JPS63243847A - In-tube inspection device - Google Patents

In-tube inspection device

Info

Publication number
JPS63243847A
JPS63243847A JP7878687A JP7878687A JPS63243847A JP S63243847 A JPS63243847 A JP S63243847A JP 7878687 A JP7878687 A JP 7878687A JP 7878687 A JP7878687 A JP 7878687A JP S63243847 A JPS63243847 A JP S63243847A
Authority
JP
Japan
Prior art keywords
light
tube
inspected
lens
projected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7878687A
Other languages
Japanese (ja)
Inventor
Kazuo Takashima
和夫 高嶋
Keiichi Yamaguchi
圭一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SEKIYU SANGYO KATSUSEIKA CENTER
Mitsubishi Electric Corp
Japan Petroleum Energy Center JPEC
Original Assignee
SEKIYU SANGYO KATSUSEIKA CENTER
Petroleum Energy Center PEC
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SEKIYU SANGYO KATSUSEIKA CENTER, Petroleum Energy Center PEC, Mitsubishi Electric Corp filed Critical SEKIYU SANGYO KATSUSEIKA CENTER
Priority to JP7878687A priority Critical patent/JPS63243847A/en
Publication of JPS63243847A publication Critical patent/JPS63243847A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To obtain an inspection device which has simple facilities, high operation efficiency, and high measurement accuracy by distributing and projecting light from a light source by a 1st conic body provided in a detection head and detecting reflected light from the internal surface of a tube by a 2nd conic body. CONSTITUTION:The detection head 1 has the light source 22, projection lenses 23 and 24, a conic body 25a as a light distributing means, a lens 26 as a convergence optical system, a two-dimensional photodetection part 27, a conic body 25b, etc., in a hollow cylindrical casing 21. Then the light from the light source 22 is projected on the axial line by the lens 23 from the vertex of the conic body 25a in parallel, distributed and emitted from its peripheral surface in all directions crossing the axial line at right angles, and projected on the inner peripheral surface of the tube P to be inspected. Reflected light from the inner peripheral surface is reflected by the conic body 25b, then converged by the lens 26, and projected on the photodetection part 27. Data regarding the quantities of light of respective parts are read in a detector main body 2. Here, the conic body 25b, lens 26, and photodetection part 27 are so arranged that a reflected light image from the inner peripheral surface of the tube P to be inspected which is picked up by the lens 26 is projected on the photodetection part 27 while reduced at a necessary rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱交換機等のパイプ、その他各種の配管の内面
形状、特に小径管の内面形状を光学的に検出する管内検
査装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a pipe inspection device that optically detects the inner surface shape of pipes such as heat exchangers and other various types of piping, particularly the inner surface shape of small diameter pipes. .

[従来技術] 従来におけるこの種の小径管の内面検査装置は種々提案
されているが、いずれも超音波又は光を月いる構成が採
られており、その−例を示すと第7図、第8図に示す如
くになっている。第7図は超音波を用いた従来の管内面
検査装置の模式的断面図であり、超音波の送、受信機能
を備えた超音波探触子42及びこれに対向させて配設し
た反射部材43を備えた検出ヘッド41を被検金管P内
に挿入すると共に、被検金管P内に超音波の伝送媒体と
しての水を注入し、反射部材43をその軸心線口りに回
転させつつこれに向けて超音波探触子 42から超音波
を投射し、反射部材43にて超音波を直角に屈折させ、
被検査管Pの内周面に入射させ、被検査管Pの内、外面
からの反射エコーを超音波探触子42にて受信し、被検
査管Pの内、外径、表面の凹凸変形等を検出するように
なっている。
[Prior Art] Various conventional devices for inspecting the inner surface of small-diameter pipes have been proposed, but all of them employ a configuration that uses ultrasonic waves or light, and examples thereof are shown in FIGS. It is as shown in Figure 8. FIG. 7 is a schematic cross-sectional view of a conventional tube inner surface inspection device using ultrasonic waves, showing an ultrasonic probe 42 equipped with ultrasonic transmitting and receiving functions and a reflecting member disposed opposite to the ultrasonic probe 42. 43 is inserted into the test brass pipe P, water is injected into the test brass pipe P as a transmission medium for ultrasonic waves, and the reflection member 43 is rotated around its axis. Ultrasonic waves are projected from the ultrasonic probe 42 toward this, and the ultrasonic waves are refracted at right angles by the reflecting member 43.
The ultrasonic probe 42 receives the reflected echoes from the inner and outer surfaces of the tube P to be inspected, and detects uneven deformation of the inner and outer diameters and surfaces of the tube P to be inspected. etc. are detected.

