,3bがトロイダル
状に巻回され互いに電気的に接続されている。また、そ
れぞれ対向位置にある長辺部には一対の励磁コア4a,
4bが4角筒状を形成するごとく一体的に配置してい
る。さらに一対の励磁コア4a,4bの各々最外周の側
面部に励磁コイル5a,5bがトロイダル状に巻回され
ている。換言すると、励磁コア4a,4bとなる一対の
角筒体を軸中心線を平行に並列し、並列する角筒体の各
開口端の隣接辺部間を軟質磁性材料からなる接続板で接
続一体化して接続板及びこれと接続した筒体側面部、す
なわちコア直交部6とで矩形枠状の上記の検出コア2と
なした構成からなり、該接続板の部分にそれぞれ検出コ
イル3a,3bがトロイダル状に巻回され、一対の励磁
コア4a,4bの各々最外周の側面部に励磁コイル5
a,5bがトロイダル状に巻回されている。このような
構成において、被検出導線1に直流電流Iが流れると、
検出コア2内に直流電流Iの方向に対して右回りの磁場
が発生し、検出コア2内に磁束Φ0が発生する。この
時、励磁コイル5a,5bに所定の交流電流を通電して
一対の励磁コア4a,4bに周期的に図中α方向に変化
する磁束を発生し、該励磁コア4a,4bを周期的に磁
気的に飽和すると、矩形枠状の検出コア2の周方向の一
部である長辺部のコア直交部6は比透磁率μが極めて1
に近い所謂実質的な磁気的なギャップとなり、検出コア
内の磁束Φ0をΦ1にまで減少させる。
In FIG. 11, reference numeral 1 denotes a lead to be detected;
It is disposed so as to penetrate the inside of the rectangular frame-shaped detection core 2. A pair of detection coils 3a and 3b are wound in a toroidal shape on the short sides of the rectangular frame-shaped detection core 2 at the opposing positions, and are electrically connected to each other. In addition, a pair of excitation cores 4a,
4b are arranged integrally so as to form a quadrangular cylindrical shape. Further, excitation coils 5a and 5b are wound in a toroidal shape on the outermost side surfaces of the pair of excitation cores 4a and 4b, respectively. In other words, a pair of square cylinders serving as the excitation cores 4a and 4b are arranged in parallel with their axial center lines parallel to each other, and a connection plate made of a soft magnetic material is connected between adjacent sides of each open end of the parallel square cylinders. The connection plate and the side wall of the cylindrical body connected to the connection plate, that is, the core orthogonal portion 6, constitute the detection core 2 having a rectangular frame shape. The connection plates have detection coils 3a and 3b, respectively. The excitation coil 5 is wound in a toroidal shape, and is provided on the outermost side surface of each of the pair of excitation cores 4a and 4b.
a and 5b are wound in a toroidal shape. In such a configuration, when the DC current I flows through the detected conductor 1,
A magnetic field clockwise with respect to the direction of the DC current I is generated in the detection core 2, and a magnetic flux Φ 0 is generated in the detection core 2. At this time, a predetermined alternating current is applied to the exciting coils 5a and 5b to periodically generate a magnetic flux that changes in the α direction in the pair of exciting cores 4a and 4b, and the exciting cores 4a and 4b are periodically cycled. When magnetically saturated, the core orthogonal portion 6 on the long side, which is a part of the rectangular frame-shaped detection core 2 in the circumferential direction, has a relative magnetic permeability μ of extremely 1
, And reduces the magnetic flux Φ 0 in the detection core to Φ 1 .

【0029】従って以上に示すこの発明の直流電流セン
サーも、一対の検出コイル3a,3bへの起電力発生の
メカニズムは図1に示す構成と同様であり、このメカニ
ズムに基づく効果も同様に得られる。さらに、この構成
では検出コア2に接続する励磁コア4a,4bの接続部
の幅dは実質的に図中のセンサーの長さ方向の寸法Lの
2倍(2L)となることから、検出コア2の磁路長に対
する励磁コア4の接続部の幅dの比率は極めて大きくな
り、図1の構成に比べ反磁場の効果による検出コア2内
の残留磁束密度を小さくすることができ、コア材料の保
磁力に起因するヒステリシス現象を低減することができ
る。しかも、直流電流センサーの全体的な構成が被検出
導線1に対して対称であることから電磁気的のバランス
良く、安定した測定を実現することが可能となる。上記
の直流電流センサーを構成する検出コア2と励磁コア4
a,4bは、所定の軟質磁性材料からなる板材を、図1
2に示す形状に打ち抜き、図中の破線部で折り曲げて組
立、斜線部でスポット溶接することによって容易に一体
品として得ることができる。
Therefore, also in the DC current sensor of the present invention described above, the mechanism of generating the electromotive force to the pair of detection coils 3a and 3b is the same as the configuration shown in FIG. 1, and the effect based on this mechanism is also obtained. . Further, in this configuration, the width d of the connection portion between the excitation cores 4a and 4b connected to the detection core 2 is substantially twice (2L) the dimension L in the length direction of the sensor in the drawing. The ratio of the width d of the connection portion of the excitation core 4 to the magnetic path length of the magnetic core 2 becomes extremely large, and the residual magnetic flux density in the detection core 2 due to the effect of the demagnetizing field can be reduced as compared with the configuration of FIG. , The hysteresis phenomenon caused by the coercive force can be reduced. In addition, since the overall configuration of the DC current sensor is symmetrical with respect to the detection target wire 1, it is possible to achieve stable electromagnetic measurement with good electromagnetic balance. Detection core 2 and excitation core 4 constituting the above-described DC current sensor
a and 4b denote plate members made of a predetermined soft magnetic material as shown in FIG.
2, it can be easily obtained as an integrated product by assembling by bending at the broken line portion in the figure and spot welding at the hatched portion.

