JPS63243739A - Apparatus for inspecting interior of pipe - Google Patents

Apparatus for inspecting interior of pipe

Info

Publication number
JPS63243739A
JPS63243739A JP7634187A JP7634187A JPS63243739A JP S63243739 A JPS63243739 A JP S63243739A JP 7634187 A JP7634187 A JP 7634187A JP 7634187 A JP7634187 A JP 7634187A JP S63243739 A JPS63243739 A JP S63243739A
Authority
JP
Japan
Prior art keywords
light
pipe
inspected
tube
detection unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7634187A
Other languages
Japanese (ja)
Other versions
JPH0619333B2 (en
Inventor
Kazuo Takashima
和夫 高嶋
Akiro Sanemori
実森 彰郎
Shinichi Nagai
慎一 永井
Yoshiaki Taniguchi
善昭 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Mitsubishi Electric Corp
Tonen General Sekiyu KK
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Mitsubishi Electric Corp
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC, Mitsubishi Electric Corp, Toa Nenryo Kogyyo KK filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP62076341A priority Critical patent/JPH0619333B2/en
Publication of JPS63243739A publication Critical patent/JPS63243739A/en
Publication of JPH0619333B2 publication Critical patent/JPH0619333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To inspect the inner surface of a pipe with high accuracy and good efficiency, by providing a plate-shaped transparent body capable of distributing and projecting light on the entire periphery of the inner surface of the pipe and a two-dimensional light receiving means in an inspection unit. CONSTITUTION:A light projecting body 23 wherein a fluorescent substance is fixed to the interior of a plate-shaped transparent body 28 in a dispersed state is arranged in an inspection unit 12 and the light from a light source 21 is absorbed by the fluorescent substance to be emitted therefrom and projected from a convex lens-shaped end surface so as to be distributed to the inner surface of a pipe 1 to be inspected in the entire peripheral direction thereof. This unit 12 is held between feed wheels 18 and a motor 19 is driven and the reflected light from the inner surface of the pipe is received by a two-dimensional light receiving apparatus 25 through a lens 24. At this time, when the inner surface of the pipe is sound, a uniform circular image is drawn and, when there is corrosion or cracks on the inner surface of the pipe, a recessed image B1 is formed and, when there is rust, a protruding image B2 is formed. Since damage is judged on the basis of the uneven state of the inner surface of the pipe, inspection can be performed with high accuracy and good efficiency.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、熱交換器用管、その他各種配管等の管内面状
態、特に小径管の内面状態を光学的に検査する管内検査
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inside pipe inspection device for optically inspecting the inner surface condition of tubes such as heat exchanger tubes and various other types of piping, particularly the inner surface condition of small diameter tubes.

[従来の技術] 従来、小径管の管内検査装置として、超音波または光を
用いるものが提案されており、それらの−例を示せば第
5図、第6図の如くである。
[Prior Art] Conventionally, devices using ultrasonic waves or light have been proposed as pipe inspection devices for small diameter pipes, and examples thereof are shown in FIGS. 5 and 6.

第5図は超音波を用いた従来の管内検査装置を示す模式
的断面図である。この管内検査装置は、被検査管lに挿
入される検出ユニット2に、超音波の送/受信機能を備
えた超音波探触子3およびこれに対向する反射部材4を
配設している。すなわち、この管内検査装置は、上記検
出ユニット2を被検査管lに挿入した状態で、被検査管
1の内部に超音波の伝送媒体としての水を注入し、検出
ユニット2を管軸方向に移動させるとともに、反射部材
4を管軸まわりに回転させつつこれに向けて超音波探触
子3から超音波を投射し、反射部材4にて直角に屈折さ
せた超音波を被検査管lの内面に入射させ、被検査管1
の内面、外面からの反射エコーを超音波探触子3にて受
信し、被検査管1の内径、外径、表面の凹凸状態等を検
査する。
FIG. 5 is a schematic cross-sectional view showing a conventional pipe inspection device using ultrasonic waves. This pipe inspection apparatus includes a detection unit 2 inserted into a pipe to be inspected 1, which is provided with an ultrasonic probe 3 having an ultrasonic transmitting/receiving function and a reflecting member 4 facing the probe. That is, in this pipe inspection device, with the detection unit 2 inserted into the pipe to be inspected l, water as an ultrasonic transmission medium is injected into the pipe to be inspected 1, and the detection unit 2 is moved in the pipe axis direction. At the same time, while rotating the reflecting member 4 around the tube axis, ultrasonic waves are projected from the ultrasonic probe 3 toward the reflecting member 4, and the ultrasonic waves refracted at right angles by the reflecting member 4 are reflected into the inspected tube l. The tube to be inspected 1
The ultrasonic probe 3 receives reflected echoes from the inner and outer surfaces of the tube 1 to inspect the inner diameter, outer diameter, surface irregularities, etc. of the tube 1 to be inspected.

