JPH07110345A - Demagnetizing method for zero flux control type current sensor - Google Patents

Demagnetizing method for zero flux control type current sensor

Info

Publication number
JPH07110345A
JPH07110345A JP5277475A JP27747593A JPH07110345A JP H07110345 A JPH07110345 A JP H07110345A JP 5277475 A JP5277475 A JP 5277475A JP 27747593 A JP27747593 A JP 27747593A JP H07110345 A JPH07110345 A JP H07110345A
Authority
JP
Japan
Prior art keywords
amplifier
magnetic
signal
magnetic core
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5277475A
Other languages
Japanese (ja)
Inventor
Yasufumi Suzuki
康文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP5277475A priority Critical patent/JPH07110345A/en
Publication of JPH07110345A publication Critical patent/JPH07110345A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable reliable demagnetization to be excuted by an AC attenuation signal for demagnetization which has a high frequency. CONSTITUTION:In the zero flux control type current sensor equipped with a pair of magnetic cores 1a and 1b which can encircle a conductor W to be measured, a magnetoelectric conversion part 2 which detects a magnetic flux generated in the magnetic cores 1a and 1b as an electric signal, amplifiers 3 and 4 amplifying a detection signal from the magnetoelectric conversion part 2 and a feedback coil 6 wound on the magnetic cores 1a and 1b between the output side of the amplifiers 3 and 4 and an output terminal 5 including an output resistor 5a, an AC attenuation signal for demagnetization having a voltage amplitude corresponding to or being larger than coercive forces of the magnetic cores 1a and 1b is impressed on the input side of the amplifier 3 in a state wherein a negative feedback operation loop including the amplifiers 3 and 4 and the feedback coil 6 is made a closed loop.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は零磁束制御型(ゼロフ
ラックス型)電流センサの消磁方法に関し、さらに詳し
く言えば、交流消磁用減衰信号により磁気コア内を確実
に消磁し得るようにした消磁方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for degaussing a zero magnetic flux control type (zero flux type) current sensor, and more specifically, degaussing for reliably degaussing a magnetic core by an AC degaussing attenuation signal. It is about the method.

【0002】[0002]

【従来の技術】図3には零磁束制御型のクランプ式電流
センサの従来例が示されている。これによると、同クラ
ンプ式電流センサは、開閉可能であって被測定導体Wを
内包し得る磁気回路1を形成するフェライトなどからな
る一対の磁気コア1a,1bと、その磁気回路1内の磁
束を電気信号に変換して検出する磁電変換部2と、同磁
電変換部2から出力される検出信号を増幅する前段増幅
器3およびその後段に接続された電力増幅器4と、同電
力増幅器4と出力抵抗5aを含む出力端子5との間にお
いて磁気回路1の所定部位に巻回された帰還コイル6と
を備えている。
2. Description of the Related Art FIG. 3 shows a conventional example of a clamp type current sensor of zero flux control type. According to this, the clamp type current sensor has a pair of magnetic cores 1a and 1b made of ferrite or the like forming a magnetic circuit 1 capable of enclosing the conductor W to be measured and a magnetic flux in the magnetic circuit 1. To an electric signal, and a pre-stage amplifier 3 for amplifying the detection signal output from the magneto-electric converter 2 and a power amplifier 4 connected to the latter stage, and the power amplifier 4 and the output. A feedback coil 6 wound around a predetermined portion of the magnetic circuit 1 is provided between the output coil 5 and the output terminal 5 including the resistor 5a.

【0003】交流用の場合には、磁電変換部2としては
一般に検出コイルが用いられ、交流直流兼用型の場合に
はホール素子が用いられる。いずれにしても、その検出
信号は増幅器3,4にて増幅され、後段の電力増幅器4
のシンク、ソース作用により、帰還コイル6には被測定
導体Wにより磁気回路1内に誘起された磁束を打ち消す
ような電流が流され、その電流に起因して出力抵抗5a
に発生する電圧が出力端子に現れ、これをもって被測定
導体Wの電流が検出される。
In the case of alternating current, a detection coil is generally used as the magnetic-electric conversion section 2, and in the case of the alternating current and direct current type, a hall element is used. In any case, the detected signal is amplified by the amplifiers 3 and 4, and the power amplifier 4 at the subsequent stage is amplified.
Due to the sinking and source action of the current, a current that cancels the magnetic flux induced in the magnetic circuit 1 by the conductor W to be measured is caused to flow in the feedback coil 6, and due to the current, the output resistance 5a
The voltage generated at the output terminal appears at the output terminal, and the current of the conductor W to be measured is detected.