【0030】図13は他の実施例を示すもので、一対の
検出コイル3a,3bが励磁コイル5a,5bとともに
一対の励磁コア4a,4bの外周にトロイダル状に巻回
されている他は、図11と同様な構成からなり、基本的
に図1と同様なメカニズムにより、被検出導線1に流れ
る直流電流を検出することが可能となる。図14も他の
実施例を示すもので、一対の励磁コイル5a,5bを、
4角筒状を形成する如く配置される一対の励磁コア4
a,4bの内側中央部に形成される励磁コイル巻回用桟
8a,8bにトロイダル状に巻回されている他は、図1
3と同様な構成からなり、基本的に図1と同様なメカニ
ズムにより、被検出導線1に流れる直流電流を検出する
ことが可能となる。特に、図14の構成においては、励
磁コア4a,4b部を予め図15に示すように断面E型
に形成しておくことによって、所定形状、寸法からなる
ボビン9に予め巻回されている励磁コイル5a,5b
を、励磁コイル巻回用桟8a,8bに挿入した後、矩形
枠状の検出コアと所定の手段によって一体化することに
より、容易に製造することができる。また、図13の構
成では、一対の励磁コイル5a,5bにて発生する磁束
が励磁コア4a,4bの外部に漏洩し、この漏洩磁束に
より検出コイル3a,3bに励磁信号が混入し、特に微
小電流を検出する場合には、検出信号より混入信号のレ
ベルのほうが大きくなり、感度の低下を招く恐れがあ
る。しかし、図14の構成においては、各々励磁コイル
5a,5bにて発生する磁束が励磁コア4a,4bの外
部に漏洩することなく、効率的に作用し、検出コイル3
a,3bへの悪影響が低減される。
FIG. 13 shows another embodiment, in which a pair of detection coils 3a, 3b are wound in a toroidal shape around the outer circumference of a pair of excitation cores 4a, 4b together with the excitation coils 5a, 5b. It has a configuration similar to that of FIG. 11, and it is possible to detect a DC current flowing through the detection target wire 1 by a mechanism basically similar to that of FIG. FIG. 14 also shows another embodiment, in which a pair of exciting coils 5a and 5b are
A pair of excitation cores 4 arranged to form a square tube
1 and 4b, except that they are wound in a toroidal shape around the exciting coil winding bars 8a and 8b formed at the inner central portions of the insides of FIGS.
3 and a mechanism similar to that of FIG. 1 can detect a DC current flowing through the conductive wire 1 to be detected. In particular, in the configuration shown in FIG. 14, the excitation cores 4a and 4b are formed in advance into an E-shaped cross section as shown in FIG. 15, so that the excitation core wound in advance on the bobbin 9 having a predetermined shape and dimensions. Coil 5a, 5b
Is inserted into the exciting coil winding bars 8a and 8b, and then integrated with a rectangular frame-shaped detection core by a predetermined means, thereby making it easy to manufacture. Further, in the configuration of FIG. 13, the magnetic flux generated in the pair of excitation coils 5a and 5b leaks to the outside of the excitation cores 4a and 4b, and the leakage magnetic flux causes an excitation signal to be mixed into the detection coils 3a and 3b. When detecting a current, the level of the mixed signal becomes higher than the detection signal, which may cause a reduction in sensitivity. However, in the configuration shown in FIG. 14, the magnetic fluxes generated in the excitation coils 5a and 5b operate efficiently without leaking to the outside of the excitation cores 4a and 4b.
The adverse effects on a and 3b are reduced.

【0031】さらに、各構成において、検出コア2と励
磁コア4a,4bとの各々直交部6における磁路につい
て着目すると、図13の構成では図16のA及びBに示
すように、基本的に1回路の磁路が、その磁束の向きが
交互に変化するように作用するが、図14の構成では、
図17のA及びBに示すように、基本的に励磁コイル巻
回用桟8a,8bを介して2回路の磁路が、それぞれそ
の磁束の向きが交互に変化するように作用することか
ら、電磁気的なバランスが一層向上することとなる。図
14の構成を採用するに際しては、励磁コイル巻回用桟
8a,8bに磁束が集中することから、励磁コイル巻回
用桟8a,8bの厚さを予め他の部分より2倍程度に厚
く設定することが望ましい。
Further, focusing on the magnetic path in the orthogonal portion 6 of each of the detection core 2 and the excitation cores 4a and 4b in each configuration, the configuration of FIG. 13 basically includes, as shown in FIGS. Although the magnetic path of one circuit acts so that the direction of the magnetic flux changes alternately, in the configuration of FIG.
As shown in FIGS. 17A and 17B, the magnetic paths of the two circuits basically act via the exciting coil winding bars 8a and 8b such that the directions of the magnetic fluxes alternately change. The electromagnetic balance is further improved. In adopting the configuration of FIG. 14, since the magnetic flux concentrates on the exciting coil winding bars 8a, 8b, the thickness of the exciting coil winding bars 8a, 8b is about twice as thick as the other portions in advance. It is desirable to set.

【0032】また、図13の構成において、励磁コイル
5a、5bと検出コイル3a、3bとの静電容量結合に
よる検出コイル3a、3bへの励磁信号の混入を防止す
るために、例えば、励磁コイル5a、5bと、検出コイ
ル3a、3bとの間に電気的に接地されているCaまた
はAl等の電気伝導度の高い金属箔(図示せず)を介在
させることが好ましい。すなわち、励磁コイル5a、5
bの外周を電気的な絶縁を確保して、上記金属箔にて、
巻回被覆し、さらに該金属箔外周に電気的な絶縁を確保
して検出コイル3a、3bを巻回する。ただし、金属箔
は巻回方向において、少なくとも1ヶ所で電気的に切断
されていることが必要である。このような構成を採用す
ることによって、一層高精度の検出が可能となる。
In the configuration shown in FIG. 13, in order to prevent the excitation signals from being mixed into the detection coils 3a and 3b due to the capacitive coupling between the excitation coils 5a and 5b and the detection coils 3a and 3b, for example, It is preferable to interpose a metal foil (not shown) having high electrical conductivity, such as Ca or Al, which is electrically grounded, between the detection coils 3a, 3b and the detection coils 3a, 3b. That is, the exciting coils 5a, 5a
The outer periphery of b is secured with electrical insulation,
The detection coils 3a and 3b are wound while winding and covering the metal foil and ensuring electrical insulation around the metal foil. However, it is necessary that the metal foil is electrically cut at least at one position in the winding direction. By adopting such a configuration, detection with higher accuracy is possible.