第6図は光を用いた従来の管内検査装置を示す模式的断
面図である。この管内検査装置は、被検査管1に挿入さ
れる検出ユニット5の筒状ケーシング5Aに検出窓5B
を設け、ケーシング5Aの内部の検出窓5Bに面する位
置に投光部6と受光部7をそれらの光軸が被検査管lの
内面にて相互に交差するように傾斜配置し、この検出ユ
ニット5を操作軸8の先端に固定している。これにより
、この管内検査装置は、操作軸8にて検出ユニット5を
被検査管1の内部で管軸方向に移動させつつ管軸まわり
に回転させて被検査管lの内面を光学的に検査する。
FIG. 6 is a schematic cross-sectional view showing a conventional pipe inspection device using light. This pipe inspection device has a detection window 5B in a cylindrical casing 5A of a detection unit 5 inserted into a pipe 1 to be inspected.
A light emitting part 6 and a light receiving part 7 are arranged at an angle so that their optical axes intersect with each other on the inner surface of the tube to be inspected l at a position facing the detection window 5B inside the casing 5A. The unit 5 is fixed to the tip of the operating shaft 8. Thereby, this pipe interior inspection device optically inspects the inner surface of the pipe to be inspected by moving the detection unit 5 in the pipe axis direction inside the pipe to be inspected 1 using the operating shaft 8 and rotating it around the tube axis. do.

[発明が解決しようとする問題点] しかしながら、超音波を用いる管内検査装置にあっては
、超音波自体の特性として収束性が悪いため分解能が低
く、被検査管の内部に超音波の伝送媒体たる水を充填し
ておく必要がある。このため、水の給水、排水、封止等
のための設備および作業を必要とし、設備コストが高く
作業廃車も悪い、また、被検査管の内面に対する走査が
螺線状となり、検査精度も低い。
[Problems to be Solved by the Invention] However, in pipe inspection devices that use ultrasonic waves, the resolution is low due to the poor convergence of the ultrasonic waves themselves, and the ultrasonic transmission medium is inside the pipe to be inspected. It is necessary to fill the barrel with water. For this reason, equipment and work for water supply, drainage, sealing, etc. are required, which results in high equipment costs and waste of work vehicles.Also, the scanning of the inner surface of the pipe to be inspected becomes a spiral, resulting in low inspection accuracy. .

また、光を用いる管内検査装置にあっても、作業能率が
悪く、かつ被検査管の内面に対する走査が!I!5lv
i状となるために検査精度も低い。
In addition, even with pipe inspection equipment that uses light, the work efficiency is poor and the inner surface of the pipe to be inspected cannot be scanned! I! 5lv
The inspection accuracy is also low because it is i-shaped.

本発明は、簡素な設備で作業能率がよく、検査精度も高
い管内検査装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a pipe inspection device with simple equipment, high work efficiency, and high inspection accuracy.

[問題点を解決するための手段] 本発明は、検出ユニットを被検査管内に挿入して管軸方
向に移動し、被検査管の内面状態を検査する管内検査装
置において、前記検出ユニットが、光源と、板状透明体
内に螢光物質を分散固定してなる上記光源から発せられ
た光を被検査管の内面の全周に分配投射する投光手段と
、被検査管の内面の光像を捉える受光手段とを有するよ
うにしたものである。
[Means for Solving the Problems] The present invention provides an in-pipe inspection apparatus for inspecting the inner surface state of the pipe to be inspected by inserting a detection unit into the pipe to be inspected and moving it in the tube axis direction, wherein the detection unit is configured to: a light source, a light projection means for distributing and projecting the light emitted from the light source, which is formed by dispersing and fixing a fluorescent substance in a plate-shaped transparent body, over the entire circumference of the inner surface of the tube to be inspected, and an optical image of the inner surface of the tube to be inspected. The light-receiving means captures the light.