【0004】このように、零磁束制御型電流センサにお
いては、通常の動作ではその負帰還作用により動作磁束
がきわめて小さく抑えられているため、磁気コア1a,
1bの帯磁による影響は殆どない。
As described above, in the zero-flux control type current sensor, the operating magnetic flux is suppressed to an extremely small value by the negative feedback action in the normal operation, so that the magnetic cores 1a,
There is almost no effect due to the magnetization of 1b.

【0005】しかしながら、負帰還動作を逸脱するよう
な過大入力や電子回路の電源オフ状態、すなわち負帰還
がない状態での入力もしくは外部磁界などによっては、
磁気コア1a,1bが帯磁され、その結果電流センサの
零点が偏倚してしまうことになる。
However, depending on an excessive input that deviates from the negative feedback operation or the power off state of the electronic circuit, that is, the input or the external magnetic field without the negative feedback,
The magnetic cores 1a and 1b are magnetized, and as a result, the zero point of the current sensor is deviated.

【0006】そこで、従来では例えば電力増幅器4の入
力側に負帰還ループを切断して同入力端子を消磁用交流
信号源7に接続し得る切替えスイッチ8を設け、この交
流信号源7から電力増幅器4に交流減衰信号を印加し、
その増幅出力電圧により帰還コイル6を駆動して磁気コ
ア1a,1bに起磁力を与えて交流消磁を行なうように
している。
Therefore, conventionally, for example, a change-over switch 8 capable of disconnecting the negative feedback loop and connecting the input terminal to the degaussing AC signal source 7 is provided on the input side of the power amplifier 4, and from this AC signal source 7, the power amplifier is connected. Apply an AC attenuation signal to 4,
The feedback coil 6 is driven by the amplified output voltage to give a magnetomotive force to the magnetic cores 1a and 1b to perform AC demagnetization.

【0007】[0007]

【発明が解決しようとする課題】上記従来例の欠点とし
ては、まず、消磁操作により一旦磁気コアが消磁されて
も、スイッチ8を切り替えて負帰還ループに戻す際に、
回路のオフセット電圧も含めて負帰還状態に入るため、
また、切替えに伴う過渡的現象により、再度なんらかの
帯磁を起こし易い、という点が指摘される。
As a drawback of the above-mentioned conventional example, first, when the switch 8 is switched back to the negative feedback loop even if the magnetic core is once demagnetized by the degaussing operation,
Because it enters the negative feedback state including the offset voltage of the circuit,
Further, it is pointed out that some kind of magnetization is likely to occur again due to a transient phenomenon associated with switching.

【0008】次に、スイッチ8により負帰還ループを
「開」とした状態においては、交流減衰信号印加時の磁
束レベルが高くなるため、帰還コイル6のインダクタン
ス(インピーダンス)により、高い周波数の交流減衰信
号では帰還コイル6を駆動することができない。
Next, when the negative feedback loop is "opened" by the switch 8, the magnetic flux level at the time of applying the AC attenuation signal becomes high. Therefore, the inductance (impedance) of the feedback coil 6 causes the AC attenuation at a high frequency. The feedback coil 6 cannot be driven by a signal.

【0009】したがって、交流消磁における磁気コアの
ヒステリシスのメジャーループからマイナーループを経
て消磁する減衰ループの回数が十分でなく、消磁が不完
全となってしまう。さらには、切替えスイッチおよびそ
の切り替え操作を必要とするため、コスト的にも構造的
にも、また、操作性の点でも好ましくない。
Therefore, in AC degaussing, the number of attenuation loops for degaussing from the major loop of hysteresis of the magnetic core through the minor loop to the minor loop is not sufficient, resulting in incomplete degaussing. Furthermore, since the changeover switch and its changeover operation are required, it is not preferable in terms of cost, structure, and operability.