【0033】上記の構成からなる直流電流センサーと同
様な効果を得ることを目的に、図10の基本的の構成を
改良した一実施例を、図18及び図19の斜視説明図に
よって説明する。図18において、1は被検出導線であ
り、矩形枠状の検出コア2の内側中央部に貫通配置して
いる。この矩形枠状の検出コア2のそれぞれ対向位置に
ある短辺部には一対の検出コイル3a,3bがトロイダ
ル状に巻回され互いに電気的に接続されている。また、
それぞれ対向位置にある長辺部には一対の励磁コア4
a,4bが4角筒状を形成するごとく一体的に配置して
いる。さらに矩形枠状の検出コア2の外周には、その周
方向に励磁コイル5が巻回されている。換言すると、励
磁コア4a,4bとなる一対の角筒体を軸中心線を平行
に並列し、並列する角筒体の各開口端の隣接辺部間を軟
質磁性材料からなる接続板で接続一体化して接続板及び
これと接続した筒体側面部、すなわちコア直交部6とで
矩形枠状の上記の検出コア2となした構成からなり、該
接続板の部分にそれぞれ検出コイル3a,3bがトロイ
ダル状に巻回され、検出コア2の外周に励磁コイル5が
巻回されている。
An embodiment in which the basic configuration of FIG. 10 is improved to obtain the same effect as the DC current sensor having the above configuration will be described with reference to perspective explanatory views of FIGS. 18 and 19. In FIG. 18, reference numeral 1 denotes a conductive wire to be detected, which is disposed so as to penetrate a central portion of the inside of a rectangular frame-shaped detection core 2. A pair of detection coils 3a and 3b are wound in a toroidal shape on the short sides of the rectangular frame-shaped detection core 2 at the opposing positions, and are electrically connected to each other. Also,
A pair of exciting cores 4 are provided on the long sides at the opposing positions.
a and 4b are integrally arranged so as to form a quadrangular cylindrical shape. Further, an exciting coil 5 is wound around the outer periphery of the rectangular frame-shaped detection core 2 in the circumferential direction. In other words, a pair of square cylinders serving as the excitation cores 4a and 4b are arranged in parallel with their axial center lines parallel to each other, and a connection plate made of a soft magnetic material is connected between adjacent sides of each open end of the parallel square cylinders. The connection plate and the side wall of the cylindrical body connected to the connection plate, that is, the core orthogonal portion 6, constitute the detection core 2 having a rectangular frame shape. The connection plates have detection coils 3a and 3b, respectively. It is wound in a toroidal shape, and the exciting coil 5 is wound around the outer periphery of the detection core 2.

【0034】このような構成において、被検出導線1に
直流電流Iが流れると、検出コア2内に直流電流Iの方
向に対して右回りの磁場が発生し、検出コア2内に磁束
Φ0が発生する。この時、励磁コイル5に所定の交流電
流を通電して一対の励磁コア4a,4bに周期的に図中
α方向に変化する磁束を発生し、該励磁コア4a,4b
を周期的に磁気的に飽和すると、矩形枠状の検出コア2
の周方向の一部である長辺部のコア直交部6は比透磁率
μが極めて1に近い所謂実質的な磁気的なギャップとな
り、検出コア内の磁束Φ0をΦ1にまで減少させる。従っ
て、図18に示すこの発明の直流電流センサーも一対の
検出コイル3a,3bへの起電力発生のメカニズムは図
10に示す構成と同様であり、このメカニズムに基づく
効果も同様に得られる。さらに、この構成では検出コア
2に接続する励磁コア4a、4bの接続部の幅dは図中
のセンサーの長さ方向の寸法Lの2倍(2L)となるこ
とから、検出コア2の磁路長に対する励磁コア4の接続
部の幅dの比率は極めて大きくなり、反磁場の効果によ
る検出コア2内の残留磁束密度はより一層小さくなり、
前記の“逆転領域”の発生を大幅に低減することができ
る。しかも、直流電流センサーの全体的な構成が被検出
導線1に対して対称であることから電磁気的のバランス
良く、安定した測定を実現することが可能となる。
In such a configuration, when a DC current I flows through the detection target wire 1, a magnetic field clockwise in the direction of the DC current I is generated in the detection core 2, and a magnetic flux Φ 0 is generated in the detection core 2. Occurs. At this time, a predetermined alternating current is applied to the exciting coil 5 to generate a magnetic flux that periodically changes in the α direction in the pair of exciting cores 4a, 4b, and the exciting cores 4a, 4b
Periodically magnetically saturates the detection core 2 in the form of a rectangular frame.
Is a so-called substantial magnetic gap whose relative magnetic permeability μ is very close to 1 , and reduces the magnetic flux Φ 0 in the detection core to Φ 1 . . Therefore, in the DC current sensor of the present invention shown in FIG. 18, the mechanism of generating the electromotive force to the pair of detection coils 3a and 3b is the same as the configuration shown in FIG. 10, and the effect based on this mechanism is also obtained. Further, in this configuration, the width d of the connection portion of the excitation cores 4a and 4b connected to the detection core 2 is twice (2L) the dimension L in the length direction of the sensor in the figure, and therefore the magnetic field of the detection core 2 is changed. The ratio of the width d of the connecting portion of the exciting core 4 to the path length becomes extremely large, and the residual magnetic flux density in the detecting core 2 due to the effect of the demagnetizing field is further reduced.
The occurrence of the "reverse region" can be greatly reduced. In addition, since the overall configuration of the DC current sensor is symmetrical with respect to the detection target wire 1, it is possible to achieve stable electromagnetic measurement with good electromagnetic balance.

【0035】図19も図10の基本的の構成を改良した
この発明の一実施例である直流電流センサーを示す斜視
説明図であり、特に他の実施例と比べて小型化が可能な
構成である。図19に示す直流電流センサーは、基本的
に図10や図18の構成と異なることはないが、一方向
に対向2面を開口した直方体状コアの開口方向に直交す
るように円筒状コアを直方体状コアに貫通配置して、上
記円筒状コアを検出コア2としかつ直方体状コアを励磁
コア4となした構成からなり、円筒状軟質磁性材料から
なる検出コア2の対称位置に(図においては4箇所)、
検出コイル3a,3b,3c,3dをそれぞれトロイダ
ル状に巻回配置するとともに、該検出コア2の外周に励
磁コイル5を巻回配置し、さらに円筒状の検出コア2内
に貫通する被検出導線1を配置して直流電流センサーを
構成している。
FIG. 19 is also a perspective explanatory view showing a DC current sensor according to an embodiment of the present invention in which the basic configuration of FIG. 10 is improved. In particular, the DC current sensor can be downsized compared to other embodiments. is there. Although the direct current sensor shown in FIG. 19 is basically the same as the configuration shown in FIGS. 10 and 18, the cylindrical core is orthogonal to the opening direction of the rectangular parallelepiped core having two opposing surfaces opened in one direction. It is arranged so as to penetrate through the rectangular parallelepiped core, the cylindrical core is used as the detection core 2 and the rectangular core is used as the excitation core 4, at a symmetric position of the detection core 2 made of a cylindrical soft magnetic material (in FIG. Are four places),
The detection coils 3a, 3b, 3c, and 3d are respectively wound in a toroidal shape, and the exciting coil 5 is wound around the detection core 2, and a detection target wire penetrating into the cylindrical detection core 2. 1 are arranged to form a DC current sensor.