[作用] 本発明の管内検査装置を構成する検出ユニットは、光源
が発する光を投光手段により被検査管の内面の全周に分
配投射し、これからの反射光像を受光手段によって捉え
得ることになる。したがって、検出ユニットを上記光像
捕捉状態下で被検査管の管軸方向にのみ移動することに
より、被検査管の内面状態を任意の位置において検査で
きる。
[Function] The detection unit constituting the pipe inspection device of the present invention is capable of distributing and projecting the light emitted by the light source over the entire circumference of the inner surface of the pipe to be inspected using the light projecting means, and capturing an image of the reflected light from the light using the light receiving means. become. Therefore, by moving the detection unit only in the tube axis direction of the tube to be inspected under the above optical image capturing state, the inner surface state of the tube to be inspected can be inspected at any position.

ここで、本発明の管内検査装置は、被検査管の内部に超
音波の伝送媒体たる水を充填したり、検査ユニットを螺
締移動する等の必要がないので、設備を簡素とし、作業
能率も良とすることができる。また、検出ユニッ1トに
よる走査が螺線状とならず、検出ユニットは被検査管の
内面の全周を同時に走査できるので、検査精度も向上す
る。
Here, the pipe inspection device of the present invention does not require filling the inside of the pipe to be inspected with water, which is a transmission medium for ultrasonic waves, or screwing and moving the inspection unit, thereby simplifying the equipment and improving work efficiency. It can also be good. Moreover, the scanning by the detection unit 1 is not spiral, and the detection unit can simultaneously scan the entire circumference of the inner surface of the tube to be inspected, thereby improving inspection accuracy.

[実施例] 第1図は本発明の一実施例に係る管内検査装置を示す模
式断面図、第2図は投光手段の一例を示す模式断面図、
第3図は管内面形状の検査原理を示す模式図、第4図(
A)、(B)は受光手段が捉えた像を示す模式図である
[Example] Fig. 1 is a schematic sectional view showing an in-pipe inspection device according to an embodiment of the present invention, and Fig. 2 is a schematic sectional view showing an example of a light projecting means.
Figure 3 is a schematic diagram showing the principle of inspecting the inner surface shape of tubes, and Figure 4 (
A) and (B) are schematic diagrams showing images captured by the light receiving means.

第1図において、1は被検査管、10は管内検査装置で
ある。管内検査装置lOは、管外に位置するリモコン(
リモートコントロール) RR11と、管内に挿入され
る検出ユニット12とを有する。リモコン装置11は検
出制御部11Aと移動制御部11Bとを備える。
In FIG. 1, 1 is a pipe to be inspected, and 10 is an in-pipe inspection device. The pipe inspection device IO is a remote control located outside the pipe (
remote control) RR11 and a detection unit 12 inserted into the pipe. The remote control device 11 includes a detection control section 11A and a movement control section 11B.

検出ユニッ)12は、金属等の耐腐食性材料からなる両
端閉塞円筒体状のケーシング13を有し、ケーシング1
3の両端端板に支持部14A、14Bを形成し、各支持
部14A、14Bにそれぞれ3木の支持脚部15を固定
している。各支持脚部15は、両支持部14A、14B
のそれぞれにおいて相互に120度間隔を隔てて配置さ
れ、先端に設けられる車輪16を被検査管lの内面に当
接し、被検査管lの内部に挿入されたケーシング13の
中心軸を被検査管1の中心軸と略一致するように配置し
、かつケーシング13にこの状態を維持しつつ該ケーシ
ング13を管軸方向に移動可能としている。
The detection unit) 12 has a cylindrical casing 13 with both ends closed and made of a corrosion-resistant material such as metal.
Support portions 14A and 14B are formed on both end plates of 3, and 3 support leg portions 15 are fixed to each of the support portions 14A and 14B, respectively. Each support leg 15 has both support parts 14A and 14B.
The wheels 16 provided at the tip of the casing 13 are placed at 120 degrees apart from each other, and the wheels 16 provided at the tips are brought into contact with the inner surface of the tube to be inspected l, and the central axis of the casing 13 inserted into the tube to be inspected l is aligned with the center axis of the casing 13 inserted into the tube to be inspected l. 1, and the casing 13 is movable in the tube axis direction while maintaining this state in the casing 13.