【0010】[0010]

【課題を解決するための手段】この発明は上記従来の事
情に鑑みなされたもので、その構成上の特徴は、開閉可
能であって被測定導体を内包し得る一対の磁気コアと、
同磁気コア内に発生する磁束を電気信号として検出する
磁電変換部と、同磁電変換部からの検出信号を増幅する
増幅器と、同増幅器の出力側と出力抵抗を含む出力端子
との間において上記磁気コアに巻回された帰還コイルと
を備え、上記磁電変換部の検出信号を上記増幅器にて増
幅し上記帰還コイルを介して上記磁気コアに負帰還させ
ることにより上記被測定導体の電流を検出する零磁束制
御型電流センサにおいて、上記増幅器および上記帰還コ
イルを含む負帰還動作ループを閉ループとした状態にお
いて、上記増幅器の入力側に上記磁気コアが有する保磁
力に見合う以上の電圧振幅の消磁用交流減衰信号を印加
することにより、上記磁気コアを消磁するようにしたこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional circumstances, and is characterized in that it has a pair of magnetic cores that can be opened and closed and that can include a conductor to be measured.
Between the magnetoelectric conversion unit that detects the magnetic flux generated in the magnetic core as an electric signal, the amplifier that amplifies the detection signal from the magnetoelectric conversion unit, and the output side of the amplifier and the output terminal including the output resistance A feedback coil wound around a magnetic core is provided, and the detection signal of the magnetoelectric converter is amplified by the amplifier and negatively fed back to the magnetic core via the feedback coil to detect the current of the conductor to be measured. In a zero-flux-controlled current sensor for degaussing a voltage amplitude exceeding the coercive force of the magnetic core on the input side of the amplifier in a state where the negative feedback operation loop including the amplifier and the feedback coil is closed. This is because the magnetic core is demagnetized by applying an AC attenuation signal.

【0011】増幅器が前段増幅器と、その後段に接続さ
れた電力増幅器とを備えている場合、同前段増幅器の入
力側に上記消磁用交流減衰信号を印加することが好まし
い。
When the amplifier includes a front-stage amplifier and a power amplifier connected to the rear-stage amplifier, it is preferable to apply the demagnetizing AC attenuation signal to the input side of the front-stage amplifier.

【0012】[0012]

【作用】一般的に、磁気コア(磁気抵抗R)に巻かれた
コイル(ターン数N)の正弦波電圧e、電流i、インピ
ーダンスZ(インダクタンスL)および磁束φの間には
次のような関係がある。
In general, between the sinusoidal voltage e, current i, impedance Z (inductance L) and magnetic flux φ of a coil (number of turns N) wound around a magnetic core (magnetic resistance R), I have a relationship.

【0013】e=−N(dφ/dt)、φ=Ni/Rで
あるから、 Z=e/i=−(N/R)(di/dt)=L(di
/dt)=(φ/Ni)(di/dt) すなわち、帰還コイルのインダクタンスLは磁束φの大
きさに正比例する。ところで、負帰還をかけた動作帯域
での磁束レベルは負帰還を施さない場合よりも十分小さ
く、負帰還量などの条件によってはその磁束レベルを例
えば1/100程度位にまで小さくすることができる。
Since e = -N (dφ / dt) and φ = Ni / R, Z = e / i =-(N 2 / R) (di / dt) = L (di
/ Dt) = (φ / Ni) (di / dt) That is, the inductance L of the feedback coil is directly proportional to the magnitude of the magnetic flux φ. By the way, the magnetic flux level in the operating band to which the negative feedback is applied is sufficiently smaller than that in the case where the negative feedback is not applied, and depending on the conditions such as the amount of the negative feedback, the magnetic flux level can be reduced to, for example, about 1/100. .

【0014】上記構成によると、負帰還動作ループを閉
ループとした状態、すなわち帰還コイルのインダクタン
スLが小さな値に維持された状態で交流減衰信号を印加
するものであるため、その交流減衰信号の周波数を高く
することが可能となり、確実な消磁が行なわれる。
According to the above configuration, since the AC attenuation signal is applied in a state where the negative feedback operation loop is closed, that is, the inductance L of the feedback coil is maintained at a small value, the frequency of the AC attenuation signal is applied. It is possible to increase the magnetic field, and reliable demagnetization is performed.