【0036】以上の図1及び図10、さらにそれらを基
本的な構成とする多くの実施例からなるこの発明の直流
電流センサーにおいては、いずれも検出コア2と励磁コ
ア4との直交部6を周期的に磁気的に飽和させることに
よって磁気的なギャップを形成する構成からなり、微小
な電流変化を高感度に検出することが可能になる。以上
に示すように、この発明の直流電流センサーは、検出コ
ア及び励磁コアとして環状の軟質磁性材料を効果的に配
置することによって構成されるが、被検出導線に流れる
電流の大きさ、すなわちセンサーに要求される検出感度
に応じて各々の軟質磁性材料の材質を選定することが好
ましい。通常、磁気特性とともに加工性等を考慮すると
パーマロイが好ましいが、その他ケイ素鋼板、アモルフ
ァス、電磁軟鉄、ソフトフェライト等の公知の軟質磁性
材料の使用が可能であり、これらを組み合せて用いても
良い。また、この発明において、環状の軟質磁性材料と
は、軟質磁性材料が所謂リング状になっていることに限
定されるものでなく、軟質磁性材料が電磁気的な閉回路
を構成できるように接続されていれば良く、図示の如く
円環状の他、楕円環状、矩形枠状等種々の構成が採用で
きる。
In the DC current sensor according to the present invention comprising the above-described FIGS. 1 and 10 and a number of embodiments having the basic configuration, the orthogonal portion 6 between the detection core 2 and the excitation core 4 is provided. The configuration is such that a magnetic gap is formed by periodically magnetically saturating, and a minute current change can be detected with high sensitivity. As described above, the DC current sensor according to the present invention is configured by effectively disposing an annular soft magnetic material as the detection core and the excitation core. It is preferable to select the material of each soft magnetic material according to the detection sensitivity required for the above. Normally, permalloy is preferable in consideration of workability and the like together with magnetic properties, but other known soft magnetic materials such as silicon steel plate, amorphous, soft magnetic iron, and soft ferrite can be used, and these may be used in combination. Further, in the present invention, the annular soft magnetic material is not limited to the soft magnetic material having a so-called ring shape, but is connected so that the soft magnetic material can form an electromagnetic closed circuit. Various configurations such as an oval ring shape, a rectangular frame shape, and the like can be adopted in addition to the ring shape as shown in the drawing.

【0037】また、検出コア内に形成される磁気的なギ
ャップは、検出コア内の一箇所に限定されるものでな
く、複数箇所でもよく、先に説明した種々の実施例に示
す如く、電磁気的なバランスを考慮して、その形成箇所
を設定することが望ましい。図1又は図10及びそれら
の構成を基本とするこの発明の直流電流センサーにおい
ては、検出コアと励磁コアのコア交差部における磁気的
な飽和に関しても、例えばコア交差部が直交せずに完全
なる飽和が達成されなくとも略飽和状態にすることがで
きれば、この発明の目的を達成することができる。従っ
て、前記軟質磁性材料の材質とともに、軟質磁性材料の
形状寸法、検出コイル、励磁コイルの巻数等の最適条件
を選定することによって、一層実用性の高いセンサーの
提供を可能とすることができる。
Further, the magnetic gap formed in the detection core is not limited to one location in the detection core, but may be a plurality of locations. As shown in the various embodiments described above, It is desirable to set the formation location in consideration of a natural balance. In the DC current sensor according to the present invention based on FIG. 1 or FIG. 10 and their configurations, the magnetic saturation at the core intersection of the detection core and the excitation core is complete without orthogonality, for example. The object of the present invention can be achieved if the state can be substantially saturated without achieving the saturation. Therefore, by selecting the optimum conditions such as the shape and size of the soft magnetic material, the number of turns of the detection coil and the number of turns of the exciting coil together with the material of the soft magnetic material, it is possible to provide a sensor with higher practicality.

【0038】さらに、この発明において、検出コア内を
貫通する被検出導体も1本に限定されるものでなく、要
求されるセンサーの大きさに応じて複数本貫通させても
良いが、被検出導体を1本にすることによってこの発明
の効果を最も効果的に発現することができる。また、こ
れらの直流電流センサーをインバーター機器に組込んで
使用する場合には、特に、スイッチングノイズの混入を
防止するために、検出回路の電源ラインにノイズフィル
ターを挿入することが有効であるが、図20に示すよう
に、種々の構成からなるこの発明の直流電流センサー
を、パーマロイや無方向性ケイ素鋼板等からなるシール
ドケース(図中51aはケース本体部、51b、51c
はケース蓋部である)にて覆い、誘導ノイズの混入を防
止することが望ましい。この発明の直流電流センサー
は、被検出導線に流れる直流電流によって検出コアの周
方向に発生する磁束に対して、略直交方向に発生する磁
束によって検出コアの一部に周期的に磁気的なギャップ
を形成する手段を有する構成であれば、以上に説明した
実施例に限定されるものでなく、要求される特性等に応
じて種々の構成を選定することが可能である。
Furthermore, in the present invention, the number of conductors to be detected penetrating the detection core is not limited to one, and a plurality of conductors may be penetrated according to the required size of the sensor. By using only one conductor, the effect of the present invention can be exhibited most effectively. When these DC current sensors are incorporated in an inverter device and used, it is particularly effective to insert a noise filter in the power supply line of the detection circuit in order to prevent switching noise from being mixed. As shown in FIG. 20, a DC current sensor of the present invention having various configurations is connected to a shield case made of permalloy, a non-oriented silicon steel plate or the like (51a is a case body, 51b, 51c).
Is a case lid) to prevent the intrusion of induction noise. According to the DC current sensor of the present invention, a magnetic gap is generated periodically in a part of the detection core by a magnetic flux generated in a substantially orthogonal direction with respect to a magnetic flux generated in a circumferential direction of the detection core by a DC current flowing through the detected wire. Is not limited to the embodiment described above, and various configurations can be selected according to required characteristics and the like.