また第8図に示す管内検査装置は筒状ゲージング51a
  内に、その周壁に形成した窓51b  に面して投
光部52、受光部53をその光軸が被検査管Pの内周、
面にて相互に交叉するよう傾けた状態に配置してなる検
出ヘッド51を操作軸54の先端に固定して構成されて
おり、操作軸54にて検出ヘッド51を被検査管両端で
回転させつつ駆動させて内周面を光学的に検査するよう
になっている。
In addition, the pipe inspection device shown in FIG.
Inside, the light emitting part 52 and the light receiving part 53 face the window 51b formed in the peripheral wall thereof, and the optical axis thereof is the inner periphery of the tube P to be inspected.
Detection heads 51 are arranged so as to cross each other at the planes, and are fixed to the tip of an operating shaft 54. The operating shaft 54 rotates the detection head 51 at both ends of the tube to be inspected. The inner circumferential surface is optically inspected by driving the inner circumferential surface.

[発明が解決しようとする問題点] ところで上述した如き超音波を利用する検出装置にあっ
ては超音波自体の特性として収束性が悪いために分解能
が低く、被検金管P内に超音波の伝送媒体たる水を充填
しておく必要があって、水の給、排設備、更には被検査
管両端の水密封止手段等を必要とし、設備コストが高く
、また被検査管Pの両端の封止、被検金管P内への給水
、排水作 業が必要となって作業が煩わしく、作業能率
も低い等の問題がある。−力先学的検出装置は水を用い
ない利点がある反面作業能率が悪く、また被検査管の内
周面に対する走査がら旋状となるため検出精度の信頼性
が低いなどの問題があった。
[Problems to be Solved by the Invention] By the way, in the detection device using ultrasonic waves as described above, the resolution is low due to the poor convergence property of the ultrasonic waves themselves, and the ultrasonic waves may not enter the brass pipe P under test. It is necessary to fill water as a transmission medium, and water supply and drainage equipment, as well as watertight sealing means for both ends of the pipe to be inspected, are required, resulting in high equipment costs. This method requires sealing, water supply to the inside of the brass pipe P to be inspected, and drainage work, making the work cumbersome and causing problems such as low work efficiency. -Although force-based detection devices have the advantage of not using water, they have problems such as poor work efficiency and low reliability of detection accuracy because the scanning of the inner circumferential surface of the pipe to be inspected is spiral. .

本発明はかかる事情に鑑みなされたものであってその目
的とするところは設備が箔呈で作業能率が高く、測定精
度も高い管内検査装置を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a pipe inspection device that has a foil-shaped facility, has high working efficiency, and has high measurement accuracy.

[問題点を解決するための手段] 本発明にあっては被検査管内に挿入される検出ヘッド内
に光源及びこれからの光を被検査管の内周面にその周方
向の全面にわたって分配投射する手段並びに被検査管内
周面からの反射光像を捉える受光手段と二次元受光部と
を具備する。
[Means for Solving the Problems] In the present invention, a light source and light emitted from the light source are distributed and projected over the entire circumferential surface of the inner circumferential surface of the tube to be inspected within the detection head inserted into the tube to be inspected. The apparatus includes a light receiving means and a two-dimensional light receiving section for capturing a reflected light image from the inner circumferential surface of the tube to be inspected.

[作用] 本発明はこれによって被検査管の内周面に対しその周方
向の全面にわたって同時に光を投射し、且つこれからの
反射光像を同時的に捉え得ることとなる。
[Operation] According to the present invention, it is possible to simultaneously project light over the entire circumferential surface of the inner circumferential surface of the tube to be inspected, and to simultaneously capture the reflected light image.