【0015】また、常時「閉ループ」が保持されている
ため、切り替え操作に伴う過渡的な現象や「開ループ」
に移行する際のオフセット電圧の影響による、消磁の不
完全さがない。
Further, since the "closed loop" is always maintained, a transient phenomenon or "open loop" accompanying the switching operation is caused.
There is no incomplete demagnetization due to the influence of the offset voltage when shifting to.

【0016】[0016]

【実施例】以下、この発明の一実施例について説明す
る。図1にはこの実施例に係るクランプ式電流センサが
示されているが、先に説明した図3の従来例と同一もし
くは同一と見做される部分にはそれと同じ参照符号を付
して重複説明は省略する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below. FIG. 1 shows a clamp type current sensor according to this embodiment, but the same reference numerals as those used in the conventional example shown in FIG. The description is omitted.

【0017】図1に示されているように、この実施例に
おいては、前段増幅器3、その後段の電力増幅器4およ
び帰還コイル6を含む負帰還ループを開くことなく、閉
ループとした状態のまま、交流信号源7から前段増幅器
3に交流減衰信号を印加し、その出力を電力増幅器4に
てさらに増幅して帰還コイル6を駆動することにより、
磁気コア1a,1bに起磁力を与えて交流消磁を行なう
ようにしている。
As shown in FIG. 1, in this embodiment, the negative feedback loop including the preamplifier 3, the power amplifier 4 and the feedback coil 6 in the subsequent stage is not opened, but is kept in a closed loop state. By applying an AC attenuation signal from the AC signal source 7 to the preamplifier 3 and further amplifying the output by the power amplifier 4 to drive the feedback coil 6,
A magnetomotive force is applied to the magnetic cores 1a and 1b to perform AC demagnetization.

【0018】磁気回路1に印加される交流減衰信号Ve
に対する帰還コイル6の起磁力NIは、十分な帰還量の
もとでは、磁気コア1a,1bの磁気抵抗Rとホール素
子(磁電変換部2)の感度Kとの比、NI=RVe/K
で表される。
AC attenuation signal Ve applied to the magnetic circuit 1
The magnetomotive force NI of the feedback coil 6 with respect to is a ratio of the magnetic resistance R of the magnetic cores 1a and 1b to the sensitivity K of the Hall element (magnetoelectric conversion unit 2), NI = RVe / K, under a sufficient feedback amount.
It is represented by.

【0019】ここで、例えば磁気コア1a,1bの保磁
力Hcが2.4(A/m)である場合、消磁磁束をその
磁気コアのヒステリシスのメジャーループまで振るため
には起磁力NIをそれよりも大きくする必要がある。こ
の実施例で、ホール素子の感度Kが5×10(V/W
b)、磁気抵抗Rが3.7×10(H−1)とする
と、 Ve=KNI/R>KHc/R=5×10×2.4/
3.7×10=0.032(V) すなわち、交流減衰信号の振幅を32(mV)以上とす
れば良い。図2に交流減衰信号波形の一例を示す。発振
周波数を約300Hzに設定し、約100ms間の振幅
減衰期間で約30回程度マイナーループを描くことによ
り、良好な消磁効果が得られる。また、これによれば磁
気コア1a,1bが一旦帯磁したとしても、交流消磁操
作により一回の消磁操作でほぼ完全に消磁状態となる。
Here, for example, when the coercive force Hc of the magnetic cores 1a and 1b is 2.4 (A / m), the magnetomotive force NI is changed in order to swing the demagnetization magnetic flux to the hysteresis major loop of the magnetic core. Need to be larger than. In this embodiment, the sensitivity K of the Hall element is 5 × 10 4 (V / W
b) and the magnetic resistance R is 3.7 × 10 6 (H −1 ), Ve = KNI / R> KHc / R = 5 × 10 4 × 2.4 /
3.7 × 10 6 = 0.032 (V) That is, the amplitude of the AC attenuation signal may be set to 32 (mV) or more. FIG. 2 shows an example of the AC attenuation signal waveform. A good degaussing effect can be obtained by setting the oscillation frequency to about 300 Hz and drawing a minor loop about 30 times in an amplitude decay period of about 100 ms. Further, according to this, even if the magnetic cores 1a and 1b are once magnetized, they are almost completely demagnetized by one degaussing operation by the AC degaussing operation.