【0039】[0039]

【実施例】【Example】

実施例1 パーマロイC(78%Ni−5%Mo−4%Cu−ba
lFe)からなる厚さ0.2mmの薄板から打ち抜きに
より図9に示す形状の十字型のコア材を得た。但し、L
1=75mm、L2=50mm、W1=10mm、W2=1
3mmである。上記コア材の各々端部を10mmずつ重
ねてスポット溶接にて一体化し、図1に示す構成に組み
立てた。さらに、水素ガス雰囲気にて1100℃×3h
rの熱処理を施した後、600℃〜400℃の間を10
0℃/hrで多段の冷却処理を施す熱処理を完了させ、
この発明の直流電流センサーを得た。一対の環状コアの
うち小径側(約12.5mm径)を検出コア2とし、大
径側(約20mm径)を励磁コア4とし、これら各コア
に絶縁性の保護ビニールテープを巻回した後、それぞれ
検出コア2に外径0.2mmのホルマル線を40ターン
巻回して検出コイル3とし、励磁コア4に外径0.5m
mのホルマル線を20ターン巻回して励磁コイル5とし
た。さらに、上記検出コア2の内側に外径9.0mmの
ビニール被覆からなる被検出導線1を貫通配置した。上
記励磁コイル5に励磁電流としてf=10kHz、50
0mAの交流電流を印加したところ、被検出導線1に直
流電流を流さない時には、残留ノイズの影響であると思
われるが、検出コイル3にVDET=10mVの出力が検
出されたが、被検出導線1に50mAの直流電流Iを流
した時には、検出コイル3にVDET=60mVの出力が
検出され、この発明の直流電流センサーが実用性に優れ
ていることを確認できた。
Example 1 Permalloy C (78% Ni-5% Mo-4% Cu-ba
A cross-shaped core material having the shape shown in FIG. 9 was obtained by punching a thin plate made of 1Fe) having a thickness of 0.2 mm. Where L
1 = 75 mm, L 2 = 50 mm, W 1 = 10 mm, W 2 = 1
3 mm. Each end of the core material was overlapped by 10 mm and integrated by spot welding to assemble into the configuration shown in FIG. Furthermore, 1100 ° C. × 3 h in a hydrogen gas atmosphere
r, heat treatment at 600 ° C. to 400 ° C. for 10 hours.
Complete the heat treatment of performing multi-stage cooling at 0 ° C./hr,
The DC current sensor of the present invention was obtained. After the small diameter side (about 12.5 mm diameter) of the pair of annular cores is used as the detection core 2 and the large diameter side (about 20 mm diameter) is used as the excitation core 4, an insulating protective vinyl tape is wound around each of these cores. A formal wire having an outer diameter of 0.2 mm is wound around the detecting core 2 for 40 turns to form a detecting coil 3, and the exciting core 4 has an outer diameter of 0.5 m.
The excitation coil 5 was formed by winding a formal wire having a length of 20 m for 20 turns. Further, a detection target wire 1 made of vinyl coating having an outer diameter of 9.0 mm was disposed inside the detection core 2. F = 10 kHz, 50
When an alternating current of 0 mA was applied, when a direct current was not supplied to the detection target wire 1, an output of V DET = 10 mV was detected in the detection coil 3. When a direct current I of 50 mA was passed through the conducting wire 1, an output of V DET = 60 mV was detected in the detection coil 3, confirming that the direct current sensor of the present invention was excellent in practicality.

【0040】実施例2 実施例1の直流電流センサーにおいて、被検出導線に±
100mAの範囲で直流電流Iを増減させて流した時
に、検出コイルに出力される起電力(出力)VDETの変
化を図21に示す。
Embodiment 2 In the DC current sensor according to Embodiment 1, ±
FIG. 21 shows a change in the electromotive force (output) V DET output to the detection coil when the DC current I is increased or decreased in the range of 100 mA.

【0041】実施例3 実施例1の直流電流センサーにおいて励磁コア4の幅を
検出コア2との接続部はそのまま(10mm)とし、そ
れ以外の部分の幅を15mmとして図5に示す構成とし
たところ、励磁コイル5に印加する励磁電流をf=10
kHz、300mAの交流電流としても実施例1と同程
度の出力が検出された。すなわち、検出コア2と励磁コ
ア4との直交部のみを磁気的に飽和させ他の励磁コア4
部を未飽和とすることによって励磁電流の低減を図るこ
とが可能であることが確認できた。
Third Embodiment In the DC current sensor of the first embodiment, the width of the exciting core 4 is the same as that of the connection portion with the detection core 2 (10 mm), and the width of the other portions is 15 mm, as shown in FIG. However, the exciting current applied to the exciting coil 5 is f = 10
An output similar to that of Example 1 was detected even with an alternating current of 300 mA at kHz. That is, only the orthogonal portion between the detection core 2 and the excitation core 4 is magnetically saturated so that the other excitation cores 4
It was confirmed that it was possible to reduce the exciting current by making the portion unsaturated.

【0042】実施例4 パーマロイC(78%Ni−5%Mo−4%Cu−ba
lFe)からなる厚さ0.1mmの薄板から図12に示
す形状に打ち抜きし、図中の破線で折り曲げて組立て斜
線部でスポット溶接して図18に示す直流電流センサー
を構成するコア組立体を得た。但し、L=25mm、H
=10mm、W1=30mm、W2=10mmである。上
記組立体を、水素ガス雰囲気にて1100℃×3hrの
熱処理を施した後、600℃〜400℃の間を100℃
/hrで多段の冷却処理を施す熱処理を完了させ、この
発明の直流電流センサーを得た。検出コア2の所要位置
に絶縁性の保護ビニールテープを巻回した後、検出コア
2にの短辺側にそれぞれ外径0.2mmのホルマル線を
20ターンづづ巻回して検出コイル3a,3bとし、さ
らに、検出コア2の外周に外径0.5mmのホルマル線
を20ターン巻回して励磁コイル5とした。上記検出コ
ア2の内側に外径8mmのビニル被覆からなる被検出導
線1を貫通配置した。上記励磁コイル5に励磁電流とし
てf=9kHz、300mAの交流電流を印加したとこ
ろ、被検出導線1に直流電流を流さない時には、残留ノ
イズの影響であると思われるが、検出コイル3(図中3
aと3bの各々の合計値)のVDET=3mVの出力が検
出されたが、被検出導線1に50mAの直流電流Iを流
した時には、検出コイル3にVDET=40mVの出力が
検出され、この発明の直流電流センサーが実用性に優れ
ていることを確認できた。
Example 4 Permalloy C (78% Ni-5% Mo-4% Cu-ba
1Fe) is punched out of a thin plate having a thickness of 0.1 mm into a shape shown in FIG. 12, bent at a broken line in the figure, and assembled by spot welding at a hatched portion to form a core assembly constituting a DC current sensor shown in FIG. 18. Obtained. However, L = 25 mm, H
= 10 mm, W 1 = 30 mm, and W 2 = 10 mm. After the above assembly was subjected to a heat treatment at 1100 ° C. × 3 hr in a hydrogen gas atmosphere, the temperature was changed from 600 ° C. to 400 ° C. to 100 ° C.
At / hr, the heat treatment for performing the multi-stage cooling treatment was completed to obtain the DC current sensor of the present invention. After winding an insulating protective vinyl tape around a required position of the detection core 2, a formal wire having an outer diameter of 0.2 mm is wound around each short side of the detection core 2 by 20 turns to form detection coils 3a and 3b. Further, a formal wire having an outer diameter of 0.5 mm was wound around the outer periphery of the detection core 2 for 20 turns to form the excitation coil 5. A detection conductor 1 made of vinyl coating having an outer diameter of 8 mm was penetrated inside the detection core 2. When an alternating current of f = 9 kHz and 300 mA was applied as an exciting current to the exciting coil 5, when a direct current was not passed through the detection target wire 1, it is considered that this was caused by residual noise. 3
The output of V DET = 3 mV of each sum) of a and 3b is detected, when the lead wire being detected 1 was supplied a direct current I of 50mA, the output of V DET = 40 mV is detected in the detection coil 3 Thus, it was confirmed that the DC current sensor of the present invention was excellent in practicality.