また、検出ユニット12は、ケーシング13の後端支持
部14Bの中央にチューブ17の一端を貫通状態で連結
している。チューブ17は、被検査管1の管軸の曲がり
にならってたわむことができ、かつ軸方向に座屈するこ
とのない剛性を備えており、管外に設置されるチューブ
送り手段、例えば上下一対の送り車18に挟圧されつつ
軸方向力を付与されて管軸方向に移動し、検出ユニット
12を前進/後進作動させる。19は送り車18の駆動
モータ、20は送り車18の回転量検出器、19Aは給
電用ケーブル、20Aは検出信号転送用ケーブルである
Further, the detection unit 12 has one end of the tube 17 connected to the center of the rear end support portion 14B of the casing 13 in a penetrating state. The tube 17 can be bent in accordance with the bending of the tube axis of the tube 1 to be inspected, and has a rigidity that does not buckle in the axial direction. While being pinched by the feed wheel 18, an axial force is applied to move the detection unit 12 in the tube axis direction, causing the detection unit 12 to move forward/reverse. 19 is a drive motor for the feed wheel 18, 20 is a rotation amount detector for the feed wheel 18, 19A is a power supply cable, and 20A is a detection signal transfer cable.

なお、検出ユニット12は、ケーシング13の軸方向中
央部の一定範囲で、該ケーシング13の全周にわたる領
域に透明体を埋め込んだ環状の検出窓13Aを備えてい
る。この検出窓13Aは、後述する投光体23から被検
査管1の内面への投射光、被検査管1の内面からレンズ
24へ向かう反射光の光路となる。
The detection unit 12 is provided with an annular detection window 13A in which a transparent body is embedded in a certain range in the axial center of the casing 13 and over the entire circumference of the casing 13. This detection window 13A serves as an optical path for projected light from a light projector 23 to the inner surface of the tube to be inspected 1, which will be described later, and for reflected light from the inner surface of the tube to be inspected 1 toward the lens 24.

検出ユニット12は、ケーシング13の内部における中
心軸上に、光源21、反射鏡22、投光体(投光手段)
23、レンズ24、二次元受光装置(受光手段)25を
配置している。
The detection unit 12 includes a light source 21, a reflector 22, and a light projecting body (light projecting means) on the central axis inside the casing 13.
23, a lens 24, and a two-dimensional light receiving device (light receiving means) 25 are arranged.

光源21は、リモコン装置11により制御される発光駆
動回路26により発光される。光源21は、白熱灯1発
光ダイオード、半導体レーザ等のいずれでもよいが、7
000オングストローム以下の波長成分を多くもつもの
が望ましい、27は給電および制御信号転送用ケーブル
であり、前記チューブ17の内径部を経由してリモコン
装置11と発光駆動回路26の間に延設されている。
The light source 21 emits light by a light emission drive circuit 26 controlled by the remote control device 11. The light source 21 may be an incandescent lamp, a light emitting diode, a semiconductor laser, etc.;
A cable 27 desirably having many wavelength components of 000 angstroms or less is a power supply and control signal transfer cable, which is extended between the remote control device 11 and the light emitting drive circuit 26 via the inner diameter of the tube 17. There is.

反射鏡22は、光源21を取囲むような半球面状をなし
、光源21から発せられた光を散逸させることなく投光
体23に集光させる。
The reflecting mirror 22 has a hemispherical shape surrounding the light source 21, and focuses the light emitted from the light source 21 onto the projector 23 without scattering it.

光源21および反射鏡22からの光は投光体23に集光
される。投光体23は、第2図に示すように、板状透明
体28の内部に螢光物質29を分散固定して構成され、
例えば、■ポリメタリル酸メチル(PMMA、アクリル
樹脂)をマトリックスとし、螢光色素ローダミン6Gと
クマリン6をドープしたもの、あるいは■ガラスとフル
オレセインとの組合わせからなるもの等が好適である。
Light from the light source 21 and the reflecting mirror 22 is focused on the light projector 23. As shown in FIG. 2, the projector 23 is constructed by dispersing and fixing a fluorescent material 29 inside a transparent plate 28.
For example, (1) polymethyl methacrylate (PMMA, acrylic resin) as a matrix doped with fluorescent dyes rhodamine 6G and coumarin 6, or (2) a combination of glass and fluorescein are suitable.

