JPS6358135A - Pipe inner surface measuring apparatus - Google Patents

Pipe inner surface measuring apparatus

Info

Publication number
JPS6358135A
JPS6358135A JP20422886A JP20422886A JPS6358135A JP S6358135 A JPS6358135 A JP S6358135A JP 20422886 A JP20422886 A JP 20422886A JP 20422886 A JP20422886 A JP 20422886A JP S6358135 A JPS6358135 A JP S6358135A
Authority
JP
Japan
Prior art keywords
light
pipe
measured
tube
pig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20422886A
Other languages
Japanese (ja)
Inventor
Kazuo Takashima
和夫 高嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20422886A priority Critical patent/JPS6358135A/en
Publication of JPS6358135A publication Critical patent/JPS6358135A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/954Inspecting the inner surface of hollow bodies, e.g. bores

Abstract

PURPOSE:To enable the measurement of the diameter of the inner surface of a pipe with a quick single measuring action, by projecting light emitted from a light emitting means of an optical type distance meter provided in a pig to both diametrical directions of a pipe to be measured to receive the reflected beams of light thereof. CONSTITUTION:A pig 10 is inserted into a pipe P to be measured and the center axis of the pig 10 is aligned with the axis of the pipe by making the axis center of a support rod 110 match the axis of the pipe. On the other hand, power is supplied through a cable 111 from a processor 70 and a light emitting circuit 11 activates a light emitting element 12 to emit light. The projection light from the element 12 is reflected with reflecting mirrors 41 and 42 of a reflecting mirror block 40 through a projection lens 13 to be projected outside the casing 101 through projecting windows 100a and 100b, reflected on the inner surface of the pipe P to be incident on reflecting mirrors 43 and 44 and reflected in the direction along the center axis of the casing 101 to be converged on light receiving lenses 14a and 14b, forming images on 1-D photodetectors 15a and 15b. Electrical signals specifying a photodetector where the reflected light image is formed are sent to the processor 70 from output circuits 16a and 16b to measure the inner diameter of the pipe P by processing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は管内面、特に目視不可能な小径管の内面の形状
を測定することによりその欠陥を検出する装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting defects by measuring the shape of the inner surface of a tube, particularly the inner surface of a small diameter tube which cannot be visually observed.

〔従来技術〕[Prior art]

たとえば化学プラント内に引き回された種々の原料、成
品輸送用パイプライン、あるいは作業員が進入して直接
目視検査することが不可能な小径の下水道管等の管内面
の形状検査(形状を検査することにより、欠損、陥没等
の異常の存在を判定する)を行う装置として光学式距離
計を利用した装置が知られている。
For example, inspection of the shape of the inner surface of pipes such as pipelines for transporting various raw materials and products routed within a chemical plant, or small-diameter sewer pipes that are impossible for workers to enter and directly visually inspect. A device using an optical rangefinder is known as a device for determining the presence of abnormalities such as defects and depressions.

第4図はその一例を示しており、図中Pは測定対象の管
、10はピグである。ピグ10は円筒形状に形成された
ケーシング101の周側壁の一部にガラスあるいは透明
樹脂製の投受光窓100が備えられていて、円筒状ケー
シング101の中心軸が測定対象管Pの管軸と一致する
ように測定対象管P内に挿入されている。またピグ10
はそのケーシング101内部にその前端(図上で左端)
寄りから後端寄りへ順に発光回路11.発光素子12.
投光レンズ13゜受光レンズ14.リニアダイオードア
レイ等の一次元受光素子15.出力回路16等を備えて
いる。
FIG. 4 shows an example of this, in which P is a pipe to be measured, and 10 is a pig. The pig 10 is equipped with a light projection/reception window 100 made of glass or transparent resin on a part of the peripheral side wall of a cylindrical casing 101, and the center axis of the cylindrical casing 101 is aligned with the tube axis of the pipe P to be measured. They are inserted into the pipe P to be measured so that they match. Also pig 10
is located inside the casing 101 at its front end (left end in the figure).
The light emitting circuit 11. Light emitting element 12.
Light projecting lens 13° Light receiving lens 14. One-dimensional light receiving element such as a linear diode array 15. It is equipped with an output circuit 16 and the like.

投光レンズ13の光軸は投射光の測定対象管P内面から
の反射光を受光レンズ14に入射させるためにピグ10
の回転半径方向よりはケーシング101の後端寄り向き
に傾斜させられており、また受光レンズ14の光軸は投
光レンズ13から投射された光の測定対象管P内面から
の反射光を受光すべくピグ10の回転率1条方向よりは
ケーシング10]の前端寄り向きに傾斜させられている
。そして、−次元受光素子15の受光素子配列方向は両
レンズ13.14の光軸を含む平面上でありかつ受光レ
ンズ14の光軸に直交する方向にされている。
The optical axis of the light projecting lens 13 is connected to a pig 10 in order to make the reflected light from the inner surface of the measurement target tube P of the projected light enter the light receiving lens 14.
The optical axis of the light-receiving lens 14 is inclined toward the rear end of the casing 101 than in the rotation radius direction, and the optical axis of the light-receiving lens 14 receives reflected light from the inner surface of the measurement target tube P of the light projected from the light-emitting lens 13. It is inclined toward the front end of the casing 10 rather than in the direction of the rotation rate of the pig 10. The light-receiving element array direction of the -dimensional light-receiving element 15 is on a plane that includes the optical axes of both lenses 13 and 14, and is perpendicular to the optical axis of the light-receiving lens 14.