【0043】実施例5 実施例4の直流電流センサーにおいて被検出導線1に±
100mAの範囲で直流電流Iを増減させたて流した時
に、検出コイル3(図中3aと3bの各々の合計値)に
出力される起電力(出力)VDETの変化を図22に示
す。図22より、被検出導線1に流れる直流電流が微小
領域でも電流の増加に伴う出力の減少という現象(“逆
転領域の発生”)はなく、安定した測定が実現できるこ
とを確認した。特に、実施例2にて示した起電力(出
力)VDETの変化(図21参照)と比べると、その効果
がより一層明確になる。
Fifth Embodiment In the DC current sensor of the fourth embodiment, ± 1
FIG. 22 shows the change in the electromotive force (output) V DET output to the detection coil 3 (the total value of each of 3a and 3b in the figure) when the DC current I is increased or decreased in the range of 100 mA and flowed. From FIG. 22, it has been confirmed that even in a small area where the DC current flowing through the conductive wire 1 to be detected is small, there is no phenomenon that the output decreases as the current increases (“generation of reverse area”), and stable measurement can be realized. In particular, when compared with the change in the electromotive force (output) V DET shown in the second embodiment (see FIG. 21), the effect becomes more clear.

【0044】[0044]

【発明の効果】この発明の直流電流センサーは、微小な
電流の変化に対しても、優れた検出能力を有することか
ら、直流の漏電ブレーカー等に使用した際には、検出コ
ア内に貫通配置する被検出導体をコアに巻回せず、1本
貫通させるだけでも要求される高感度の検出が達成で
き、構造が比較的簡単で直流電流センサーの小型化を可
能とする。特に、励磁コイルを検出コアの周方向に巻回
する構成においては、被検出導線1に流れる直流電流が
微小領域でも電流の増加に伴う出力の減少という現象
(“逆転領域の発生”)はなく、安定した測定が実現で
きる。
The DC current sensor according to the present invention has an excellent detection capability even for a small change in current. Therefore, when the DC current sensor is used for a DC earth leakage breaker or the like, it is penetrated into the detection core. The required high-sensitivity detection can be achieved simply by penetrating the conductor to be detected without winding it around the core, the structure is relatively simple, and the DC current sensor can be downsized. In particular, in the configuration in which the exciting coil is wound in the circumferential direction of the detection core, even when the DC current flowing through the detection target wire 1 is in a very small area, there is no phenomenon that the output decreases as the current increases (“generation of reverse rotation area”). , Stable measurement can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Aはこの発明の直流電流センサーの基本的な構
造を示す斜視説明図であり、Bはその一部断面説明図で
ある。
FIG. 1A is a perspective view showing a basic structure of a DC current sensor according to the present invention, and FIG.

【図2】図1に示すこの発明の直流電流センサー構成に
おける励磁コアに印加された励磁電力の周波数と検出コ
アを通過する磁束、検出コイルの起電力との関係を示す
グラフであり、Aは励磁電流の時間的変位、Bは検出コ
アを通過する磁束の時間的変位、Cは検出コイルの起電
力と時間的変位の関係を示す。
FIG. 2 is a graph showing the relationship between the frequency of the excitation power applied to the excitation core, the magnetic flux passing through the detection core, and the electromotive force of the detection coil in the DC current sensor configuration of the present invention shown in FIG. B represents the temporal displacement of the exciting current, B represents the temporal displacement of the magnetic flux passing through the detecting core, and C represents the relationship between the electromotive force of the detecting coil and the temporal displacement.

【図3】図1に示すこの発明の直流電流センサー構成に
おける励磁コアに印加された励磁電力の周波数と検出コ
アを通過する磁束、検出コイルの起電力との関係を示す
グラフであり、Aは励磁電流の時間的変位、Bは検出コ
アを通過する磁束の時間的変位、Cは検出コイルの起電
力と時間的変位の関係を示す。
FIG. 3 is a graph showing the relationship between the frequency of the excitation power applied to the excitation core, the magnetic flux passing through the detection core, and the electromotive force of the detection coil in the DC current sensor configuration of the present invention shown in FIG. B represents the temporal displacement of the exciting current, B represents the temporal displacement of the magnetic flux passing through the detecting core, and C represents the relationship between the electromotive force of the detecting coil and the temporal displacement.

【図4】図1に示すこの発明の直流電流センサー構成に
おいて、検出コアと励磁コアとのコア直交部のみを磁気
的に飽和させる構成の概要を説明する部分詳細図であ
る。
FIG. 4 is a partial detailed view illustrating an outline of a configuration in which only a core orthogonal portion between a detection core and an excitation core is magnetically saturated in the DC current sensor configuration of the present invention illustrated in FIG. 1;

【図5】図1に示すこの発明の直流電流センサー構成に
おいて、検出コアと励磁コアとのコア直交部のみを磁気
的に飽和させるため、励磁コアのコア直交部幅を狭くし
た構成の概要を説明する部分詳細図である。
FIG. 5 schematically shows a configuration of the DC current sensor according to the present invention shown in FIG. 1 in which the width of the core orthogonal to the excitation core is narrowed in order to magnetically saturate only the core orthogonal to the detection core and the excitation core. FIG.