また、投光体23は、光源21に臨む受光面の反射面2
3Aを銀蒸着等の手段により鏡面化し、入射光の散逸を
防+)している、これらにより、投光体23に集光され
た光は、螢光物質29で吸光、発光され透明体28を反
射しながら端面28Aから投射される。透明体28の端
面28Aは凸レンズ状とされ、その焦点を被検査管lの
内面上に略一致するように設定されており、該端面28
Aからの投光を被検査管1の内面に向けてビーム状に絞
る作用を備える。すなわち、投光体23は、光源21お
よび反射鏡22から集光した光を、ケーシング13の中
心軸に直交する向きの全周方向に分配投射し、゛被検査
管1の内面の全周に細いリング状の篩面を形成する。
Further, the light projector 23 has a reflecting surface 2 of the light receiving surface facing the light source 21.
3A is made into a mirror surface by means such as silver vapor deposition to prevent the incident light from dissipating.Thus, the light focused on the projector 23 is absorbed and emitted by the fluorescent substance 29, and then the transparent body 28 The light is projected from the end surface 28A while being reflected. The end surface 28A of the transparent body 28 is shaped like a convex lens, and its focal point is set to substantially coincide with the inner surface of the tube l to be inspected.
It has the function of focusing the light emitted from A into a beam shape toward the inner surface of the tube 1 to be inspected. That is, the light projecting body 23 distributes and projects the light collected from the light source 21 and the reflecting mirror 22 in the entire circumferential direction perpendicular to the central axis of the casing 13, and projects the light all around the inner surface of the tube 1 to be inspected. Forms a thin ring-shaped sieve surface.

投光体23によって被検査管1の内面に分配投射された
光は、被検査管lの内面において反射される。この反射
光はレンズ24にて受光され、二次元受光装置25に投
射されて捉えられる。二次元受光装置25に捉えられた
被検査管1の内面各部の受光量は該二次元受光装置25
において光電変換され、この二次元受光装置25の捕捉
データは出力回路30を経てリモコン装置21に転送さ
れる。31は検出信号転送用ケーブルであり5前記チユ
ーブ17の内径部を経由してり干コン装置11と出力回
路30の間に延設されている。二次元受光装置25とし
ては電荷結合素子等が用いられる。
The light distributed and projected onto the inner surface of the tube to be inspected 1 by the light projector 23 is reflected on the inner surface of the tube to be inspected l. This reflected light is received by the lens 24, projected onto the two-dimensional light receiving device 25, and captured. The amount of light received by each part of the inner surface of the tube to be inspected 1 captured by the two-dimensional light receiving device 25 is determined by the two-dimensional light receiving device 25.
The data captured by the two-dimensional light receiving device 25 is transferred to the remote control device 21 via the output circuit 30. Reference numeral 31 denotes a detection signal transfer cable, which is extended between the drying device 11 and the output circuit 30 via the inner diameter portion of the tube 17. As the two-dimensional light receiving device 25, a charge coupled device or the like is used.

なお、レンズ24と二次元受光装置25とはレンズ24
で捉えられる被検査管1の内面からの反射光像が所要の
比率に縮尺された状態で二次元受光装置25に投影され
るように相互の位置関係が定められている。
Note that the lens 24 and the two-dimensional light receiving device 25 are
The mutual positional relationship is determined so that the image of reflected light from the inner surface of the tube to be inspected 1 captured by is projected onto the two-dimensional light receiving device 25 while being scaled down to a required ratio.

第3図は被検査管lの中心軸から管内面までの距離と二
次元受光装置25へ投影された反射光像との関係を示す
模式図であり、いま被検査管1の中心軸とレンズ24の
光軸が一致した状態にあるものとして、被検査管lの中
心軸から被検査管1の内面の各光反射位giPa、Pb
、Pcまでの距離をそれぞれLa、Lb、Lcとすると
、ここから反射された光がレンズ24を経て二次元受光
装置25に達する時の二次元受光装置25における位置
は゛レンズ24の光軸からそれぞれla、lb、ncだ
け離れた各位ira、rb、rcとなる。これらLa、
Lb、Lc等の距離りと文a、文す、文C等の距離文の
間には一般的に次の関係が成立する。
FIG. 3 is a schematic diagram showing the relationship between the distance from the central axis of the tube 1 to be inspected to the inner surface of the tube and the reflected light image projected onto the two-dimensional light receiving device 25. Assuming that the optical axes of the tubes 24 and 24 are aligned, each light reflection position giPa, Pb on the inner surface of the tube 1 to be inspected from the central axis of the tube 1 to be inspected is
, Pc are respectively La, Lb, and Lc. When the light reflected from here passes through the lens 24 and reaches the two-dimensional light-receiving device 25, the position in the two-dimensional light-receiving device 25 is ゛from the optical axis of the lens 24, respectively. The positions are ira, rb, and rc, which are separated by la, lb, and nc. These La,
Generally, the following relationship holds between distances such as Lb and Lc and distance sentences such as sentences a, sentences, and sentences C.