【0020】このように、この発明によると増幅器3の
入力に磁気コア1a,1bが有する保磁力Hcに見合う
以上の電圧振幅の交流減衰信号を印加することにより、
ほぼ完全な交流消磁が可能となる。なお、上記実施例で
は前段の増幅器3に交流減衰信号を印加しているが、場
合によっては、その後段の電力増幅器4の入力に交流減
衰信号を加えるようにしても良い。
As described above, according to the present invention, by applying to the input of the amplifier 3 an AC attenuation signal having a voltage amplitude larger than the coercive force Hc of the magnetic cores 1a and 1b,
Almost complete AC demagnetization is possible. Although the AC attenuation signal is applied to the amplifier 3 in the preceding stage in the above embodiment, the AC attenuation signal may be applied to the input of the power amplifier 4 in the following stage in some cases.

【0021】また、消磁用の交流減衰信号と零調整用の
直流信号を重畳して兼用することもできる。その場合、
直流電圧が重畳されているため一回の操作により、磁気
的な絶対零を実現できないが、大きな帯磁の影響による
動作点の移動は取り除け、零調整は可能である。
Further, the demagnetization AC attenuation signal and the zero adjustment DC signal can be superposed and shared. In that case,
Since the DC voltage is superimposed, magnetic absolute zero cannot be realized by one operation, but the movement of the operating point due to the influence of large magnetization can be removed and zero adjustment can be performed.

【0022】上述したように、このセンサの動作磁束レ
ベルはきわめて小く、動作ダイナミクスなどの特性に影
響しないため、そのまま測定を開始しても特に問題はな
い。なお、厳密に零点を設定するには、消磁操作と零調
整操作を交互に数回程度繰り返せば良い。
As described above, since the operating magnetic flux level of this sensor is extremely small and does not affect the characteristics such as the operating dynamics, there is no particular problem even if the measurement is started as it is. In order to set the zero point exactly, the degaussing operation and the zero adjustment operation may be alternately repeated several times.

【0023】[0023]

【発明の効果】以上説明したように、この発明によれ
ば、零磁束制御型電流センサにおいて、増幅器および帰
還コイルを含む負帰還動作ループを閉ループとした状態
において、増幅器の入力側に磁気コアが有する保磁力に
見合う以上の電圧振幅の交流消磁用減衰信号を印加する
ようにしたことにより、高い周波数の交流減衰信号にて
確実な消磁を行なうことができる。
As described above, according to the present invention, in the zero-flux-controlled current sensor, the magnetic core is provided on the input side of the amplifier when the negative feedback operation loop including the amplifier and the feedback coil is closed. By applying an AC degaussing attenuation signal having a voltage amplitude larger than that of the coercive force possessed, reliable degaussing can be performed with an AC attenuation signal having a high frequency.

【0024】また、負帰還動作ループが常時「閉ルー
プ」に保持されているため、切り替え操作に伴う過渡的
な現象や「開ループ」に移行する際のオフセット電圧の
影響による、消磁の不完全さがない。
Further, since the negative feedback operation loop is always held in the "closed loop", the demagnetization is incomplete due to the transient phenomenon associated with the switching operation and the influence of the offset voltage when shifting to the "open loop". There is no.

【0025】さらには、配線は消磁用の信号線1本で済
むため、特に計測器本体とセンサとが分離しているよう
な測定器の場合、その計測器本体から消磁用の交流減衰
信号を送るだけで良く便利であるとともに、交流信号源
への切替えスイッチおよびその切替え操作も不要である
ため、コスト的にも操作性の点でも有利である、などの
効果が奏される。
Further, since the wiring only needs one degaussing signal line, especially in the case of a measuring instrument in which the measuring instrument main body and the sensor are separated, the degaussing AC attenuation signal is sent from the measuring instrument main body. It is convenient to send it, and it is advantageous in terms of cost and operability because it does not require a changeover switch to an AC signal source and its changeover operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を概略的に示した模式図。FIG. 1 is a schematic view schematically showing an embodiment of the present invention.

【図2】消磁用の交流減衰信号を示した波形図。FIG. 2 is a waveform diagram showing an AC attenuation signal for degaussing.

【図3】従来例を概略的に示した模式図。FIG. 3 is a schematic diagram schematically showing a conventional example.