【図6】図1に示すこの発明の直流電流センサー構成に
おいて、検出コアと励磁コアとのコア直交部のみを磁気
的に飽和させるため、コア直交部に孔を設けた構成の概
要を説明する部分詳細図である。
FIG. 6 outlines a configuration in which a hole is provided in the core orthogonal portion in order to magnetically saturate only the core orthogonal portion between the detection core and the excitation core in the DC current sensor configuration of the present invention shown in FIG. FIG.

【図7】図1に示すこの発明の直流電流センサー構成に
おいて、Aは検出コアと励磁コアとのコア直交部のみを
磁気的に飽和させる構成の概要を説明する部分平面図、
Bは同B−B断面図である。
FIG. 7 is a partial plan view illustrating an outline of a configuration in which only a core orthogonal portion between a detection core and an excitation core is magnetically saturated in the DC current sensor configuration of the present invention shown in FIG. 1;
B is a sectional view taken along the line BB.

【図8】図1に示すこの発明の直流電流センサー構成に
おいて、Aは検出コアと励磁コアとのコア直交部のみを
磁気的に飽和させる構成の概要を説明する部分平面図、
Bは同B−B断面図である
8 is a partial plan view illustrating an outline of a configuration in which only a core orthogonal portion between a detection core and an excitation core is magnetically saturated in the DC current sensor configuration of the present invention illustrated in FIG. 1;
B is a sectional view taken along the line BB of FIG.

【図9】図1に示すこの発明の直流電流センサーを作成
するためのコア材の一実施例の概要を示す平面説明図で
ある。
FIG. 9 is an explanatory plan view showing an outline of an embodiment of a core material for producing the direct current sensor of the present invention shown in FIG. 1;

【図10】この発明の直流電流センサーの他の基本的な
構造を示す斜視説明図である。
FIG. 10 is a perspective explanatory view showing another basic structure of the direct current sensor of the present invention.

【図11】この発明の直流電流センサーの他の実施例を
示す斜視説明図である。
FIG. 11 is a perspective explanatory view showing another embodiment of the direct current sensor of the present invention.

【図12】図11に示すこの発明の直流電流センサー構
成におけるコア組立体を得るための展開説明図である。
12 is a development explanatory view for obtaining a core assembly in the DC current sensor configuration of the present invention shown in FIG. 11;

【図13】この発明の直流電流センサーの他の実施例を
示す斜視説明図である。
FIG. 13 is a perspective explanatory view showing another embodiment of the direct current sensor of the present invention.

【図14】この発明の直流電流センサーの他の実施例を
示す斜視説明図である。
FIG. 14 is a perspective explanatory view showing another embodiment of the direct current sensor of the present invention.

【図15】図14に示すこの発明の直流電流センサーの
部分説明図である。
FIG. 15 is a partial explanatory view of the DC current sensor of the present invention shown in FIG.

【図16】A及びBは、図13に示すこの発明の直流電
流センサーの励磁コイルによって発生する磁路の詳細説
明図である。
FIGS. 16A and 16B are detailed illustrations of a magnetic path generated by an exciting coil of the DC current sensor of the present invention shown in FIG.

【図17】A及びBは、図14に示すこの発明の直流電
流センサーの励磁コイルによって発生する磁路の詳細説
明図である。
17A and 17B are detailed explanatory diagrams of a magnetic path generated by an exciting coil of the DC current sensor of the present invention shown in FIG.

【図18】この発明の直流電流センサーの他の実施例を
示す斜視説明図である。
FIG. 18 is an explanatory perspective view showing another embodiment of the direct current sensor of the present invention.

【図19】この発明の直流電流センサーの他の実施例を
示す斜視説明図である。
FIG. 19 is a perspective explanatory view showing another embodiment of the direct current sensor of the present invention.

【図20】この発明の直流電流センサーの他の実施例を
示す斜視説明図である。
FIG. 20 is a perspective explanatory view showing another embodiment of the direct current sensor of the present invention.

【図21】図1に示すこの発明の直流電流センサーにお
ける被検出導線1に流れる直流電流と出力との関係を示
す線グラフである。
FIG. 21 is a line graph showing a relationship between a DC current flowing through a detected conductor 1 and an output in the DC current sensor of the present invention shown in FIG.

【図22】図18に示すこの発明の直流電流センサーに
おける被検出導線1に流れる直流電流と出力との関係を
示す線グラフである。
FIG. 22 is a line graph showing a relationship between a DC current flowing through a detected conductor 1 and an output in the DC current sensor of the present invention shown in FIG. 18;

【符号の説明】[Explanation of symbols]

1 被検出導線 2 検出コア 3,3a,3b,3c,3d 検出コイル 4,4a,4b 励磁コア 5,5a,5b 励磁コイル 6 コア直交部 7 貫通孔 8 軟質磁性材料 8a,8b 励磁コイル巻回用桟 9 ボビン 51a ケース本体部 51b,51c ケース蓋部 REFERENCE SIGNS LIST 1 detected conductor 2 detection core 3, 3 a, 3 b, 3 c, 3 d detection coil 4, 4 a, 4 b excitation core 5, 5 a, 5 b excitation coil 6 core orthogonal part 7 through hole 8 soft magnetic material 8 a, 8 b excitation coil winding Bar 9 for bobbin 51a Case body 51b, 51c Case lid

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01R 15/18 H01F 38/20 - 38/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) G01R 15/18 H01F 38/20-38/40