L= CD/F) ・文       ・・・(1)た
だし、Dはレンズ24から検査位置までの水平距離、F
はレンズ24から二次元受光装置の表面までの距離であ
る。
L= CD/F) ・Text...(1) However, D is the horizontal distance from the lens 24 to the inspection position, F
is the distance from the lens 24 to the surface of the two-dimensional light receiving device.

以上の関係から二次元受光装置25に投射される被検査
erlftの内面からの反射光は内面が凹凸のない一様
な円周面である場合には第4図(A)に示す如くに乱れ
のない円形像を描く、これに対し、被検査管1の内面に
腐食、亀裂、損傷部分等が存在して凹状となっている部
分については第4図(B)に示すBlの如く凹状の像を
描き、また鎖部分等が存在して凸状となっている部分に
ついては第4図(B)に示すB2の如く凸状の像を描く
、この凹状、凸状の程度を測定することによって四部、
凸部の深さ、高さを検出し、被検査管lの内面形状を得
ることとなる。もちろん二次元受光装置25への投影像
から把握される管内面部の光量に基づき被検査管lの内
面性状を推測することも可能である。
From the above relationship, the reflected light from the inner surface of the inspected erlft projected onto the two-dimensional light receiving device 25 will be disturbed as shown in FIG. 4(A) if the inner surface is a uniform circumferential surface with no unevenness. On the other hand, if the inner surface of the tube to be inspected 1 is corroded, cracked, damaged, etc. and has a concave shape, a concave shape is drawn as shown in Bl shown in Fig. 4 (B). For convex parts due to presence of chain parts, etc., draw a convex image as shown in B2 in Figure 4 (B). Measure the degree of concavity and convexity. Part four,
The depth and height of the convex portion are detected to obtain the inner surface shape of the tube to be inspected l. Of course, it is also possible to estimate the inner surface quality of the tube to be inspected l based on the amount of light on the inner surface of the tube ascertained from the image projected onto the two-dimensional light receiving device 25.

次に、上記実施例の作用について説明する。Next, the operation of the above embodiment will be explained.

上記管内検査装置10は以下の如く作動する。The pipe inspection device 10 operates as follows.

■まず被検査管1に検出ユニット12を挿入する。検出
ユニット12は、車輪16にてケーシング13の中心軸
が被検査管1の中心軸と略一致するよう保持される。
(1) First, insert the detection unit 12 into the tube 1 to be inspected. The detection unit 12 is held by wheels 16 such that the center axis of the casing 13 substantially coincides with the center axis of the tube 1 to be inspected.

(0リモコン装置11により、チューブ17および送り
車18を用いて検出ユニット12を被検査管1の内部に
移動させ、かつ発光駆動回路26に連続的または間欠的
に発光指令信号を与え、光源21を発光させる。
(The remote control device 11 moves the detection unit 12 into the inside of the tube 1 to be inspected using the tube 17 and the feeding wheel 18, and continuously or intermittently gives a light emission command signal to the light emission drive circuit 26, to emit light.

■光源21の光は反射鏡12により投光体23に集光さ
れ、投光体23から被検査管1の内面の全周に分配投射
される。
(2) The light from the light source 21 is focused by the reflecting mirror 12 onto the light projector 23, and is distributed and projected from the light projector 23 to the entire circumference of the inner surface of the tube 1 to be inspected.