[実施例コ 以下本発明をその実施例を示す図面に基づき具体的に説
明する。第1図は本発明に係る管内検査装置の使用Ra
!を示す模式図であり、図中1は検出ヘッド、2は検出
装置本体、Pは被検査管を示している。検出ヘッド1は
金属等の耐腐食性材料を用いて両端を閉じた中空の円筒
形に形成されたケーシング21内に光源22、投光光学
系を構成する第1、第2の投光レンズ23.24、光分
配手段を構成する第1の円錐体25a、集光光学系を構
成するレンズ26、二次元受光部27.第2の円錐体2
5b 等を配設して構成されている。ケーシング21は
その軸方向の中間部周壁に軸方向の所要寸法にわたって
周方向の全周にわたり透明体をうめ込んだ環状窓21a
  を備え、また前、後端板の外側には取り付は部21
b  、21c  を備え、この各取り付は部21b 
21Cに一端に車輪3を取り付けな支持かん3a の各
他端が相互に約120 度の間隔を隔てて3本づつ固定
されており、検出ヘッドを被検金管P内に挿入したとき
ゲージング21の軸心線を被検査管Pの軸心線と約一致
するよう支持し、且つこの状態を維持しつつ被検金管P
内を移動せしめるようになっている。またこのケーシン
グ21の後端板に設けた取り付は部21c  の中央に
はこれを貫通させて検出ヘッド1の前、後移動用の作動
体を兼ねる可ねん性チューブ4の一端がケーシング21
内と連通させた状態で連結され、その他端部は検出装置
本体2に連′結されており、内部には各駆動動力用電源
含供給するためのケーブル22a 及び受信用のケーブ
ル29a 等が配設されている。
[Examples] The present invention will be specifically described below based on drawings showing examples thereof. FIG. 1 shows the usage Ra of the pipe inspection device according to the present invention.
! 1 is a schematic diagram showing a detection head, 2 a detection device main body, and P a tube to be inspected. The detection head 1 includes a light source 22 and first and second light projecting lenses 23 that constitute a light projecting optical system, inside a casing 21 formed in a hollow cylindrical shape with both ends closed using a corrosion-resistant material such as metal. .24, a first cone 25a constituting a light distribution means, a lens 26 constituting a condensing optical system, a two-dimensional light receiving section 27. Second cone 2
5b etc. are arranged. The casing 21 has an annular window 21a in which a transparent body is embedded in the axially intermediate peripheral wall of the casing 21 over the entire circumferential direction over a required axial direction.
It is equipped with mounting parts 21 on the outside of the front and rear end plates.
b, 21c, each of which is attached to a portion 21b.
21C, the wheels 3 are attached to one end, and three supporting rods 3a are fixed at each other end at intervals of approximately 120 degrees, and when the detection head is inserted into the brass pipe P to be tested, the gauging 21 is detected. Support the axial center line so that it approximately coincides with the axial center line of the test tube P, and while maintaining this state, test the test brass pipe P.
It is designed to allow movement inside. In addition, one end of a flexible tube 4, which also serves as an actuating body for moving the detection head 1 forward and backward, is inserted through the center of the mounting portion 21c provided on the rear end plate of the casing 21.
The other end is connected to the detection device main body 2, and a cable 22a for supplying power for each drive power, a receiving cable 29a, etc. are arranged inside. It is set up.