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 環状の軟質磁性材料からなる検出コア
と、該検出コアにトロイダル状に巻回した検出コイルを
配置した構成からなり、検出コア内側に非接触検出する
直流電流が流れる被検出導線を貫通配置する直流電流セ
ンサーにおいて、被検出導線に流れる直流電流によって
前記検出コア内に発生する周方向の磁束に対して、略直
交方向に発生する磁束によって検出コアの一部に周期的
に磁気的なギャップを形成する手段を有する直流電流セ
ンサー。
1. A detection conductor, comprising: a detection core made of an annular soft magnetic material; and a detection coil wound in a toroidal shape on the detection core, wherein a direct current for non-contact detection flows inside the detection core. In a DC current sensor, a magnetic flux is generated periodically in a part of the detection core by a magnetic flux generated in a substantially orthogonal direction with respect to a circumferential magnetic flux generated in the detection core by a DC current flowing through the detection target wire. DC current sensor having means for forming a specific gap.
【請求項2】 検出コアの一部に周期的に磁気的なギャ
ップを形成する手段が、被検出導線に流れる直流電流に
よって前記検出コア内に発生する周方向の磁束に対し
て、略直交方向に発生する磁束によって検出コアの一部
を磁気的に飽和させ、周方向の磁束による磁路を周期的
に遮断する構成からなる請求項1に記載の直流電流セン
サー。
2. A means for periodically forming a magnetic gap in a part of a detection core is provided in a direction substantially orthogonal to a circumferential magnetic flux generated in the detection core by a DC current flowing through a detected wire. 2. The DC current sensor according to claim 1, wherein the DC current sensor has a configuration in which a part of the detection core is magnetically saturated by the magnetic flux generated in the magnetic field, and a magnetic path due to the circumferential magnetic flux is periodically interrupted.
【請求項3】 環状の軟質磁性材料からなる検出コアの
一部に検出コアの周方向に対して励磁コアと交差接続す
るコア交差部を設けて環状の軟質磁性材料からなる励
磁コアと前記検出コアとを一体的に配置し、各コアにそ
れぞれトロイダル状に巻回して検出コイルと励磁コイル
を配置した構成からなり、検出コア内側に非接触検出す
る直流電流が流れる被検出導線を貫通配置した構成から
なる請求項2に記載の直流電流センサー。
3. A provided a core intersection which intersects connecting the exciting core with respect to the circumferential direction of the part to the detecting core of the detecting core consisting of an annular soft magnetic material, wherein an exciting core consisting of an annular soft magnetic material It consists of a detection core and a detection coil and an excitation coil, which are wound in a toroidal shape on each core, and the detection conductor through which a direct current for non-contact detection flows flows inside the detection core. 3. The direct current sensor according to claim 2, having a configuration as described above.
【請求項4】 環状の軟質磁性材料からなる検出コアの
一部に検出コアの周方向に対して励磁コアと交差接続す
るコア交差部を設けて環状の軟質磁性材料からなる励
磁コアと前記検出コアとを一体的に配置し、検出コアに
検出コイルをトロイダル状に巻回配置し、かつ検出コア
の外周に該検出コアの周方向に巻回する励磁コイルを巻
回配置した構成からなり、検出コア内側に非接触検出す
る直流電流が流れる被検出導線を貫通配置した構成から
なる請求項2に記載の直流電流センサー。
4. A provided a core intersection which intersects connecting the exciting core with respect to the circumferential direction of the part to the detecting core of the detecting core consisting of an annular soft magnetic material, wherein an exciting core consisting of an annular soft magnetic material The detection core is integrally arranged, the detection coil is wound around the detection core in a toroidal shape, and the excitation coil wound around the detection core in the circumferential direction of the detection core is wound around the detection core. 3. The direct current sensor according to claim 2, wherein a detection conductor through which a direct current for contactless detection flows flows through the inside of the detection core.
【請求項5】 励磁コアを検出コアの周方向に対して直
角方向に励磁可能にし、励磁コアが検出コアの周方向に
対して検出コアと直交接続するコア直交部を周期的に磁
気的に飽和させる励磁コイルへの交流電流印加手段を有
し、励磁時に被検出導線を流れる直流電流に基づき検出
コアに発生する磁束を変調可能となし、検出コイルに励
磁電流の2倍の周波数の起電力を出力させて被検出導線
を流れる直流電流を検出する構成からなる請求項3又は
請求項4に記載の直流電流センサー。
5. An exciting core is capable of being excited in a direction perpendicular to a circumferential direction of a detecting core, and the exciting core periodically and magnetically forms a core orthogonal portion orthogonally connected to the detecting core in a circumferential direction of the detecting core. It has a means for applying AC current to the exciting coil to saturate, and it can modulate the magnetic flux generated in the detection core based on the DC current flowing through the conductor to be detected at the time of excitation. 5. The DC current sensor according to claim 3, wherein the DC current sensor has a configuration of outputting a DC current and detecting a DC current flowing through the conductive wire to be detected.
JP05193950A 1992-07-10 1993-07-09 DC current sensor Expired - Lifetime JP3093529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05193950A JP3093529B2 (en) 1992-07-10 1993-07-09 DC current sensor

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP20738092 1992-07-10
JP20738192 1992-07-10
JP4-207380 1992-07-10
JP4-207381 1992-07-10
JP05193950A JP3093529B2 (en) 1992-07-10 1993-07-09 DC current sensor

Publications (2)

Publication Number Publication Date
JPH0674978A JPH0674978A (en) 1994-03-18
JP3093529B2 true JP3093529B2 (en) 2000-10-03

Family

ID=27326841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05193950A Expired - Lifetime JP3093529B2 (en) 1992-07-10 1993-07-09 DC current sensor

Country Status (1)

Country Link
JP (1) JP3093529B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628284A (en) * 1985-06-03 1986-12-09 North American Philips Corporation High frequency high voltage power supply preventing simultaneous transistor conduction
JPH09127158A (en) * 1995-10-26 1997-05-16 Kansai Electric Power Co Inc:The Direct current sensor
KR100831338B1 (en) * 2006-12-15 2008-05-22 한국전기연구원 Signal detection circuit, digital data processing method for recognition of arc current and self- performance test method
CN104360302B (en) * 2014-12-04 2016-06-08 广东电网有限责任公司电力科学研究院 A kind of butterfly bus ring for galvanic current transformer checking system

Also Published As

Publication number Publication date
JPH0674978A (en) 1994-03-18

Similar Documents

Publication Publication Date Title
US5475301A (en) DC current sensor using a continuous annularly shaped detection core
JP3286446B2 (en) DC current sensor
US5523677A (en) DC current sensor
KR100993928B1 (en) Magnetic bridge type current sensor, magnetic bridge type current detecting method, and magnetic bridge for use in that sensor and detecting method
JP2001281270A (en) Split type current detector
JP3093529B2 (en) DC current sensor
JPH112647A (en) Direct current sensor and method for preventing flowing-out of direct current
JPH08262063A (en) Direct current sensor
JP3093532B2 (en) DC current sensor
JPH10332745A (en) Electric current sensor
JP3093531B2 (en) DC current sensor
JPH0749357A (en) D.c. current sensor
JP2000055940A (en) Dc current sensor
JP3515233B2 (en) DC current sensor
JPH1068744A (en) Direct current sensor
JP3371019B2 (en) DC current sensor
JP2727882B2 (en) DC bias detection method of transformer and polarity determination method of DC bias
JPH10332744A (en) Direct current sensor
JP3746359B2 (en) DC current sensor
JP2000002738A (en) Direct current leak detector
JPH10123180A (en) Dc current sensor
JPH10177926A (en) Dc current sensor
JPH10177927A (en) Dc current sensor
JPH07146348A (en) Electric current sensor
JPH10232248A (en) Dc current sensor

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 13

EXPY Cancellation because of completion of term