■被検査管1の内面からの反射光はレンズ24を介して
二次元受光装置25に縮小投影され、二次元受光装置2
5にて光電変換され、出力回路30を介してリモコン装
置111に転送される。これにより、リモコン装置11
は、送り車18の回転量検出器20からの検出量を同時
に得て、上記二次元受光装置25の出力データとそのデ
ータの採取位置(検出ユニット12の位置)との相関を
取り、被検査管1の軸方向の各位置における内面状態を
検査する。
■The reflected light from the inner surface of the tube to be inspected 1 is reduced and projected onto the two-dimensional light receiving device 25 via the lens 24.
5, the signal is photoelectrically converted and transferred to the remote control device 111 via the output circuit 30. As a result, the remote control device 11
At the same time, the detection amount from the rotation amount detector 20 of the feeding wheel 18 is obtained, and the correlation between the output data of the two-dimensional light receiving device 25 and the data sampling position (position of the detection unit 12) is obtained, and the The inner surface condition at each position in the axial direction of the tube 1 is inspected.

すなわち、上記管内検査装置10を構成する検出ユニッ
)12は、光源21が発する光を投光体23により被検
査管lの内面の全周に分配投射し、これからの反射光像
を二次元受光装置z5によって捉え得ることになる。し
たがって、検出ユニット12を上記構造捕捉状態下で被
検査管lの管軸方向にのみ移動することにより、被検査
管lの内面状態を任意の位置において検査できる。
That is, the detection unit 12 constituting the pipe inspection device 10 distributes and projects the light emitted by the light source 21 onto the entire circumference of the inner surface of the pipe to be inspected l using the light projector 23, and receives the reflected light image in two dimensions. This can be captured by the device z5. Therefore, by moving the detection unit 12 only in the tube axis direction of the tube to be inspected l under the above structure capture state, the inner surface state of the tube to be inspected l can be inspected at any position.

ここで、管内検査装置10は、被検査管lの内部に超音
波の伝送媒体たる水を充填したり、検出ユニー2ト12
をa線移動する等の必要がないので、設備を簡素とし、
作業他事も良とすることができる。また、検出ユニット
12による走査が螺線状とならず、検出ユニット12は
被検査管1の内面の全周を同時に走査できるので、検査
精度も向上する。
Here, the pipe inspection device 10 fills the inside of the pipe to be inspected with water, which is a transmission medium for ultrasonic waves, and the detection unit 2 and the detection unit 12.
Since there is no need to move the A-line, etc., the equipment is simple,
Work and other things are also good. Moreover, the scanning by the detection unit 12 is not spiral, and the detection unit 12 can scan the entire circumference of the inner surface of the tube to be inspected 1 at the same time, so that the inspection accuracy is also improved.

なお、本発明は角形状等の各種断面形状の管に対する管
内検査装置として広く適用できる。
It should be noted that the present invention can be widely applied as a pipe inspection device for pipes having various cross-sectional shapes such as rectangular shapes.

また、本発明の実施において、検出ユニットは、管内移
動手段を内蔵する等の自走式であってもよい。
Furthermore, in implementing the present invention, the detection unit may be self-propelled, such as having a built-in intra-tube moving means.

[発明の効果] 以上のように、本発明によれば、設備を簡素化し、作業
能率を良好とし、かつ高い検査精度を確保することがで
きる。
[Effects of the Invention] As described above, according to the present invention, equipment can be simplified, work efficiency can be improved, and high inspection accuracy can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る管内検査装置を示す模
式断面図、第2図は投光手段の一例を示す模式断面図、
第3図は管面形状の検査原理を示す模式図、第4図(A
)、(B)は受光手段が捉えた像を示す模式図、第5図
は従来の超音波を用いた管内検査装置を示す模式断面図
、第6図は従来の光を用いた管内検査装置を示す模式断
面図である。 1・・・被検査管、10・・・管内検査装置。 12・・・検出ユニット、21・・・光源。 23・・・投光体(投光手段)、 25・・・二次元受光装置(受光手段)、28・・・透
明体、29・・・螢光物質。 代理人 弁理士  塩 川 修 治 第2回 第3図 1′X rc’ 第4 図 (A)(8) 第5図 第6図
FIG. 1 is a schematic sectional view showing an in-pipe inspection device according to an embodiment of the present invention, FIG. 2 is a schematic sectional view showing an example of a light projecting means,
Figure 3 is a schematic diagram showing the principle of inspection of tube surface shape, Figure 4 (A
), (B) are schematic diagrams showing images captured by the light receiving means, Figure 5 is a schematic cross-sectional view showing a conventional pipe inspection device using ultrasonic waves, and Figure 6 is a conventional pipe inspection device using light. FIG. 1... Pipe to be inspected, 10... In-pipe inspection device. 12...Detection unit, 21...Light source. 23... Light projecting body (light projecting means), 25... Two-dimensional light receiving device (light receiving means), 28... Transparent body, 29... Fluorescent substance. Agent Patent Attorney Osamu Shiokawa 2nd Session Figure 3 1'X rc' Figure 4 (A) (8) Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)検出ユニットを被検査管内に挿入して管軸方向に
移動し、被検査管の内面状態を検査する管内検査装置に
おいて、前記検出ユニットが、光源と、板状透明体内に
螢光物質を分散固定してなる上記光源から発せられた光
を被検査管の内面の全周に分配投射する投光手段と、被
検査管の内面の光像を捉える受光手段とを有することを
特徴とする管内検査装置。
(1) In an in-pipe inspection device that inspects the inner surface condition of the tube to be inspected by inserting a detection unit into the tube to be inspected and moving it in the tube axis direction, the detection unit includes a light source and a fluorescent substance in the transparent plate-like body. It is characterized by having a light projecting means for distributing and projecting the light emitted from the light source formed by dispersing and fixing the light source over the entire circumference of the inner surface of the tube to be inspected, and a light receiving means for capturing a light image of the inner surface of the tube to be inspected. Pipe inspection equipment.
JP62076341A 1987-03-31 1987-03-31 In-pipe inspection device Expired - Fee Related JPH0619333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62076341A JPH0619333B2 (en) 1987-03-31 1987-03-31 In-pipe inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62076341A JPH0619333B2 (en) 1987-03-31 1987-03-31 In-pipe inspection device