従って、詳しくは後述するが、受光レンズ14へ入射す
る反射光の測定対象管P内面での反射位置が測定対象管
Pの半径方向に移動する場合には、その反射光の結像位
置が一次元受光素子15の受光素子配列方向に移動する
ので、その位置を検出することによりピグIOと測定対
象管Pの内周面との管の距離が判明する。
Therefore, although the details will be described later, when the reflection position of the reflected light incident on the light receiving lens 14 on the inner surface of the measurement target tube P moves in the radial direction of the measurement target tube P, the imaging position of the reflected light is Since it moves in the direction in which the original light receiving elements 15 are arranged, the distance between the pig IO and the inner peripheral surface of the tube P to be measured can be determined by detecting its position.

更にピグ10はそのケーシング101の後端を支持杆1
10にて支持されており、この支持杆110にて測定対
象管Pの開口から挿入される。なお、支持杆110は中
空でありその中空部分内部には処理装置70に接続され
た複数の電気ケーブルIIIが挿通されていて、これら
を介して種々の信号及び電気エネルギーの送受が行われ
る。
Further, the pig 10 connects the rear end of the casing 101 to the support rod 1.
10, and is inserted through the opening of the pipe P to be measured using this support rod 110. Note that the support rod 110 is hollow, and a plurality of electric cables III connected to the processing device 70 are inserted into the hollow portion thereof, and various signals and electric energy are transmitted and received via these.

さて、第4図に示した従来装置では、処理装置70から
ケーブル111を介して発光回路IIに電力が供給され
ており、これにより発光回路11は発光素子12に投光
レンズ13方向への発光を行わセる。この発光素子12
からの投射光は投光レンズ13にて集束され、ケーシン
グ101の投受光窓100を通過して測定対象管Pの内
面にて反射される。この反射光は再度投受光窓100を
通過して受光レンズ14にて再築束され、−次元受光素
子15の受光面番こ結像される。この際の反射光像が結
像した受光素子を特定する電気信号は出力回路16から
ケーブル111を介して処理装置70に送られる。
Now, in the conventional device shown in FIG. 4, power is supplied from the processing device 70 to the light emitting circuit II via the cable 111, so that the light emitting circuit 11 causes the light emitting element 12 to emit light in the direction of the projecting lens 13. Do it. This light emitting element 12
The projection light is focused by the projection lens 13, passes through the projection/reception window 100 of the casing 101, and is reflected on the inner surface of the tube P to be measured. This reflected light passes through the light emitting/receiving window 100 again, is refocused by the light receiving lens 14, and is imaged on the light receiving surface of the -dimensional light receiving element 15. An electrical signal specifying the light receiving element on which the reflected light image is formed is sent from the output circuit 16 to the processing device 70 via the cable 111.

第5図は」二連の装置による測定の原理を示した模式図
である。
FIG. 5 is a schematic diagram showing the principle of measurement using two devices.

第5図において、両レンズ13.14それぞれの中心4
.B間の距離を69両レンズ13.14それぞれの中心
A、B間を結ぶ線分nがIII定対象管Pの管軸に位置
しているとし、これに対する投光レンズ13の光軸の角
度をα、同しく受光レンズ14の光軸の角度をβ (=
αでもよい)、−次元受光素子15の中心の受光素子M
(受光レンズ14の光軸上に位置する)から反射光像の
結像位置の受光素子Rまでの距離を2  (−一次元受
光素子15の受光素子配列方向と受光レンズ14の光軸
との角度は一定)、投射光の測定対象管P内面での反射
位置をCとし、また−次元受光素子I5の受光面は受光
レンズ14の焦点(焦点距Mllf)に位置するものと
する。
In FIG. 5, the center 4 of each lens 13.14
.. Assuming that the line segment n connecting the centers A and B of both lenses 13.14 is located at the tube axis of the III constant target tube P, the angle of the optical axis of the projection lens 13 with respect to this is the distance between B. is α, and the angle of the optical axis of the light receiving lens 14 is β (=
α may be used), the light receiving element M at the center of the -dimensional light receiving element 15
(located on the optical axis of the light-receiving lens 14) to the light-receiving element R at the imaging position of the reflected light image. (the angle is constant), the reflection position of the projected light on the inner surface of the tube P to be measured is C, and the light-receiving surface of the -dimensional light-receiving element I5 is located at the focal point (focal length Mllf) of the light-receiving lens 14.

−次元受光素子15上における距%ilIβと受光レン
ズ14の焦点距離fとにより受光レンズ14の光軸と反
射光との間の角度θは下記式にて求められる。
The angle θ between the optical axis of the light-receiving lens 14 and the reflected light is determined by the distance %ilIβ on the -dimensional light-receiving element 15 and the focal length f of the light-receiving lens 14 using the following formula.