【符号の説明】[Explanation of symbols]

1 磁気回路 1a,1b 磁気コア 2 磁電変換部(ホール素子) 3,4 増幅器 5 出力端子 5a 出力抵抗 6 帰還コイル 7 交流信号源 1 Magnetic Circuit 1a, 1b Magnetic Core 2 Magnetoelectric Converter (Hall Element) 3,4 Amplifier 5 Output Terminal 5a Output Resistance 6 Feedback Coil 7 AC Signal Source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 開閉可能であって被測定導体を内包し得
る一対の磁気コアと、同磁気コア内に発生する磁束を電
気信号として検出する磁電変換部と、同磁電変換部から
の検出信号を増幅する増幅器と、同増幅器の出力側と出
力抵抗を含む出力端子との間において上記磁気コアに巻
回された帰還コイルとを備え、上記磁電変換部の検出信
号を上記増幅器にて増幅し上記帰還コイルを介して上記
磁気コアに負帰還させることにより上記被測定導体の電
流を検出する零磁束制御型電流センサにおいて、 上記増幅器および上記帰還コイルを含む負帰還動作ルー
プを閉ループとした状態において、上記増幅器の入力側
に上記磁気コアが有する保磁力に見合う以上の電圧振幅
の消磁用交流減衰信号を印加することにより、上記磁気
コアを消磁するようにしたことを特徴とする零磁束制御
型電流センサの消磁方法。
1. A pair of magnetic cores that can be opened and closed and that can contain a conductor to be measured, a magnetic-electric conversion unit that detects a magnetic flux generated in the magnetic core as an electric signal, and a detection signal from the magnetic-electric conversion unit. And a feedback coil wound around the magnetic core between an output side of the amplifier and an output terminal including an output resistance, and a detection signal of the magnetoelectric conversion unit is amplified by the amplifier. In a zero-flux-controlled current sensor for detecting the current of the conductor to be measured by negatively feeding back to the magnetic core via the feedback coil, in a state where a negative feedback operation loop including the amplifier and the feedback coil is a closed loop. , The magnetic core is demagnetized by applying to the input side of the amplifier a degaussing AC attenuation signal having a voltage amplitude greater than the coercive force of the magnetic core. Zero flux-controlling current degaussing method of the sensor, characterized in that.
【請求項2】 上記増幅器は前段増幅器と、その後段に
接続された電力増幅器とを備え、同前段増幅器の入力側
に上記消磁用交流減衰信号を印加することを特徴とする
請求項1に記載の零磁束制御型電流センサの消磁方法。
2. The amplifier according to claim 1, wherein the amplifier includes a pre-stage amplifier and a power amplifier connected to the post-stage amplifier, and the demagnetizing AC attenuation signal is applied to an input side of the pre-stage amplifier. Degaussing method for zero-flux-controlled current sensor in.
JP5277475A 1993-10-08 1993-10-08 Demagnetizing method for zero flux control type current sensor Pending JPH07110345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5277475A JPH07110345A (en) 1993-10-08 1993-10-08 Demagnetizing method for zero flux control type current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5277475A JPH07110345A (en) 1993-10-08 1993-10-08 Demagnetizing method for zero flux control type current sensor

Publications (1)

Publication Number Publication Date
JPH07110345A true JPH07110345A (en) 1995-04-25

Family

ID=17584117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5277475A Pending JPH07110345A (en) 1993-10-08 1993-10-08 Demagnetizing method for zero flux control type current sensor

Country Status (1)