一方、ケーシング21内にはその環状窓21a の内側
に対向させて中心部には光分配手段たる第1の円錐体2
5a  がその頂点をゲージング21の先端側に向け、
且つ軸心線をゲージング21の軸心線と一致させた状態
で、またその外周には円環状の第2の投光レンズ24が
同心状に配設され、更に第1の円錐体25a  の頂点
に対向させてその前方に第一の投光レンズ23、光源2
2が配設され、−力筒1の円錐体25a の頂点と反対
側にはその軸心線上に光軸を一致させて頂点をケーシン
グ21の後端側に向けた第2の円錐体25とb レンズ
26、二次元受光部27が配設されている。光源22と
してはレーザ装置又は白熱光源等が用いられる。光源2
2は発光駆動回路28を経てケーブル22a  により
検出装置本体2と電気的に接続され、検出装置本体2が
ら入力される連続的又は間欠的に発光指令信号に基づき
発光駆動回路28を介して発光せしめられるようになっ
ており、発せられた光は第1の投光レンズ23にて平行
光束に変換された後、第1の円錐体25a  にその頂
点側から軸心線に平行に投射される。第1の円錐体25
a  はその周面を鏡面としてあり、これに入射された
光はその周面から軸心線と直交する向きの全方向に分配
放射され、第2の投光レンズ24を介して被検査管Pの
内周面に向けて投射される。
On the other hand, inside the casing 21, there is a first cone 2 serving as a light distribution means in the center facing the inside of the annular window 21a.
5a points its apex toward the tip side of the gauging 21,
In addition, with the axis aligned with the axis of the gauging 21, a second annular projection lens 24 is concentrically disposed on the outer periphery of the gauging 21, and the apex of the first cone 25a is A first projection lens 23 and a light source 2 are placed in front of and opposite to the
2, and on the side opposite to the apex of the cone 25a of the force cylinder 1, there is a second cone 25 whose optical axis is aligned with the axial center line of the cone 25a and whose apex is directed toward the rear end side of the casing 21. b A lens 26 and a two-dimensional light receiving section 27 are provided. As the light source 22, a laser device, an incandescent light source, or the like is used. light source 2
2 is electrically connected to the detection device body 2 via a light emission drive circuit 28 and a cable 22a, and is caused to emit light via the light emission drive circuit 28 based on a light emission command signal inputted from the detection device body 2 continuously or intermittently. The emitted light is converted into a parallel light beam by the first projection lens 23, and then projected onto the first cone 25a from its apex side in parallel to the axis. First cone 25
a has a mirror surface on its circumferential surface, and the light incident on it is distributed and radiated from the circumferential surface in all directions orthogonal to the axis, and is transmitted through the second projection lens 24 to the pipe P to be inspected. is projected toward the inner circumferential surface of the

第2の投光レンズ24は円環状であって、且つその断面
は内、外周面共に所要の円弧をなす凸レンズ形をなし、
その焦点は被検査管Pの内周面上に約一致するよう設定
されており、第1の円錐体25aで分配された光を管軸
方向に集光した状態で被検査管Pの内周面に細いリング
状に投射せしめるようになっている。被検査管Pの内周
面からの反射光は第2の円錐体25b  により反射し
た後、レンズ26にて集光せしめられ、二次元受光部2
7に投射される。これによって捉えられた各部の受光量
に関するデータは出力回路29、ケーブル29a  を
介して検出装置本体2に読み込まれ形状検出が行なわれ
るようになっている。なお、第2の円錐体25b  と
レンズ26と二次元受光部27とはレンズ26で捉えら
れた被検査管Pの内周面からの反射光像が所要の比率に
縮尺された状態で二次元受光部27に投影されるよう相
互の配置位置を定めである。二次元受光部27としては
電荷結合素子等を用いる。電荷結合素子による場合はこ
れを光軸中心に円形に配したもの、正方形に配したもの
等、°適宜の形状とすればよい、第2図は被検査管Pの
軸心線と管内周面までの寸法と二次元受光部27へ投影
された反射光像との関係を示す説明図であり、いま被検
査管Pの軸心線と検出ヘッド内のレンズ26の光軸が一
致した状態にあるものとして軸心線から被検査管Pの内
周面の各光反射位置Pa、 Pb、 Pcまでの寸法を
それぞれLa、 Lb、 Lcとすると、ここから反射
された光が第2の円錐体25b  とレンズ26を経て
二次元受光部27上に達したときの二次元受光部27上
の位置は、レンズ26の光軸からそれぞれla、 lb
、lcだけ離れた27a  、 27b  、27c 
点上となる。これらLa、 Lb、 Lc等の距離りと
la、lb、 lc等の距離lとの間には一般的に次の
関係が成立する。
The second light projecting lens 24 has an annular shape, and its cross section is a convex lens shape with a required circular arc on both the inner and outer circumferential surfaces,
The focal point is set to approximately coincide with the inner circumferential surface of the tube P to be inspected, and the light distributed by the first cone 25a is focused in the tube axis direction. It is designed to project a thin ring shape onto the surface. The reflected light from the inner circumferential surface of the tube P to be inspected is reflected by the second cone 25b, and then condensed by the lens 26, and the two-dimensional light receiving section 2
Projected to 7. Data regarding the amount of light received by each part thus captured is read into the main body 2 of the detection device via the output circuit 29 and cable 29a, and shape detection is performed. The second cone 25b, the lens 26, and the two-dimensional light-receiving section 27 generate a two-dimensional image of the reflected light from the inner circumferential surface of the tube to be inspected P, which is captured by the lens 26 and is scaled to a desired ratio. The mutual arrangement positions are determined so that the images are projected onto the light receiving section 27. As the two-dimensional light receiving section 27, a charge coupled device or the like is used. If a charge-coupled device is used, it may be arranged in an appropriate shape, such as a circular arrangement centered on the optical axis or a square arrangement. Figure 2 shows the axis of the tube P to be inspected and the inner circumferential surface of the tube. This is an explanatory diagram showing the relationship between the dimensions up to and the reflected light image projected onto the two-dimensional light receiving section 27, and the axial center line of the tube to be inspected P and the optical axis of the lens 26 in the detection head are now aligned. Assuming that the dimensions from the axial center line to each light reflection position Pa, Pb, and Pc on the inner circumferential surface of the tube to be inspected P are La, Lb, and Lc, respectively, the light reflected from here is reflected from the second cone. 25b and the position on the two-dimensional light receiving section 27 when reaching the two-dimensional light receiving section 27 through the lens 26 are la and lb from the optical axis of the lens 26, respectively.
, 27a, 27b, 27c separated by lc
It will be on point. The following relationship generally holds between the distances such as La, Lb, Lc, etc. and the distances l such as la, lb, lc, etc.