「 線分へBと線分Oとのなす角度は(β−θ)として求め
られる。従って、三角形ABCは二角、即ら一/ CA
 R(−α)と/CBA (−β−θ)及びその挟辺A
1の長さdとが判明しているので確定する。このため、
点Cから線分nへ下した垂線百の長さ、即ち測定対象管
Pの管軸から内周面までの距離11(検査対象管Pの内
周半径)は下記式にて求められる。
"The angle between line segment B and line segment O is found as (β-θ). Therefore, triangle ABC is two angles, i.e. 1/CA
R (-α) and /CBA (-β-θ) and its flank A
Since the length d of 1 is known, it is determined. For this reason,
The length of the perpendicular drawn from point C to line segment n, that is, the distance 11 from the tube axis to the inner circumferential surface of the tube to be measured P (inner circumferential radius of the tube to be inspected P) is determined by the following formula.

tanα−jan (β±θ) なお、直線nが測定対象管Pの管軸と一致していない場
合でも、両者が平行関係を維持している場合には両者間
の距離と求められた距Nhとの和を求めればよい。
tanα−jan (β±θ) Note that even if the straight line n does not coincide with the pipe axis of the pipe P to be measured, if both maintain a parallel relationship, the distance between them and the calculated distance Nh All you have to do is find the sum.

上述の原理は、線分静を基線とする二角測量と同原理で
ある。そして、このような従来の装置では、ピグ10を
支持杆110にて支持して測定対象管P内へ進入させつ
つ回転させるか、あるいは図示しない自走装置によりピ
グ】0が管軸を回転中心として回転しつつ測定対象管P
内を進行することにより測定対象管Pの内周面の形状測
定を連続に行える。
The above-mentioned principle is the same as that of bigonal survey using a line segment as a base line. In such a conventional device, the pig 10 is supported by a support rod 110 and rotated while entering the pipe P to be measured, or a self-propelled device (not shown) is used to move the pig 10 around the pipe axis as the center of rotation. The pipe to be measured P while rotating as
By moving inside, the shape of the inner circumferential surface of the pipe P to be measured can be continuously measured.

これにより、ピグ10の回転中心が測定り]家督Pの管
軸と正しく一致しでいる場合には、測定結果が真円であ
れば管内面に欠陥(欠…、異物の付着等)は存在しない
ことを示している。また、たとえピグ10の回転中心と
測定対象管Pの管軸とが一致していない場合でも、管内
面に欠陥が存在しなJlれば楕円状の円滑な曲線が計測
される。一方、ピグ10の中心が測定対象管Pの管軸と
一致している場合及びそうでない場合のいずれにも、欠
陥が存在すれば比較的不規則で鋭角的且つ急激な変化が
検出される。
As a result, if the center of rotation of the pig 10 is correctly aligned with the pipe axis of the heir P, if the measurement result is a perfect circle, there is no defect (missing, adhesion of foreign matter, etc.) on the inner surface of the pipe. It shows that it does not. Furthermore, even if the center of rotation of the pig 10 and the axis of the pipe P to be measured do not match, if there are no defects on the inner surface of the pipe, a smooth elliptical curve can be measured. On the other hand, whether the center of the pig 10 coincides with the tube axis of the tube P to be measured or not, if a defect exists, a relatively irregular, sharp, and rapid change will be detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで上述の如き従来の管内面形状測定装置では、測
定対象管内でピグを回転させて管内面全周に亙るデータ
から管径を求める必要があった。
However, in the conventional pipe inner surface shape measuring apparatus as described above, it is necessary to rotate a pig within the pipe to be measured and obtain the pipe diameter from data covering the entire circumference of the pipe inner surface.

このような手法は測定対象管内面の微細な欠損等を検出
する目的には好適ではあるが、単に管の内径を知りたい
場合、あるいは腐食による肉厚の減少(管内径の拡大)
、逆に沈澱物、付着物等による管内径の減少等を知りた
いような場合には測定に長時間を要して非能率であると
いう問題がある。
Although this method is suitable for detecting minute defects on the inner surface of the pipe to be measured, it is also useful when you simply want to know the inner diameter of the pipe, or when there is a decrease in wall thickness due to corrosion (increase in the inner diameter of the pipe).
On the other hand, when it is desired to know the decrease in the inner diameter of a pipe due to deposits, deposits, etc., there is a problem in that the measurement takes a long time and is inefficient.

また上述の従来装置では、ピグと外部のデータ処理装置
等との間を接続するケーブルが捩れるので、その解消の
ため、たとえばピグが所定回数回転する都度ケーブルの
捩を戻す、あるいはピグを所定回数ずつ両方向へ回転さ
せる等の対策及びケーブル自体の捩による破損に対する
強度面での対応が必要である。更にスリップリング等の
使用も考えられるが、構成が複雑になること、接触不良
が発生する可能性があること等の面から信頼性の低下は
免れない。
Furthermore, in the conventional device described above, the cable that connects the pig and the external data processing device etc. is twisted, so in order to eliminate this twist, for example, the cable must be untwisted each time the pig rotates a predetermined number of times, or the cable that connects the pig with a predetermined It is necessary to take measures such as rotating the cable in both directions several times, and to strengthen the cable itself against damage caused by twisting. Furthermore, the use of a slip ring or the like may be considered, but this would inevitably lead to a decrease in reliability due to the complexity of the structure and the possibility of poor contact.

本発明はこのような事情に鑑みてなされたものであり、
測定対象管の内部に挿入されるピグ内に備えられた光学
式距離計の発光手段から発せられた光を測定対象管の径
方向の両側に投射し、この管内面からの反射光を受光手
段にて受光することにより、管内面の直径を一回のal
l定動作にて測定可能に構成し、またピグを測定対象管
内で回転させずとも測定対象管の内径を測定可能な管内
面形状測定装置の提供を目的とする。
The present invention was made in view of these circumstances, and
The light emitted from the light emitting means of the optical distance meter provided in the pig inserted into the inside of the tube to be measured is projected onto both sides of the tube to be measured in the radial direction, and the reflected light from the inner surface of the tube is received by the light receiving means. By receiving light at
An object of the present invention is to provide a tube inner surface shape measuring device that is configured to be capable of measuring in a constant motion and capable of measuring the inner diameter of a tube to be measured without rotating a pig within the tube to be measured.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の管内面形状測定装置は、測定対象管の内部に挿
入されるピグ内に備えられた光学式距離計の発光手段か
ら発せられた光を、測定対象管のi¥力方向両側に投射
し、この管内面からの反射光を受光手段にて受光する構
成を採っている。
The tube inner surface shape measuring device of the present invention projects light emitted from the light emitting means of an optical distance meter provided in a pig inserted into the inside of the tube to be measured to both sides of the tube to be measured in the i force direction. However, a configuration is adopted in which the light reflected from the inner surface of the tube is received by a light receiving means.

(作用) 本発明の管内面形状測定装置では、ピグの中心を測定対
象管の管軸と一致させて挿入することにより、短時間に
て完了する一回の測定動作により測定対象管の内径が測
定される。
(Function) In the pipe inner surface shape measuring device of the present invention, by inserting the pig with the center aligned with the pipe axis of the pipe to be measured, the inner diameter of the pipe to be measured can be measured in one measurement operation that is completed in a short time. be measured.

〔実施例〕〔Example〕

以下、本発明をその実施例を示す図面に基づいて詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on drawings showing embodiments thereof.

第1図は本発明に係る管内面形状測定装置の第1の実施
例の構成を示す側断面図である。
FIG. 1 is a side sectional view showing the structure of a first embodiment of a tube inner surface shape measuring device according to the present invention.

本発明の管内面形状測定装置の第1の実施例では、端的
には前述の第4図に示した如き従来の装置に組み込まれ
ている光学式距離計の発光手段から発せられた光を反射
鏡により測定対象管Pの径方向の両側に投射し、それぞ
れの管内面からの反射光をそれぞれ独立した2系統の受
光手段にて受光する構成を採っている。
In the first embodiment of the pipe inner surface shape measuring device of the present invention, the light emitted from the light emitting means of the optical distance meter incorporated in the conventional device as shown in FIG. The light is projected onto both sides of the tube P to be measured in the radial direction using a mirror, and the reflected light from the inner surface of each tube is received by two independent systems of light receiving means.

図中Pは測定対象の管、10はピグである。ピグ10は
円筒形状に形成されたケーシング101の周側壁の前後
方向はぼ中央で径方向の対向する二位置にガラスあるい
は透明樹脂製の投受光窓100a、 100bが備えら
れていて、円筒状ケーシング101の中心軸が測定対象
管Pの管軸と一致するように測定対象管P内の挿入され
ている。
In the figure, P is a pipe to be measured, and 10 is a pig. The pig 10 has a cylindrical casing 101, and is provided with light projection/reception windows 100a and 100b made of glass or transparent resin at two radially opposite positions approximately at the center in the front and back direction of the circumferential side wall of a cylindrical casing 101. The tube 101 is inserted into the pipe P to be measured so that its central axis coincides with the axis of the pipe P to be measured.

ピグ10にはそのケーシング+01内部にその前端(図
上で左端)寄りから後端寄りへ順に発光回路11、発光
素子12.投光レンズ13が備えられ、ケーシング10
1の前後方向はぼ中央に位置する投受光窓100a、 
100bに対応する位置に4枚の反射鏡41〜44にて
構成された反射鏡ブロック40が備えられている。これ
らの発光素子12の発光中央方向、投光レンズI3の光
軸及び反射鏡ブロック40の中心線は共にピグ10の中
心軸と一致されている。
Inside the casing +01 of the pig 10, a light emitting circuit 11, a light emitting element 12. A light projecting lens 13 is provided, and the casing 10
1, a light emitting/receiving window 100a located approximately in the center in the front-rear direction;
A reflecting mirror block 40 composed of four reflecting mirrors 41 to 44 is provided at a position corresponding to 100b. The light emitting center direction of these light emitting elements 12, the optical axis of the projection lens I3, and the center line of the reflecting mirror block 40 are all aligned with the center axis of the pig 10.

そして、ピグ10の反射鏡40より更に後端部寄りには
受光レンズ14a(又は14b) 、  リニアダイオ
ードアレイ等の一次元受光素子15a(又は15b) 
、出力回路16a(又は16b)等にてそれぞれ構成さ
れる受光手段としての2組の受光系がピグ10の中心軸
を対称中心として平行に配列されている。
Further, closer to the rear end of the reflector 40 of the pig 10, there is a light receiving lens 14a (or 14b) and a one-dimensional light receiving element 15a (or 15b) such as a linear diode array.
, an output circuit 16a (or 16b), and the like, two sets of light receiving systems as light receiving means are arranged in parallel with the central axis of the pig 10 as the center of symmetry.

ところで、反射鏡ブロック40は側面視で一つの対角線
をピグ10の中心軸と一致させた菱形に形成されている
。具体的には、側面視での各辺を構成する4面の反射鏡
41〜44の内の前側寄りの2面の反射GM41.42
は、ピグ10の中心軸を対称線として後端部寄りが拡開
された状態とされており、発光素子12から発光されて
投光レンズ13にて集束された光を投受光窓100a及
び100hそれぞれを通してビグ10外部の1&端部寄
り方向へ投射するようになっている。
By the way, the reflector block 40 is formed into a rhombus shape with one diagonal line aligned with the central axis of the pig 10 when viewed from the side. Specifically, of the four reflecting mirrors 41 to 44 forming each side in a side view, the reflection GM41.42 of two surfaces closer to the front side
The rear end of the pig 10 is expanded with the central axis of the pig 10 as a line of symmetry, and the light emitted from the light emitting element 12 and focused by the light emitting lens 13 is transmitted through the light emitting/receiving windows 100a and 100h. Through each, the light is projected toward the outside of the BIG 10 in a direction closer to the 1&end portion.

また反射鏡ブロック40の後端寄りの2面の反射鏡43
.44は、ピグ10の中心軸を対称線として前端部寄り
が拡開された状態とされており、反射鏡41゜42から
投射されて測定対象管P内周面にて反射された光を投受
光窓100a及び100bそれぞれを通して受光し、ピ
グ10の中心軸に沿ってその後端部寄りに位置する受光
レンズ14a、 14b方向へ投射するようになってい
る。
In addition, two reflecting mirrors 43 near the rear end of the reflecting mirror block 40
.. The front end of the pig 44 is expanded with the central axis of the pig 10 as a line of symmetry, and the light projected from the reflecting mirrors 41 and 42 and reflected on the inner circumferential surface of the pipe P to be measured is projected. Light is received through the light-receiving windows 100a and 100b, respectively, and projected toward light-receiving lenses 14a and 14b located near the rear end along the central axis of the pig 10.

またピグ10はそのケーシング101の1&端を支持杆
110にて支持されており、この支持杆110にて測定
対象管Pの開口から挿入される。なお、支持杆110は
中空でありその中空部分内部には処理装置70に接続さ
れた複数の電気ケーブル111が挿iJl!されていて
、これらを介して種々の信号及び電気エネルギーの送受
が行われる。
The pig 10 is supported by a support rod 110 at one end of the casing 101, and is inserted through the opening of the pipe P to be measured using the support rod 110. Note that the support rod 110 is hollow, and a plurality of electric cables 111 connected to the processing device 70 are inserted inside the hollow portion. Various signals and electrical energy are transmitted and received through these.

次に本発明装置による管内径の測定動作について説明す
る。
Next, the operation of measuring the inner diameter of a pipe using the apparatus of the present invention will be explained.

まず、本発明装置のピグ10を支持杆110にて支持し
つつ測定対象管P内へ挿入する。この際、支持杆110
の軸心を測定対象管Pの管軸と一致させればピグ10の
中心軸も測定対象管Pの管軸と一致する。
First, the pig 10 of the apparatus of the present invention is inserted into the pipe P to be measured while being supported by the support rod 110. At this time, the support rod 110
If the axis of the pig 10 is made to coincide with the tube axis of the tube P to be measured, the central axis of the pig 10 will also coincide with the tube axis of the tube P to be measured.

さて、本発明装置には、処理装置70からケーブルI1
1を介して発光回路11に電力が供給されており、これ
により発光回路11は発光素子12に投光レンズ13方
向への発光を行わせる。この発光素子12からの投射光
は投光レンズI3にて集束され、反射鏡ブロック40の
前端部寄りの2面の反射鏡41.42により反射され゛
ζケーシング101の投受光窓1ota。
Now, in the device of the present invention, there is a cable I1 from the processing device 70.
Power is supplied to the light emitting circuit 11 through the light emitting device 1, and the light emitting circuit 11 causes the light emitting element 12 to emit light in the direction of the light projecting lens 13. The projection light from the light emitting element 12 is focused by the projection lens I3, and is reflected by the two reflecting mirrors 41 and 42 near the front end of the reflecting mirror block 40 to the projection/reception window 1ota of the casing 101.

100bを通過してケーシング+01外の後端部寄り方
向へ投射される。
100b and is projected toward the rear end of the casing +01.

この投射光は測定対象管Pの内周面にて反射され、再度
投受光窓100a、 ]00bを通過して反射鏡ブロッ
ク40の#&肩端部りの反射鏡43.44に入射してケ
ーシング101の中心軸に沿う後端部寄り方向へ反射さ
れ、受光レンズl 4 a 、 1411にて再集束さ
れ、−次元受光素子+5a、 15hの受光面に結像さ
れる。
This projected light is reflected by the inner circumferential surface of the pipe P to be measured, passes through the light emitting/receiving windows 100a and 00b again, and enters the reflecting mirrors 43 and 44 at the #&shoulder ends of the reflecting mirror block 40. The light is reflected toward the rear end along the central axis of the casing 101, refocused by the light receiving lens l4a, 1411, and imaged on the light receiving surface of the -dimensional light receiving element +5a, 15h.

この際の反射光像が結像した受光素子を特定する電気信
号は出力回路16a、 16hそれぞれからケーブル1
11を介して処理装置70に送られる。
At this time, an electrical signal for specifying the light receiving element on which the reflected light image is formed is transmitted from each of the output circuits 16a and 16h to the cable 1.
11 to the processing device 70.

そして、上述のよ・)にして得られた両−次元受光素子
15a、 15bそれぞれの測定信号は前述の第5図に
示した原理に従って処理される。この結果を加算すれば
測定対象−WPの内径が1!Iられることは自明である
。従って本発明装置では、極く短時間の一回の測定動作
にて、測定対象管Pの内径が測定される。
The measurement signals of the two-dimensional light receiving elements 15a and 15b obtained in the above-mentioned process are processed according to the principle shown in FIG. 5 described above. By adding these results, the inner diameter of the measurement object - WP is 1! It is self-evident that this is the case. Therefore, in the apparatus of the present invention, the inner diameter of the pipe P to be measured is measured in one extremely short measuring operation.

なおピグ10の中心軸を測定対象管Pの管軸に一致させ
ることが困難な場合には、測定対象管P内に挿入された
ピグlOを測定対象管P内にて管軸と直交する方向、即
ち測定対象管Pの半j¥:方向に移動さセつつ連続的に
測定を行えば、その間に測定された最大値が測定文・j
家督Pの内径と見做1−得る。
If it is difficult to align the center axis of the pig 10 with the tube axis of the tube P to be measured, move the pig 10 inserted into the tube P to be measured in a direction perpendicular to the tube axis within the tube P to be measured. , that is, if the measurement is carried out continuously while moving in the direction of half of the pipe P to be measured, the maximum value measured during that time will be the measured value
The inner diameter of the family head P and the 1-obtain.

第2図は本発明の第2の実施例の構成を示す側断面図で
ある。
FIG. 2 is a side sectional view showing the configuration of a second embodiment of the present invention.

本実施例は、ピグ10のケーシング101内に備えられ
た発光回路111発光素子12.投光レンズ+3゜反射
鏡ブロック40及び受光レンズ14a、 14bにより
発光し、その光を測定対象管I〕内周面の2方向へ投射
し、それぞれの反射光を結像さ・Uるまでの構成は」二
連の第1図に示した第1の実施例と同様である。しかし
、両受光レンズ14a、 14bにて結像されて2方向
からの反射光を受光する受光素子は一つの一次元受光素
子15のみである。
In this embodiment, a light emitting circuit 111, a light emitting element 12. Light is emitted by the projecting lens + 3° reflecting mirror block 40 and the receiving lenses 14a and 14b, and the light is projected in two directions on the inner circumferential surface of the tube to be measured (I), and each reflected light is formed into an image. The construction is similar to the first embodiment shown in FIG. 1 in duplicate. However, there is only one one-dimensional light receiving element 15, which receives reflected light from two directions, which is imaged by both light receiving lenses 14a and 14b.

第3図はこの第2の実施例の一次元受光素子15による
2方向からの反射光の結像位置検出の原理を示す模式図
である。
FIG. 3 is a schematic diagram showing the principle of detecting the imaging position of reflected light from two directions by the one-dimensional light receiving element 15 of the second embodiment.

いま、測定対象管Pの内周面が実線にて示す位置にある
場合のこの測定対象管Pの内周面の2方向からの反射光
の両受光レンズ14a、 14hによる一次元受光素子
15」二への結像位置を基準位置として定めてお番ノば
、−次元受光素子15のたとえば第3図上の下端の受光
素子から順に走査信号が与えられた場合の各時間、即ち
第1の受光素子が走査された時刻をLOとし、一方の基
準の受光素子が走査された時刻をLll、他方の基準の
受光素子のそれをt12とする。そして、実際の測定対
象管P内面からの反射光の一次元受光素子15上の結像
位置は一次元受光素7−15の各受光素子に順次走査信
号を与えることにより、ピーク位置検出回路71にてピ
ークレベルが検出され、その基準位置の走査時刻との間
の時間差tl、 t2が11.12検出回路72にて検
出される。
Now, when the inner circumferential surface of the tube P to be measured is at the position shown by the solid line, a one-dimensional light receiving element 15 is formed by both light receiving lenses 14a and 14h for reflected light from two directions on the inner circumferential surface of the tube P to be measured. The image formation position on the second side is set as the reference position, and each time when a scanning signal is applied sequentially from the -dimensional light receiving element 15, for example, from the lower end light receiving element in FIG. The time when the light receiving element is scanned is set as LO, the time when one reference light receiving element is scanned is set as Lll, and that of the other reference light receiving element is set as t12. The image forming position on the one-dimensional light receiving element 15 of the actual reflected light from the inner surface of the tube P to be measured is determined by the peak position detection circuit 71 by sequentially applying a scanning signal to each light receiving element of the one-dimensional light receiving element 7-15. The peak level is detected at , and the time difference tl, t2 between the peak level and the scanning time of the reference position is detected at the 11.12 detection circuit 72.

この2回のハイレヘル信号が得られる時間の両基準位置
からの時間差11. t2は実際の測定対象管Pの内面
の位置(ピグ10に対する相対位置)の基準位置とのズ
レΔhl、Δh2に比例している。従って、11. t
2を検出することにより、これに多め求めである定数を
Δh/J算回FIPt73にて乗することによりΔhl
、 Δh2、即ち測定対象管Pの内周面のピグ10との
相対位置の基準位置との差が検出される。
The time difference between the times when these two high-level health signals are obtained from both reference positions 11. t2 is proportional to the deviations Δhl and Δh2 between the actual position of the inner surface of the pipe P to be measured (relative position to the pig 10) and the reference position. Therefore, 11. t
By detecting 2, by multiplying this by a constant which is a large value using Δh/J calculation FIPt73, Δhl
, Δh2, that is, the difference between the relative position of the inner peripheral surface of the pipe P to be measured with respect to the pig 10 and the reference position is detected.

その伯の具体的な測定の方法等は」二連の第1の実施例
と同様であるので省略する。
The specific method of measuring the ratio is the same as in the first embodiment of the series, so it will be omitted.

〔効果〕〔effect〕

以」二のように本発明装置によれば、測定対象管内に挿
入されたピグを回転さ・口る必要なしに掻く短時間で完
了する一回の測定動作にて測定対象管の内径の測定が実
行されるので、管の内径を)ヌ11定するためであれば
殆ど測定誤差を生しることはなく、測定の信頼性が向上
し、装置の操作、データ処理、取扱も容易になる。また
、本発明装置では発光手段及び受光手段の光軸を管の軸
心方向とし、反射鏡にて測定対象管の径方向に投射して
いるので、測定対象管内に挿入されるピグを比較的小径
に形成可能である。従って、より小径の管の測定が可能
になる。
As described below, according to the device of the present invention, the inner diameter of the pipe to be measured can be measured in one measurement operation that is completed in a short time by rotating and scratching the pig inserted into the pipe to be measured. Since this is carried out, there is almost no measurement error when determining the inner diameter of the pipe, improving the reliability of the measurement and facilitating the operation, data processing, and handling of the device. . In addition, in the device of the present invention, the optical axes of the light emitting means and the light receiving means are set in the axial direction of the tube, and the reflection mirror projects the light in the radial direction of the tube to be measured, so that the pig inserted into the tube to be measured is relatively Can be formed into a small diameter. Therefore, it is possible to measure smaller diameter tubes.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであり、第1図は本発
明の管内面形状測定装置の第1の実施例の構成を示す側
断面図、第2図は本発明の管内面形状測定装置の第2の
実施例の構成を示す側断面図、第3図その測距の原理を
示す模式図、第4図は従来装置の構成を示す側断面図、
第5図は従来装置及び本発明装置の測定原理を説明する
ための模式図である。 ■)・・・測定対象管  10・・・ピグ 12・・・
発光素子13・・投光レンズ  14・・・受光レンズ
  I5・・・−次元受光素子  41〜44・・・反
射鏡なお、各図中同一符号は同−又は相当部分を示す。
The drawings show embodiments of the present invention, and FIG. 1 is a side sectional view showing the configuration of the first embodiment of the tube inner surface shape measuring device of the present invention, and FIG. 2 is a tube inner surface shape measuring device of the present invention. FIG. 3 is a schematic diagram showing the principle of distance measurement; FIG. 4 is a side sectional view showing the configuration of a conventional device;
FIG. 5 is a schematic diagram for explaining the measurement principle of the conventional device and the device of the present invention. ■)...Pipe to be measured 10...Pig 12...
Light-emitting element 13...Light projection lens 14...Light-receiving lens I5...-dimensional light-receiving element 41-44...Reflector Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1、発光手段からの光の測定対象からの反射光を受光手
段にて受光することにより測距を行う光学式距離計を管
内に挿入して管内面の形状を測定する装置において、 前記光学式距離計の発光手段からの光を管軸を含む同一
平面上で管軸に対して実質的に対象な2方向へ投射すべ
くなした第1の反射鏡と、 該第1の反射鏡にて投射された光の管内面の2方向から
の反射光それぞれを前記受光手段の方向へ反射する第2
の反射鏡と を備えたことを特徴とする管内面形状測定装置。 2、2方向からの反射光それぞれを受光すべく受光手段
が2組備えられている特許請求の範囲第1項記載の管内
面形状測定装置。 3、2方向からの反射光を同時に受光可能な1組の受光
手段が備えられている特許請求の範囲第1項記載の管内
面形状測定装置。
[Scope of Claims] 1. An optical distance meter that measures distance by receiving reflected light from the object to be measured from the light emitting means with the light receiving means is inserted into the tube to measure the shape of the inner surface of the tube. In the apparatus, a first reflecting mirror configured to project light from the light emitting means of the optical rangefinder in two directions substantially symmetrical with respect to the tube axis on the same plane including the tube axis; a second reflector that reflects the light projected by the first reflector from two directions on the inner surface of the tube toward the light receiving means;
A tube inner surface shape measuring device characterized by comprising a reflecting mirror. 2. The pipe inner surface shape measuring device according to claim 1, wherein two sets of light receiving means are provided to receive reflected light from two directions, respectively. 3. The tube inner surface shape measuring device according to claim 1, further comprising a set of light receiving means capable of simultaneously receiving reflected light from two directions.
JP20422886A 1986-08-28 1986-08-28 Pipe inner surface measuring apparatus Pending JPS6358135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20422886A JPS6358135A (en) 1986-08-28 1986-08-28 Pipe inner surface measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20422886A JPS6358135A (en) 1986-08-28 1986-08-28 Pipe inner surface measuring apparatus

Publications (1)

Publication Number Publication Date
JPS6358135A true JPS6358135A (en) 1988-03-12

Family

ID=16486961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20422886A Pending JPS6358135A (en) 1986-08-28 1986-08-28 Pipe inner surface measuring apparatus

Country Status (1)

Country Link
JP (1) JPS6358135A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439158U (en) * 1990-08-02 1992-04-02
JPH07132789A (en) * 1993-04-26 1995-05-23 Trw Repa Gmbh Vehicle gas bag restraint device
JP2009139176A (en) * 2007-12-05 2009-06-25 Nikon Corp Measuring device and its method
US7612878B2 (en) 2006-11-08 2009-11-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device for inspecting a pipeline
JP5560558B2 (en) * 2006-12-13 2014-07-30 株式会社ニコン Measuring apparatus and measuring method
JP2015114326A (en) * 2013-12-06 2015-06-22 株式会社ミツトヨ Hole measurement apparatus and method using non-rotating cps pen
JP2016525377A (en) * 2013-05-02 2016-08-25 ブイエス メドテック, インコーポレイテッド System and method for measuring and characterizing the inner surface of a luminal structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0439158U (en) * 1990-08-02 1992-04-02
JPH07132789A (en) * 1993-04-26 1995-05-23 Trw Repa Gmbh Vehicle gas bag restraint device
US7612878B2 (en) 2006-11-08 2009-11-03 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device for inspecting a pipeline
JP5560558B2 (en) * 2006-12-13 2014-07-30 株式会社ニコン Measuring apparatus and measuring method
JP2009139176A (en) * 2007-12-05 2009-06-25 Nikon Corp Measuring device and its method
JP2016525377A (en) * 2013-05-02 2016-08-25 ブイエス メドテック, インコーポレイテッド System and method for measuring and characterizing the inner surface of a luminal structure
JP2015114326A (en) * 2013-12-06 2015-06-22 株式会社ミツトヨ Hole measurement apparatus and method using non-rotating cps pen

Similar Documents

Publication Publication Date Title
JPS6355441A (en) Detecting device for internal surface shape of pipe
JPS6358135A (en) Pipe inner surface measuring apparatus
JPH05149884A (en) In-pipe inspection device
US6285451B1 (en) Noncontacting optical method for determining thickness and related apparatus
JPS6358134A (en) Pipe inner surface shape measuring apparatus
JPS6358137A (en) Pipe inner surface shape measuring apparatus
JPS6358136A (en) Pipe inner surface shape measuring apparatus
US3802779A (en) Method and apparatus for optically monitoring the angular position of a rotating mirror
JPS6358133A (en) Pipe inner surface shape measuring apparatus
US5099692A (en) Apparatus for carrying mobile means of inspection in the interior of a tubular body
RU2270979C2 (en) Device for determination of inner surface contour of object
JPS6358131A (en) Pipe inner surface shape measuring apparatus
US4595288A (en) Method and apparatus for measuring deep mirrors
US4690556A (en) Capillary bore straightness inspection
JPS6355443A (en) Detecting device for internal surface shape of pipe
JPS6355442A (en) Detecting device for internal surface shape of pipe
JPS6269113A (en) Inspection instrument for surface of screw
JPS6193935A (en) Defect defecting device
JPS6358132A (en) Pipe inner surface shape measuring apparatus
CN201837368U (en) Optical hole measuring device
JPS63243848A (en) In-tube inspection device
JPS63243845A (en) In-tube inspection device
JPS58202862A (en) Surface inspection method and apparatus thereof
JP3205678B2 (en) Ultrasonic flaw detector for lead sheath tube
JPS6191507A (en) Apparatus for measuring angle of inclination