Country Link
JP (1) JPH07110345A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350852A (en) * 1999-06-11 2000-12-19 Oizumi Corp Game medium dispenser
JP2003043073A (en) * 2001-07-26 2003-02-13 Hioki Ee Corp Cramp sensor
DE10204425B4 (en) * 2002-02-04 2010-12-09 Vacuumschmelze Gmbh & Co. Kg Current sensor according to the compensation principle
JP2011106890A (en) * 2009-11-14 2011-06-02 Mitsubishi Materials Corp Current sensor device
CN104374981A (en) * 2013-08-16 2015-02-25 西门子公司 Magnetism modulation system and overcurrent protection method thereof
CN104376961A (en) * 2013-08-16 2015-02-25 西门子公司 Demagnetizing circuit, magnetic modulation system and residual current device
JP2015143622A (en) * 2014-01-31 2015-08-06 日置電機株式会社 Zero magnetic flux control current sensor, and zero adjustment method for zero magnetic flux control current sensor
JP2016532862A (en) * 2013-07-15 2016-10-20 日本テキサス・インスツルメンツ株式会社 Method and apparatus for demagnetizing a transformer core in a closed loop
JP2019153492A (en) * 2018-03-05 2019-09-12 トヨタ自動車株式会社 Fuel cell system and method of controlling fuel cell system
CN115389807A (en) * 2022-10-27 2022-11-25 国网江西省电力有限公司电力科学研究院 Transformer neutral point direct current sensor based on fluxgate
WO2022249708A1 (en) * 2021-05-24 2022-12-01 日置電機株式会社 Signal injection device and impedance measurement device
WO2022249709A1 (en) * 2021-05-24 2022-12-01 日置電機株式会社 Impedance measurement device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000350852A (en) * 1999-06-11 2000-12-19 Oizumi Corp Game medium dispenser
JP2003043073A (en) * 2001-07-26 2003-02-13 Hioki Ee Corp Cramp sensor
DE10204425B4 (en) * 2002-02-04 2010-12-09 Vacuumschmelze Gmbh & Co. Kg Current sensor according to the compensation principle
JP2011106890A (en) * 2009-11-14 2011-06-02 Mitsubishi Materials Corp Current sensor device
JP2016532862A (en) * 2013-07-15 2016-10-20 日本テキサス・インスツルメンツ株式会社 Method and apparatus for demagnetizing a transformer core in a closed loop
CN104374981A (en) * 2013-08-16 2015-02-25 西门子公司 Magnetism modulation system and overcurrent protection method thereof
CN104376961A (en) * 2013-08-16 2015-02-25 西门子公司 Demagnetizing circuit, magnetic modulation system and residual current device
JP2015143622A (en) * 2014-01-31 2015-08-06 日置電機株式会社 Zero magnetic flux control current sensor, and zero adjustment method for zero magnetic flux control current sensor
JP2019153492A (en) * 2018-03-05 2019-09-12 トヨタ自動車株式会社 Fuel cell system and method of controlling fuel cell system
WO2022249708A1 (en) * 2021-05-24 2022-12-01 日置電機株式会社 Signal injection device and impedance measurement device
WO2022249709A1 (en) * 2021-05-24 2022-12-01 日置電機株式会社 Impedance measurement device
CN115389807A (en) * 2022-10-27 2022-11-25 国网江西省电力有限公司电力科学研究院 Transformer neutral point direct current sensor based on fluxgate
CN115389807B (en) * 2022-10-27 2023-03-24 国网江西省电力有限公司电力科学研究院 Transformer neutral point direct current sensor based on fluxgate

Similar Documents

Publication Publication Date Title
US5223789A (en) AC/DC current detecting method
US5008612A (en) Current sensor
US4914381A (en) Direct-coupled fluxgate current sensor
JP4515905B2 (en) Magnetic bridge type current sensor, magnetic bridge type current detection method, and magnetic bridge used in the sensor and detection method
US20040201373A1 (en) Current probe
US4859944A (en) Single-winding magnetometer with oscillator duty cycle measurement
JP3691551B2 (en) Current sensor based on compensation principle
US20060192550A1 (en) Current sensor with magnetic toroid single frequency detection scheme
CA2148961A1 (en) Linear Alternating Current Interface for Electronic Meters
JPH07110345A (en) Demagnetizing method for zero flux control type current sensor
US2649568A (en) Magnetometer
JP2001116773A (en) Current sensor and current detector
JPH0131591B2 (en)
US4226126A (en) Mechanical displacement-electrical signal transducer
JPH0315710B2 (en)
JP3399185B2 (en) Magnetic detection device and magnetic detection method
EP3671876A1 (en) Method and inductive device
JP2011106890A (en) Current sensor device
US5831424A (en) Isolated current sensor
JPH0687073B2 (en) Leakage detector
JPH1068744A (en) Direct current sensor
JP2000055940A (en) Dc current sensor
JP3746359B2 (en) DC current sensor
JPS633616A (en) Failure current detector
JPS63243765A (en) Current detector

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020529