、・・ Mx  *X+に し=□・l−−=(1) My*i:’ 但し、Dは集光レンズから検出面まて゛の水平距離で、
Fは集光レンズから二次元受光部表面までの距離である
,... Mx *X+=□・l−-=(1) My*i:' However, D is the horizontal distance from the condenser lens to the detection surface,
F is the distance from the condenser lens to the surface of the two-dimensional light receiving section.

ここでMは第2の円錐体25b  による光学系の倍率
である。第3図により詳しく説明する。すなわち、レン
ズ26から言えば点Pa  からの光は、第2の円錐体
25b  によりPa’の点から発するのと等しくなる
。 Pa’はレンズ26の光軸と第2の円錐体25b 
の交点を原点とする庄原系で第2の円錐体25bをはさ
んで対象な位置となる0倍率My はYa’ M y = −−(2a) Ya Xa’ Mx  = −−−−・−−−一−−−−−・(2b)
Ya とな°る。ここでYa、Ya  は Ya’=Xsin  θ+Ycos θ ・−−−−−
(3a)Xa’=Xcos θ−Ysin θ □(3
b)ただし、6は θ=90@−(α+β)    −(4) X a β=jan” Ya である。
Here, M is the magnification of the optical system by the second cone 25b. This will be explained in detail with reference to FIG. That is, from the point of view of the lens 26, the light emitted from the point Pa is equal to the light emitted from the point Pa' by the second cone 25b. Pa' is the optical axis of the lens 26 and the second cone 25b
The 0 magnification My, which is a symmetrical position across the second cone 25b, in the Shobara system with the origin at the intersection of is Ya' My = --(2a) Ya -1------・(2b)
It becomes Ya. Here, Ya and Ya are Ya'=Xsin θ+Ycos θ ・------
(3a) Xa'=Xcos θ−Ysin θ □(3
b) However, 6 is θ=90@−(α+β)−(4) X a β=jan” Ya.

以上の関係から二次元受光部27上に投射される被検金
管P内面からの反射光は内周面が凹凸のない一様な円周
面の場合には第4図(イ)に示す如くに乱れのない円形
像が得られるが、被検査管Pの内周面に腐食部分が存在
して凹状となっている部分では第4図(ロ)に示すaの
如く内方に凹んだ像となり、また鋳等が発生して凸状と
なっている部分では第4図(ロ)に示すbの如く外方に
膨出した像が表れる。この凹、凸の程度を測定すること
によって凹部、凸部の深さ、高さを検出し得ることとな
る。勿論二次元受光部27への投影像からその各部の光
量に基づき被検査管Pの各種内周面性状を推測すること
も可能である。
From the above relationship, the reflected light from the inner surface of the test brass pipe P projected onto the two-dimensional light receiving section 27 will be as shown in FIG. A circular image with no disturbances can be obtained, but in the areas where there is a corroded part on the inner circumferential surface of the pipe P to be inspected and it is concave, it is concave inward as shown in a in Figure 4 (b). In addition, in the convex portion due to the occurrence of casting etc., an outwardly bulging image appears as shown in b shown in FIG. 4(b). By measuring the degree of the concavities and convexities, the depth and height of the concavities and convexities can be detected. Of course, it is also possible to estimate various inner circumferential surface properties of the tube P to be inspected based on the light intensity of each part from the image projected onto the two-dimensional light receiving part 27.

しかしながらこのような本発明装置にあっては第1図に
示す如く被検金管P内に検出ヘッド1分その先端部側か
ら挿入する。この状態では検出ヘッド1はその先、後端
に取り付けである車輪3にてケーシング21の軸心線が
被検査管Pの軸心線と約一致するよう保持される。そこ
で可ねん性チューブ4を用いて検出ヘッド1を被検金管
P内で移動させつつ検出装置本体2からケーブル22a
  を通じて連続的又は間欠的に発光指令信号を出力し
、光源22を発光させる。光源22の光は第1の投光レ
ンズ23にて平行光束に変換されて、第1の円錐体25
a  の周面に入射され、ここからその周方向の全面に
わたって配分投射され、第2の投光レンズ24にて集光
され、被検査管Pの内周面にその周方向の全面にわたる
ようこれと直交する向きに投射される。
However, in such an apparatus of the present invention, the detection head is inserted into the brass pipe P to be tested from the distal end side for one minute as shown in FIG. In this state, the detection head 1 is held by wheels 3 attached to its rear end so that the axis of the casing 21 approximately coincides with the axis of the tube P to be inspected. Therefore, while moving the detection head 1 within the brass pipe P to be tested using the flexible tube 4, the cable 22a is connected to the detection device main body 2.
A light emission command signal is output continuously or intermittently through the light source 22 to cause the light source 22 to emit light. The light from the light source 22 is converted into a parallel light beam by the first projecting lens 23, and the light is transmitted to the first cone 25.
The light is incident on the circumferential surface of the pipe P, is distributed and projected from there over the entire circumferential direction, is condensed by the second projection lens 24, and is projected onto the inner circumferential surface of the pipe P to be inspected so as to cover the entire circumferential direction. It is projected in a direction perpendicular to .

被検査管Pの内周面からの反射光は第2の円錐体25b
  とレンズ26を介して二次元受光部27に縮小投影
−され、二次元受光部27にて光電変換され、出力回路
29を通じて検出装置本体2に取り出され、被検査管P
の内周面の形状が検出される。
The reflected light from the inner circumferential surface of the tube to be inspected P is reflected by the second cone 25b.
is projected on a reduced scale through the lens 26 onto the two-dimensional light receiving section 27, photoelectrically converted in the two-dimensional light receiving section 27, taken out to the detection device main body 2 through the output circuit 29, and transmitted to the inspected tube P.
The shape of the inner peripheral surface of is detected.

検出五様については持に湿定するもので・はを〈従来知
られたものを適宜採択すればよい。
Regarding the five detection methods, it is important to keep in mind that previously known methods may be selected as appropriate.

このような実施例にあっては円錐体25と環状をなす第
2の投光レンズ24との組み合わせによって被検査管P
の内周面に対しその周方向の全面にわたって同時的に光
を投射し、またここからの反射光を捉えることが可能と
なり、検出漏れ発生のおそれがなく、検出精度も高く、
高い信頼性が得られる。
In such an embodiment, the pipe to be inspected P is
It is possible to simultaneously project light over the entire circumferential surface of the inner circumferential surface of the sensor and capture the reflected light from the inner circumferential surface of the sensor.There is no risk of detection failure, and the detection accuracy is high.
High reliability can be obtained.

なお、上述の実施例では被検査管P、検出ヘッド1のケ
ーシング21がいずれも円形の場合につき説明したが何
ら円形に限らず、各種の各形管についても適用し得る。
In addition, in the above-mentioned embodiment, the case where both the pipe to be inspected P and the casing 21 of the detection head 1 are circular has been described, but the present invention is not limited to circular shapes and can be applied to various shapes of pipes.

また上述の各実施例では被検金管P内における検出ヘッ
ド1の推進はチューブ4の挿入、又は引き出しによって
行なう構成につき説明したが車輪3の駆動源を検出へラ
ド1に設けて自走式としてもよいことは言うまでもない
Furthermore, in each of the above-mentioned embodiments, the detection head 1 is propelled inside the brass pipe P to be tested by inserting or pulling out the tube 4. Needless to say, it's a good thing.

また、上述の実施例では第1、第2の投光レンズ23,
24  を用いて説明したが、これは第1の投光レンズ
23によつ光源:2よつ発した光束を被検査テPの内周
面上で集光するよう構成すれば第2の投光レンズ24は
不要となる。
Further, in the above embodiment, the first and second light projecting lenses 23,
24, but this is possible if the first projection lens 23 is configured to condense the luminous flux emitted from the light source 2 onto the inner circumferential surface of the test target P. The optical lens 24 becomes unnecessary.

さらに、上述の実施例では検出ヘッド1内の光学部を単
独に構成した例を示したが、第1、第2の円錐体25a
  、25b  を一体化したり、第5図に示すように
投、受光部を一体形に構成することも可能である。
Furthermore, in the above-mentioned embodiment, an example was shown in which the optical section in the detection head 1 was configured independently, but the first and second conical bodies 25a
, 25b may be integrated, or the projector and light receiver may be constructed in one piece as shown in FIG.

第6図は、他の実施例による装置の光学部を示す、同図
で25c  は中空で内面が円錐状を有する第3の円錐
体で、図示しないが円錐状の頂点はレンズ26の光軸上
にあり、円錐の軸は上記光軸と合致している。すなわち
第3の円錐体25c  は第2の円錐体25b  の回
りを囲んでいるのである0個のような構成においては、
被検査管Pからの反射光は、第3の円錐体25c  で
反射した後、第2の円錐体25b で再び反射されてレ
ンズ26に入射することになる。二次元受光部27に投
射される反射光の位置1は前述した装置の場合と同様、
被検査管Pの位置しに比例する。ただし、第3の円錐体
の効果により光学系の倍率:よ変化す己、この装置では
被検査管Pの位置りと反射光の投射位置lが正比例する
ようになる。
FIG. 6 shows the optical part of the device according to another embodiment. In the same figure, 25c is a third cone which is hollow and has a conical inner surface, and the apex of the cone is not shown, but the optical axis of the lens 26. above, and the axis of the cone coincides with the optical axis. In other words, in a configuration where there are 0 third cones 25c surrounding the second cones 25b,
The reflected light from the tube P to be inspected is reflected by the third cone 25c, then reflected again by the second cone 25b, and enters the lens 26. The position 1 of the reflected light projected onto the two-dimensional light receiving section 27 is as in the case of the above-mentioned device.
It is proportional to the position of the tube P to be inspected. However, due to the effect of the third cone, the magnification of the optical system changes considerably, and in this apparatus, the position of the tube to be inspected P and the projection position l of the reflected light are directly proportional.

[効果] 以上の如く本発明に依れば光分配投射手段によって被検
査管の内周面にその周方向の全面にわたるよう同時に光
を投射し、且つこれからの反射光を同時に捉えるから未
検出部分が発生するおそれがなく、管軸方向への位置ず
れがなく形状検出精度の信頼性も高く、また設備も簡略
化され、設備コストが安価となるなど本発明は優れた効
果を奏するものである。
[Effects] As described above, according to the present invention, the light distribution and projection means simultaneously projects light onto the inner circumferential surface of the tube to be inspected so as to cover the entire circumferential direction of the tube, and the reflected light from this is captured at the same time, so that there are no undetected areas. The present invention has excellent effects such as there is no risk of occurrence, there is no positional shift in the tube axis direction, the reliability of shape detection accuracy is high, and the equipment is simplified and the equipment cost is low. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施例を示す模式図、第2図、
第3図は管内面形状の検出原理を示す説明図、第4図(
イ)、(ロ)は受光素子で捉えた被検査管の内周面の説
明図、第5図、第6図はこの発明の他の実施例を説明す
る構成図、第7図、第8図は従来装置の模式的断面図で
ある。 1−m−検出ヘッド  2−一一一検出装置本体3−−
車輪  21  □テーシング n □−光源  お □第1の投光レンズ25a  □
・第1の円錐体 25b−一第2の円錐体 25cm−第3の円錐体 3−一一一一集光レンズ  I □二次元受光部3 ・
−一発光駆動回路  宛 □出力回路P−・−一被検査
管  100  □投光手段101 −m−受光手段 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a schematic diagram showing an embodiment of the device of the present invention, FIG.
Figure 3 is an explanatory diagram showing the principle of detecting the shape of the inner surface of a tube, and Figure 4 (
A) and (B) are explanatory diagrams of the inner circumferential surface of the tube to be inspected captured by a light receiving element, FIGS. 5 and 6 are configuration diagrams explaining other embodiments of the present invention, and FIGS. The figure is a schematic cross-sectional view of a conventional device. 1-m-detection head 2-111 detection device main body 3--
Wheel 21 □Tacing n □-Light source O □First light projection lens 25a □
・First cone 25b--Second cone 25cm-Third cone 3-1111 Condenser lens I □Two-dimensional light receiving section 3・
-1 light emission drive circuit □Output circuit P---1 tube to be inspected 100 □Light projecting means 101 -m-Light receiving means Note that in the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)被検査管内にその軸方向に移動可能な検出ヘッド
を挿入して被検査管の内面形状を検出する装置において
、前記検出ヘッドは光源と、該光源から発せられた光を
被検査管の内周面に向けて周方向の全面にわたって分配
投射する投光レンズおよび第1の円錐体とからなる投光
手段と、被検査管内周面からの反射光像を捉える受光レ
ンズおよび第2の円錐体とからなる受光手段と、上記反
射光像に対応した電気信号を発生する二次元受光部とを
具備することを特徴とする管内検査装置。
(1) In a device that detects the inner surface shape of a tube to be inspected by inserting a detection head movable in the axial direction into the tube to be inspected, the detection head includes a light source and a light source that transmits light emitted from the light source into the tube to be inspected. a light projecting means consisting of a first cone and a light projecting lens that distributes and projects the light over the entire circumferential surface toward the inner circumferential surface of the pipe to be inspected; 1. A pipe inspection device comprising: a light-receiving means comprising a cone; and a two-dimensional light-receiving section that generates an electric signal corresponding to the reflected light image.
(2)投光手段、受光手段として各々に必要なレンズと
円錐体を一体成形したことを特徴とする特許請求の範囲
第1項記載の管内検査装置。
(2) The pipe inspection device according to claim 1, wherein lenses and cones necessary for each of the light projecting means and the light receiving means are integrally molded.
JP7878687A 1987-03-31 1987-03-31 In-tube inspection device Pending JPS63243847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7878687A JPS63243847A (en) 1987-03-31 1987-03-31 In-tube inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7878687A JPS63243847A (en) 1987-03-31 1987-03-31 In-tube inspection device

Publications (1)

Publication Number Publication Date
JPS63243847A true JPS63243847A (en) 1988-10-11

Family

ID=13671565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7878687A Pending JPS63243847A (en) 1987-03-31 1987-03-31 In-tube inspection device

Country Status (1)

Country Link
JP (1) JPS63243847A (en)

Similar Documents

Publication Publication Date Title
US4967092A (en) Apparatus for optically checking the inner profile of a tube or bore
US6028719A (en) 360 degree/forward view integral imaging system
JPS6355441A (en) Detecting device for internal surface shape of pipe
JPH05149884A (en) In-pipe inspection device
CN105698749A (en) Laser distance measuring sensor
JPH10197215A (en) Optical inspection device for internal surface of tubular product
JPH0729405U (en) Pipe inner surface inspection device
JPS63243847A (en) In-tube inspection device
JPS63243848A (en) In-tube inspection device
JPS6358135A (en) Pipe inner surface measuring apparatus
JPS63243845A (en) In-tube inspection device
JP2556889B2 (en) In-pipe inspection device
JPH0197808A (en) Inspecting device of inside of pipe
CN211577416U (en) Non-scanning laser radar receiving optical system
JPH0298612A (en) Pipe inspecting device
JPH0375544A (en) Apparatus for inspecting inside of laser tube
JPS6355442A (en) Detecting device for internal surface shape of pipe
JPS6355443A (en) Detecting device for internal surface shape of pipe
JPS6358130A (en) Inspecting device for inner surface of pipe
JPS63243739A (en) Apparatus for inspecting interior of pipe
JPS60177314A (en) Irradiator for irradiating inner surface of tubular object
JPS6358133A (en) Pipe inner surface shape measuring apparatus
JPH03289504A (en) Bubble measuring apparatus
JPH03115912A (en) Optically measuring instrument for internal diameter of tube
JPS60144606A (en) Position measuring device