Publications (2)

Publication Number Publication Date
JPS63243739A true JPS63243739A (en) 1988-10-11
JPH0619333B2 JPH0619333B2 (en) 1994-03-16

Family

ID=13602653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076341A Expired - Fee Related JPH0619333B2 (en) 1987-03-31 1987-03-31 In-pipe inspection device

Country Status (1)

Country Link
JP (1) JPH0619333B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145196A (en) * 2012-01-16 2013-07-25 Jfe Steel Corp Wear detection method and wear detection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424596A (en) * 1977-07-27 1979-02-23 Seiko Epson Corp Liquid crystal display watch
JPS55118282U (en) * 1979-02-16 1980-08-21
JPS61270600A (en) * 1985-05-23 1986-11-29 Osaka Gas Co Ltd Wall surface inspection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424596A (en) * 1977-07-27 1979-02-23 Seiko Epson Corp Liquid crystal display watch
JPS55118282U (en) * 1979-02-16 1980-08-21
JPS61270600A (en) * 1985-05-23 1986-11-29 Osaka Gas Co Ltd Wall surface inspection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145196A (en) * 2012-01-16 2013-07-25 Jfe Steel Corp Wear detection method and wear detection device

Also Published As

Publication number Publication date
JPH0619333B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
CN1639539A (en) Apparatus for OCT imaging with axial line focus for improved resolution and depth of field
CN110376573B (en) Laser radar installation and adjustment system and installation and adjustment method thereof
GB2126712A (en) Surface flaw inspection apparatus for a convex body
JPH0733996B2 (en) Pipe inner surface shape detector
JP2011002439A (en) Inspection apparatus
JP2002507779A (en) Target lighting device
JPH05149884A (en) In-pipe inspection device
JP2008128730A (en) Inspection device of inspection target
JPH10197215A (en) Optical inspection device for internal surface of tubular product
JPH0729405U (en) Pipe inner surface inspection device
JPS63243739A (en) Apparatus for inspecting interior of pipe
CN109283545A (en) A kind of New Two Dimensional solid state LED laser radar and its distance measuring method
CN1410763A (en) Space curved type very fine pipeline internal surface shape detector
CN2562183Y (en) Fine tube internal surface detector
CN112461260B (en) Testing device and testing method for MSO optical system
JPS6358135A (en) Pipe inner surface measuring apparatus
JPS63243848A (en) In-tube inspection device
JP2556889B2 (en) In-pipe inspection device
JPS6355442A (en) Detecting device for internal surface shape of pipe
CN209102900U (en) A kind of New Two Dimensional solid state LED laser radar
JPS60177314A (en) Irradiator for irradiating inner surface of tubular object
JPH0375544A (en) Apparatus for inspecting inside of laser tube
JPS63243847A (en) In-tube inspection device
JPS6358130A (en) Inspecting device for inner surface of pipe
JPH0197808A (en) Inspecting device of inside of pipe

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees