JPS6269113A - Inspection instrument for surface of screw - Google Patents

Inspection instrument for surface of screw

Info

Publication number
JPS6269113A
JPS6269113A JP20969285A JP20969285A JPS6269113A JP S6269113 A JPS6269113 A JP S6269113A JP 20969285 A JP20969285 A JP 20969285A JP 20969285 A JP20969285 A JP 20969285A JP S6269113 A JPS6269113 A JP S6269113A
Authority
JP
Japan
Prior art keywords
light
screw
reflected light
tube end
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20969285A
Other languages
Japanese (ja)
Other versions
JPH0422444B2 (en
Inventor
Kenichi Matsui
健一 松井
Kiyohiko Kawaguchi
川口 清彦
Yoichi Suzuki
洋一 鈴木
Mitsuhito Kamei
光仁 亀井
Mikio Tachibana
橘 幹夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Nippon Steel Corp
Original Assignee
Mitsubishi Electric Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Electric Corp
Priority to JP20969285A priority Critical patent/JPS6269113A/en
Publication of JPS6269113A publication Critical patent/JPS6269113A/en
Publication of JPH0422444B2 publication Critical patent/JPH0422444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To inspect the surface of a screw and to discriminate simply the position of a tube end by projecting and scanning luminous flux in the axial direction with respect to the tube on the end of which the screw is processed and catching reflected light from a screw part. CONSTITUTION:The titled instrument is provided with a follow-up mechanism to make a photodetector follow up a directional change of the reflected light from the screw part, a tube end photodetector 16 to photodetect rays of light deviated from the tube end and a signal processor. Then, a photodetection part is followed up with the follow-up mechanism to that the photodetection part catches the reflected light under a prescribed condition based on the output electrical signals from plural photodetectors 14l and 14r for follow-up provided at both sides of the photodetection part. Further, the luminous flux projected on the position exceeding the tube end is photodetected with the photodetector 16. Then, the reflected light from the screw part is caught with the photodetection part and the electrical signal which is converted photoelectrically from the light is subjected to binarization processing with a waveform shaper 21 and a pulse train obtained as the output of the shaper 21 is received to measure the pulse width with time width measuring instruments 24 and 25. The existence or nonexistence of a defect of the screw surface is decided based on the pulse width. Further, the output of the photodetector 16 is inputted to a deciding device 26 and used for deciding the existence or nonexistence of the defect of the screw surface.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は管端に切られたネジの表面検査装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an apparatus for inspecting the surface of threads cut into pipe ends.

〔従来技術〕[Prior art]

ネジ部表面の欠陥を光学的に検査する方法として、光束
を軸長方向に走査し、ネジ部からの反射光を捉え、光電
変換してその出力信号波形図を検査する方法がある。第
6図はこの種の表面検査装置の基本光学系を示−3模式
図、第7図は同じく光電素子の出力信号の波形図である
。第6図におい°ζ61aは鋼管61の管端に切られた
ネジ部、G2. G2は被検査鋼管61を支持°し”ζ
軸心回転させるための回転ロールである。鋼管61を回
転ロールG2.62にて回転させ、ネジ部61aの軸方
向に発光手段63から投射レーデ−光64を鋼管61の
軸長方向に走査しながらネジ部61.lIに投射する。
As a method for optically inspecting defects on the surface of a threaded portion, there is a method in which a beam of light is scanned in the axial direction, reflected light from the threaded portion is captured, photoelectrically converted, and the output signal waveform diagram is inspected. FIG. 6 is a schematic diagram showing the basic optical system of this type of surface inspection apparatus, and FIG. 7 is a waveform diagram of the output signal of the photoelectric element. In FIG. 6, °ζ61a is a threaded portion cut at the end of the steel pipe 61, G2. G2 supports the steel pipe 61 to be inspected and
This is a rotating roll for rotating the shaft. The steel pipe 61 is rotated by a rotating roll G2.62, and the projected radar light 64 is scanned in the axial direction of the steel pipe 61 from the light emitting means 63 in the axial direction of the threaded part 61a. Project to lI.

そしてネジ部Glaからの反射光65を受光器66に”
ζ検知し、光電変換出力信号を分析することによりネジ
部61a表面の検査を行う。
Then, the reflected light 65 from the threaded portion Gla is sent to the receiver 66.
The surface of the threaded portion 61a is inspected by detecting ζ and analyzing the photoelectric conversion output signal.

ネジ部61.1の表面が正常なラウンドネジである場合
は、第7図(a)に示ず如く一定しヘルの波形になるが
、ネジ部61aに表面欠陥がある場合、対応する部分の
反射光か乱れ、その結果第7図の矢印に示すように、対
応する信号波形が低レベルの異常波形になるのご、これ
を検出することによりネジの表面欠陥を抽出゛3ること
ができる。
If the surface of the threaded part 61.1 is a normal round thread, the waveform will be constant as shown in Fig. 7(a), but if there is a surface defect in the threaded part 61.1, the corresponding part will be The reflected light is disturbed, and as a result, the corresponding signal waveform becomes a low-level abnormal waveform, as shown by the arrow in Figure 7. By detecting this, it is possible to extract the surface defect of the screw. .

〔発明が解決しようとりる問題点〕[Problems that the invention attempts to solve]

上述した如き装置ではネジの光学的表面検査を行うこと
は可能であるが、油井管等の大径継目無管の管端に切ら
れたネジに適用する場合、実用上の問題点がいくつかあ
る。
Although it is possible to perform optical surface inspection of threads using the device described above, there are some practical problems when applying it to threads cut at the end of large-diameter seamless pipes such as oil country tubular goods. be.

油井管等の大径継目無鋼管は熱間圧延により製造される
のご、若干の曲がりがある。またその断面が真円でない
場合もある。この様な管の端に切られたネジを全周に亘
っC検査する場合、管が回転するからネジ部への投射光
の角度が変化し、またネジ部からの反射角度も変動する
。ところが上述した如き装置ごは、受光器が固定されて
いるので、反射光の6向変化に追従出庫ず、受光器が反
射光を正確にlにえ切れないご、欠陥信号と誤認してし
まうとい・う問題点があった。
Large-diameter seamless steel pipes such as oil country tubular goods are manufactured by hot rolling, so they have some bends. Moreover, the cross section may not be a perfect circle. When performing a C-inspection on the entire circumference of a thread cut at the end of such a tube, as the tube rotates, the angle of the projected light to the threaded portion changes, and the angle of reflection from the threaded portion also changes. However, since the light receiver of the above-mentioned device is fixed, it cannot follow the changes in the reflected light in the six directions, and if the light receiver cannot accurately capture the reflected light, it may misidentify it as a defect signal. There was a problem.

また管端の位置を正確に把握する手段を具備していない
ので、管端から投射光が外れたために反射光が無いのか
、或いは欠陥の存71−により投射光が散乱して反射光
が無いのかを′PI断することが困難であった。
Furthermore, since there is no means for accurately determining the position of the tube end, there may be no reflected light because the projected light has deviated from the tube end, or there may be no reflected light because the projected light is scattered due to the presence of a defect. It was difficult to determine the 'PI'.

更に光電変換し゛(得られる信号波形は複雑な波形を示
すので、この複雑な波形から欠陥を抽出することは容易
でなかった。
Furthermore, photoelectric conversion is performed (the resulting signal waveform exhibits a complex waveform, so it was not easy to extract defects from this complex waveform).

〔問題点を解決するための手段〕[Means for solving problems]

本発明は係る事情に鑑みなされたものであり、その目的
とするところは、管端にネジが加工され°Cいる管に対
し°ζ光束を軸方向に投射走査し、ネジ部からの反射光
を捉え、信号処理してネジの表面検査を行う装置によン
い°ζ、ネジ部からの反射光方向変化に受光器を追従さ
せる機構と、管端から外れた光を受ける受光器と、信号
処理装置とを具備するごとにより、大径の継目無管の如
く真直でない管に切られたネジの表面検査が可能であり
、管端の位置が簡単に判断でき、しかも欠陥信号の弁別
が容易であるネジの表面検査装置を提供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to project and scan a beam of light in the axial direction onto a tube with a screw threaded at its end, and to detect the reflected light from the threaded portion. The device that detects the light, processes the signal, and inspects the surface of the screw is equipped with a mechanism that makes the receiver follow the change in the direction of the reflected light from the thread, and a receiver that receives the light that deviates from the tube end. By being equipped with a signal processing device, it is possible to inspect the surface of threads cut into non-straight pipes such as large-diameter seamless pipes, and the position of the pipe end can be easily determined, and defect signals can be discriminated. The object of the present invention is to provide a screw surface inspection device that is easy to use.

本発明に係るネジの表面検査装置は管端にネジが加工さ
れζいる管に対し゛(、光束を軸方向に走査し、受光部
に゛Cネジ部からの反射光を捉え、これを光電変換した
電気信号を処理し゛ζネジの表面検査を行う装置におい
て、前記受光部の両側に配設される複数の追従用受光器
と、iiJ記追従用受光鼎からの出力電気信号に基き受
光部が前記反射光を一定条件C捉えるように受光部を追
従せしめる追従機構と、前記管端を越える位置に投射さ
れる光束を受光する管端受光器と、前記電気信号を2値
化する波形整形器と、前記波形整形器の出力とし゛(得
られるパルス列を受け′ζパルス幅を測定する時間幅測
定器とを具備し、i:1記パルス幅に基い゛ζネジ表面
の欠陥の自照を判定すべくなしたことを特徴とする。
The thread surface inspection device according to the present invention scans a light beam in the axial direction of a pipe with a thread machined at the end of the pipe, captures the reflected light from the threaded part in the light receiving part, and converts it into a photoelectric sensor. In an apparatus that processes converted electrical signals and inspects the surface of a a tracking mechanism that causes a light receiving section to follow the reflected light so as to capture the reflected light under a certain condition C; a tube end receiver that receives the light beam projected to a position beyond the tube end; and a waveform shaper that binarizes the electric signal. and a time width measuring device for receiving the pulse train obtained as the output of the waveform shaper and measuring the pulse width; It is characterized by what was done to judge.

〔実施例〕〔Example〕

以下本発明をその実施例を示す図面に基づいて説明する
。第1図は本発明に係る検査ヘッド部の概略図、第2図
は本発明のブロック図である。第1図においζ1ばその
管端にネジ部1.lが加工されている被検査鋼管、2.
2は被検査鋼管1を支持し゛ζ軸心回転させるための回
転ロールである。被検査鋼管lは回転ロール2,2の対
複数を備えた検査装置へ搬送されCきζ、ごこCネジ検
査が行われる。
The present invention will be described below based on drawings showing embodiments thereof. FIG. 1 is a schematic diagram of an inspection head section according to the present invention, and FIG. 2 is a block diagram of the present invention. In Fig. 1, there is a threaded portion 1 at the end of the tube. A steel pipe to be inspected that has been processed; 2.
Reference numeral 2 denotes a rotating roll for supporting the steel pipe 1 to be inspected and rotating it around the ζ axis. The steel pipe 1 to be inspected is transported to an inspection device equipped with a plurality of pairs of rotating rolls 2, 2, and subjected to a C-thread inspection.

被検査鋼管lの」−力には検査ヘット部収納箱4が設け
てあり、検査ヘット部収納箱4の底部にはその底部の略
半分の面積を有し、被検査鋼管lの軸心方向に長い矩形
状の開口3がある。また検査ヘッド部収納箱4の内部に
はレーデ−光束を出射するレーデ−管5、光束径を調節
するコリメータレンズ6、光路を変更するためのミラー
7、光束の角速度を一定とずべく定速回転する振動型ス
キャナー8、ネジ部1aにおける光束の線速度を一定に
するためのF−θレンズ9、光路を変更する反射鏡lO
が設けられている。
An inspection head storage box 4 is provided at the bottom of the steel pipe 1 to be inspected, and the bottom of the inspection head storage box 4 has an area approximately half of the bottom of the box 4. There is a long rectangular opening 3 at the top. Inside the inspection head storage box 4, there is a radar tube 5 that emits a radar beam, a collimator lens 6 that adjusts the diameter of the beam, a mirror 7 that changes the optical path, and a constant speed that keeps the angular velocity of the beam constant. A rotating vibrating scanner 8, an F-θ lens 9 for keeping the linear velocity of the light beam constant at the threaded portion 1a, and a reflecting mirror 1O for changing the optical path.
is provided.

レーザー管5とコリメータレンズ6とは光軸を一致させ
゛C配置してあり、レーザー管5を出射した光束はコリ
メータレンズ6を通っ°ζζ被検裏表面上最適な光束径
を有するようになる。光束径が大きいと微細欠陥に対゛
4る検出能が低下し逆に光束径が小さずぎるとネジ加工
の際に表面に生成される加工痕も反射光を乱すことにな
り、S/N比が低下する。鋼管の管端に切られたネジ検
査の場合、光束径は100μm程度が適当である。
The laser tube 5 and the collimator lens 6 are arranged so that their optical axes coincide with each other, and the beam emitted from the laser tube 5 passes through the collimator lens 6 so that it has an optimal beam diameter on the back surface of the object to be inspected. . If the diameter of the beam is large, the detection ability for minute defects will be reduced.On the other hand, if the diameter of the beam is too small, the machining marks generated on the surface during screw machining will also disturb the reflected light, which will reduce the S/N ratio. decreases. In the case of inspecting a screw cut at the end of a steel pipe, the diameter of the luminous flux is approximately 100 μm.

コリメータレンズ6を通った光束は、その進行力向前力
に設けられたミラー7に反射して光路が90°変更され
る。ミラー7にて光路変更された光束は振動型スキャナ
ー8に゛ζ反射され、一定の角速度で走査される。次に
光束は振動型スキャナー8にて反射され、一定の角速度
で走査される。次に光束は振動型スキャナー8の前方に
設けられたF−θレンズ9を通過する。F−θレンズ9
は被検査面での光束の線速度を一定となす様に変換する
。F−θレンズ9を通過した光束は反射&R1Oにより
反射され、検査ヘッド部収納箱4の底面開口3よりネジ
の軸力向に走査されながらネジ部1aに投射される。投
射光の走査範囲はネジ部1aの全長を覆うべく、管端を
越えた位置からネジ切り上り部端を越えた位置まで必要
である。
The light beam that has passed through the collimator lens 6 is reflected by a mirror 7 provided in the direction of its advancing force, and its optical path is changed by 90°. The light beam whose optical path has been changed by the mirror 7 is reflected by the vibration type scanner 8 and scanned at a constant angular velocity. Next, the light beam is reflected by a vibration type scanner 8 and scanned at a constant angular velocity. Next, the light beam passes through an F-θ lens 9 provided in front of the vibrating scanner 8. F-theta lens 9
converts the linear velocity of the light beam on the surface to be inspected to be constant. The light flux that has passed through the F-θ lens 9 is reflected by the reflection &R1O, and is projected onto the threaded portion 1a while being scanned in the direction of the axial force of the screw from the bottom opening 3 of the inspection head storage box 4. In order to cover the entire length of the threaded portion 1a, the scanning range of the projected light is required from a position beyond the tube end to a position beyond the end of the threaded upward portion.

なおネジ部の検査密度を高めるために、この走査は管の
回転による周方向の移i1+に比し°ζ十分速い速度が
必要である。
In order to increase the inspection density of the threaded portion, this scanning needs to be performed at a speed that is sufficiently faster than the circumferential movement i1+ caused by the rotation of the tube.

以上のようにし°ζ第1図の矢印に示り如く、レーザー
管5を出射した光束はコリメータレンズ6を通り、ミラ
ー7、振動型スキャナー8にて反射され、F−θレンズ
を通過し、反射鏡IOにより反射されてネジ部1aに投
射される。
In the above manner, as shown by the arrow in FIG. The light is reflected by the reflecting mirror IO and projected onto the threaded portion 1a.

また検査ヘッド部収納箱4の底部開口3にはオプティカ
ルファイバ束11の先端を鋼管lの軸心方向に長い矩形
状に並べ“(あり、開口3の幅方向に移動し得る主受光
器端部12があり、該ファイバ束11の基端は光電子増
倍管13に集束さ才じζい°C円形状となっ°ζいる。
In addition, in the bottom opening 3 of the inspection head storage box 4, the tips of the optical fiber bundles 11 are arranged in a long rectangular shape in the axial direction of the steel pipe l. 12, and the proximal end of the fiber bundle 11 has a circular shape with a photomultiplier tube 13 for focusing.

主受光器端部12の長子方向中央の両側に2個の追従用
受光器14 jl 、 14rが固着されごいる。ヘッ
ド部収納箱4の底部内面には曲がり追従用モータ15が
設置され°ζいる。曲がり追従用モータ15の出力軸に
はネジ■7が同軸的に固定されていて、ネジ17にはそ
の一端が前記主受光器端部12に固定されどいる移動軸
18がこれと垂直に螺合連結され°ζおり、主受光器端
部12は曲がり追従用モータ15の駆動回転により開口
3内をその幅方向両側に移動する。
Two tracking light receivers 14 jl and 14 r are fixed to both sides of the center of the main light receiver end 12 in the longitudinal direction. A bend following motor 15 is installed on the inner surface of the bottom of the head storage box 4. A screw 7 is coaxially fixed to the output shaft of the bend following motor 15, and a moving shaft 18, one end of which is fixed to the main receiver end 12, is screwed perpendicularly to the screw 17. The main receiver ends 12 are connected to each other, and the main receiver end portion 12 moves within the opening 3 to both sides in the width direction thereof by the driving rotation of the bend following motor 15.

更に管端位置検知用としζ、搬送を受けて管端が軸心方
向に移動りる際に管端が到達し得る可能性のある最前端
位置を僅かに超える鋼管l下方に管端受光器16が設け
られ°ζいる。
Furthermore, for the purpose of detecting the position of the tube end, a tube end receiver is placed below the steel tube slightly beyond the frontmost position that the tube end may reach when the tube end moves in the axial direction due to conveyance. 16 are provided.

次に第2図に基づき検査ヘッド部の追従機構につい゛C
説明する。ネジ部1aに照射した光束の反射光は、主受
光器端部12よりオプティカルファイバ束11を通っ゛
ζ光電子増倍管■3内に入射される。ここで被検査鋼管
1の管端が真直でない場合は反射光の方向が変化し、主
受光器端部12の長子方向中央の両側に固着された2個
の追従用受光器141゜14r人々の受光量に差異が生
じる。追従用受光器1、B、 14rの受光量は比較増
幅器30に伝送され、両追従用受光器1411 、14
rの受光量の差に基づき、曲り追従用モータ15が駆動
される構成にしζある。
Next, based on Fig. 2, we will explain the tracking mechanism of the inspection head section.
explain. The reflected light of the luminous flux irradiated onto the threaded portion 1a passes through the optical fiber bundle 11 from the main receiver end 12 and enters into the photomultiplier tube 3. Here, if the pipe end of the steel pipe 1 to be inspected is not straight, the direction of the reflected light changes, and the two tracking light receivers 141° 14r fixed on both sides of the center in the longitudinal direction of the main receiver end 12 There will be a difference in the amount of light received. The amount of light received by the tracking receivers 1, B, and 14r is transmitted to the comparison amplifier 30, and both tracking receivers 1411 and 14r
There is a configuration in which the bend following motor 15 is driven based on the difference in the amount of received light r.

これにより主受光器端部12がその幅方向両側に移動す
る。
This moves the main receiver end 12 to both sides in its width direction.

例えば追従用受光器1iの受光量が追従用受光器14r
の受光量より多い場合、反射光が主受光器端部12の追
従用受光器14j!側に偏っているのであるから、曲り
追従用モータ15を駆動して、両追従用受光器141 
、14r夫々の受光量が相等しくなるように、主受光器
端部12を追従用受光器14r側に移動させる。従っ°
ζ被検査鋼管lが曲がっていても、1、述した追従機構
より反射光を確実に捉えることができる。
For example, the amount of light received by the tracking receiver 1i is different from the amount of light received by the tracking receiver 14r.
If the amount of light received is greater than the amount of light received by the following light receiver 14j of the main receiver end 12, the reflected light reaches the following light receiver 14j! Since the curve is biased to the side, the curve following motor 15 is driven and both the following light receivers 141
, 14r, the main receiver end 12 is moved toward the tracking receiver 14r so that the amount of light received by each of the receivers 14r becomes equal. Follow °
ζ Even if the steel pipe to be inspected l is bent, the reflected light can be reliably captured by the tracking mechanism described above.

次に管端受光器16の機能につい°ζ説明する。光束を
軸方向に走査し°Cネジ部1aに投射する場合、管端受
光器16は管端を超える位置に配設され°ζいるので、
光束が管端から外れたときに、管端受光器16が走査さ
れる光束を受光する。管端受光器16の出力は後述場る
判定器26へ入力され、欠陥の有無判定に用いられる。
Next, the function of the tube end light receiver 16 will be explained. When scanning the luminous flux in the axial direction and projecting it onto the °C screw portion 1a, the tube end receiver 16 is disposed at a position beyond the tube end, so
When the light beam leaves the tube end, the tube end receiver 16 receives the scanned light beam. The output of the tube end light receiver 16 is input to a determining device 26, which will be described later, and is used to determine the presence or absence of a defect.

即ち管端受光器16の受光の有無を利用することにより
、管端受光器16が受光しζいる場合はネジ部1aには
光束が投射され゛(いないことが検知でき、反射光がな
い状態を欠陥信号とし”ご誤認することがない。
That is, by using the presence or absence of light reception by the tube end light receiver 16, if the tube end light receiver 16 is receiving light, a luminous flux is projected onto the threaded portion 1a. There is no need to misidentify this as a defect signal.

第3図において(ア)はバットレスネジのネジ山の形状
を示J模式図、(イ)は健全なバットレスネジを第1図
で示す光学系に“ζ検査した場合の光電子増倍管13の
信寸波形図、(つ)は該信号波形図を(イ)に破線で示
′!l閾値レベルで2値化し゛ζ得タパルス列、(1)
はバフ1ヘレス茅ジにおける代表的な欠陥に対する光電
子増倍管13の信号波形図、(オ〉は該信号波形FgJ
を(1)に破線で示−J閾値レベルで2 (A化しζ得
たパルス列を人々表す6 第3図(1)における欠陥信号はaの如きディップ信号
、bの如きパルス幅減少の信号、Cの如き低レベルの信
号に大別される。従って第3図(1)に示す信号変化を
検出するごとにより、欠陥が検出され得る。aの信号は
パルス列(オ)中の パルスが“H”レベルにある時間
幅(第5図T1(、以下II幅と略J)及びパルスが“
1、ルヘルにある時間幅(第5図TL、以下I−幅と略
1)が所定値より小さいことご検出可能ごある。bの信
号はパルス列(オ)中のパルスl(幅が所定値より小さ
い、及び1、幅が所定値より大きいことで検出可能であ
る。Cの45号はパルス列(オ)中のL幅が所定値より
大きいことで検出可能ごある。
In Figure 3, (A) is a schematic diagram showing the shape of the thread of a buttress screw, and (B) is a schematic diagram showing the shape of the thread of a buttress screw, and (B) is a diagram of the photomultiplier tube 13 when a healthy buttress screw is subjected to "ζ inspection" in the optical system shown in Figure 1. The signal waveform diagram (1) is the signal waveform diagram shown by the broken line in (A)'!l, which is binarized at the threshold level.
is a signal waveform diagram of the photomultiplier tube 13 for a typical defect in Buff 1 Helles Kaya, (O) is the signal waveform FgJ
is shown by the broken line in (1) - J threshold level 2 (represents the pulse train obtained by converting into It is roughly divided into low level signals such as C. Therefore, a defect can be detected by detecting the signal change shown in Fig. 3 (1). "The time width (T1 (hereinafter referred to as II width and abbreviated as J) at the level (Fig. 5) and the pulse are "
1. It is possible to detect that the time width in Luher (TL in FIG. 5, hereinafter referred to as I-width and approximately 1) is smaller than a predetermined value. The signal b can be detected by the pulse l (width smaller than a predetermined value) in the pulse train (o) and the width of 1 being larger than a predetermined value. It can be detected if it is larger than a predetermined value.

同様に第4図におい°ζ(力)はラウンドネジのネジ山
の形状を示す模式図、(t)は健全なラウンドネジを第
1図C示ず光学系に゛ζ検査した場合の光電子僧侶管1
3の信号波形図、(り)は該信号波形図を(キ)に破線
でボタ闇値レベルで2値化して得たパルス列、(ケ)は
ラウンドネジにおける代表的な欠陥に対する光電子僧侶
管13の信号波形図、(コ)は該信号波形図を(ケ)に
破線で示す闇値レベルで2値化しζ得たパルス列を人々
表す。
Similarly, in Figure 4, °ζ (force) is a schematic diagram showing the shape of the thread of a round screw, and (t) is a photoelectronic monk when a healthy round screw is inspected with an optical system (not shown in Figure 1). tube 1
3 signal waveform diagram, (ri) is a pulse train obtained by binarizing the signal waveform diagram at the bottom level with a broken line in (g), and (ke) is a photoelectronic monk tube 13 for a typical defect in a round screw. The signal waveform diagram (C) represents the pulse train obtained by binarizing the signal waveform diagram at the dark value level shown by the broken line in (C).

ここで第4図(キ)に示す波形と第7図に示す波形どの
差異は光束を照射する角度差に基づくのである。つまり
第6図の如くネジ表面法線とのなす角度が人である場合
、ネジ山部と谷部との半径差が大きく影習する為、それ
ぞれの部位からの反射光は異なる方向へ行くので受光器
では例えば第7図の如くネジ山部のみの信号を受光する
Here, the difference between the waveform shown in FIG. 4(g) and the waveform shown in FIG. 7 is based on the difference in the angle at which the light beam is irradiated. In other words, when the angle formed with the normal to the screw surface is approximately the same as shown in Figure 6, the difference in radius between the thread crest and the trough is large, so the reflected light from each part goes in different directions. The light receiver receives signals from only the threaded portion, as shown in FIG. 7, for example.

第4図(ケ)における欠陥信号はdの如きディップ信号
、eの如き片側のパルス幅減少の信号、fの如き両側の
パルス幅減少の信号に大別される。
The defect signals in FIG. 4(e) are roughly divided into dip signals such as d, signals with a reduced pulse width on one side such as e, and signals with reduced pulse widths on both sides such as f.

従っ゛ζ第4図(ケ)に示す信号変化を検出することに
より、欠陥が検出され得る。dの如き信号はパルス列(
コ)中のパルス0幅及び12幅が所定(tAより小さい
ことで検出可能である。eの信号はパルス列(コ)中の
パルス0幅が所定値より小さい、及びL幅が所定イ14
より大きいことで検出可能である。fの信号はパルス列
(コ)中のパルスH62が所定値より小さい、及びL幅
が所定値より大きいことご検出可能である。
Therefore, defects can be detected by detecting the signal changes shown in FIG. 4(e). A signal like d is a pulse train (
The signal e can be detected when the pulse 0 width and 12 width in the pulse train (g) are smaller than the predetermined value (tA).The signal e can be detected when the pulse 0 width and the L width in the pulse train
It can be detected by being larger. The f signal can detect that the pulse H62 in the pulse train (a) is smaller than a predetermined value and that the L width is larger than a predetermined value.

この結果、a −rまでの信号変化は該当する被検査パ
ルスのL幅及びLllgが、夫々所定値範囲内に入って
いるか否かを調べるごとにより、欠陥の有無を検査する
ごとがごきる。
As a result, the presence or absence of defects is inspected every time the signal changes from a to r by checking whether the L width and Lllg of the corresponding pulse to be inspected are within predetermined value ranges.

ごごで上記の処理を実現するための信号処理機構を第2
図に基づいζ説明する。ネジ部1aからの反射光は、主
受光器端部12から光電子増倍管13に入射され゛ζ光
電変換される。図中21は光電変換後の信号波形(イ)
または(キ)を適当なrA値シレールで2値化する波形
整形器、22は2値波形(つ)また↓よ(り)の立上り
を検出する正極エツジ検出器、23は2値波形(つ)ま
たは(り)の立下りを検出づる負極エツジ検出器、24
は正極エツジ検出器22の出力発生時から、負極エツジ
検出器23の出力発生時までの時間幅(第5図T ++
 )を測定する時間幅測定器、25は負極エツジ検出器
23の出力発生時から正極エツジ検出器22の出力発生
特進の時間幅(第5図TL)を測定jる時間幅測定器、
26は時間幅測定器24.25の出力を受け゛(欠陥の
4無をや1定する?J定器ごある。
A second signal processing mechanism is installed to realize the above processing.
ζ will be explained based on the figure. The reflected light from the threaded portion 1a enters the photomultiplier tube 13 from the main receiver end 12 and undergoes photoelectric conversion. 21 in the figure is the signal waveform after photoelectric conversion (A)
22 is a positive edge detector that detects the rising edge of the binary waveform (2) or ↓, and 23 is the binary waveform (2). ) or (ri) negative electrode edge detector for detecting the falling edge of (ri), 24
is the time width from when the positive edge detector 22 generates the output to when the negative edge detector 23 generates the output (Fig. 5 T ++
), 25 is a time width measuring device that measures the time width (FIG. 5 TL) from the output generation time of the negative electrode edge detector 23 to the output generation time of the positive electrode edge detector 22;
26 receives the outputs of the time width measuring devices 24 and 25.

第2図におい′CパルスH幅の所定値(上限T、、。In FIG. 2, a predetermined value of the C pulse H width (upper limit T, . . .

下限TH2)、パルス17、幅の所定値(−1,限T、
1゜下限TL2)は設定値として判定器26に予め与え
られている。
Lower limit TH2), pulse 17, predetermined width value (-1, limit T,
The 1° lower limit TL2) is given to the determiner 26 in advance as a set value.

斯かる構成において、(オ)または(コ)の様なパルス
列のLI幅、L幅が順次時間幅測定器24゜25で測定
される。時間幅測定器24の出力THは、負極上・7ジ
検出器23の出力発生のタイミングご判定器26に取り
込まれ、TH1+TH2との間で大小判定され、測定値
がTHlより大きいか、或いはTH2より小さい場合は
欠陥発生信号27とパルスH幅異常を示す信号28とが
出力される。また同様に時間幅測定器25の出力T、は
、正極エツジ検出器22の出力発生のタイミングで判定
器26に取り込まれ、’rLl + ’rL2との間で
大小輯定され、測定イ16がTLIより大きいか、或い
はTL2より小さい場合は、欠陥発生信号27とパルス
L@異常を示1信号29とが出力される。従って欠陥判
別は容易である。
In such a configuration, the LI width and L width of a pulse train such as (e) or (e) are sequentially measured by time width measuring devices 24 and 25. The output TH of the time width measuring device 24 is taken into the timing judgment device 26 of the output generation of the negative pole top/7-stage detector 23, and is judged in magnitude between TH1+TH2, and whether the measured value is larger than THl or TH2 If it is smaller, a defect occurrence signal 27 and a signal 28 indicating pulse H width abnormality are output. Similarly, the output T of the time width measuring device 25 is taken into the determiner 26 at the timing when the output of the positive edge detector 22 is generated, and the magnitude is determined between 'rLl + 'rL2, and the measurement point 16 is determined. If it is larger than TLI or smaller than TL2, a defect occurrence signal 27 and a pulse L@1 signal 29 indicating abnormality are output. Therefore, defect determination is easy.

〔効果〕〔effect〕

以上詳述した如く、本発明ではネジ部1aからの反射光
に追従するための追従機構が設け“ζあるので、管端が
真直でない鋼管に切られたネジの表面欠陥の検出が可能
である。また管端を越える位置に管端受光器を設置しく
あるので、ネジ部1aからの反射光のない状態を欠陥信
号と誤認することがない。更に信号波形図として単純な
パルス信号を得ることとし°ζいるので、欠陥信号の判
別が簡単に行なえる等本発明は優れた効果を奏する。
As detailed above, in the present invention, a tracking mechanism is provided to follow the reflected light from the threaded portion 1a, so it is possible to detect surface defects in threads cut into a steel pipe whose pipe end is not straight. In addition, since the tube end light receiver is installed at a position beyond the tube end, the absence of reflected light from the threaded portion 1a will not be mistaken as a defect signal.Furthermore, it is possible to obtain a simple pulse signal as a signal waveform diagram. Therefore, the present invention has excellent effects such as being able to easily identify defective signals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る検査ヘッド部の概略図、第2図は
本発明のブロック図、第3図はバットレスネジについて
の信号波形図、第4図はラウンドネジについての信号波
形図、第5図は2値化信号による時間幅を示す模式図、
第6図は従来の検査装置の模式図、第7図は第6図の装
置により得た信号波形図である。 l・・・鋼管  2・・・回転ロール  5・・・レー
ザー管  6・・・コリメータレンズ  8・・・振動
型スキャナー  9・・・F−θレンズ  10・・・
反射鏡13・・・光電子増倍管  14 / 、 14
r・・・追従用受光器15・・・曲り追従用モータ  
lG・・・管端受光器不 3 図 ネ  4 口 耳5図 時間 算 T′7図 z 第 6 図
Figure 1 is a schematic diagram of the inspection head according to the present invention, Figure 2 is a block diagram of the present invention, Figure 3 is a signal waveform diagram for a buttress screw, Figure 4 is a signal waveform diagram for a round screw, and Figure 4 is a signal waveform diagram for a round screw. Figure 5 is a schematic diagram showing the time width of the binarized signal.
FIG. 6 is a schematic diagram of a conventional inspection device, and FIG. 7 is a signal waveform diagram obtained by the device shown in FIG. l...Steel pipe 2...Rotating roll 5...Laser tube 6...Collimator lens 8...Vibrating scanner 9...F-θ lens 10...
Reflector 13...Photomultiplier tube 14/, 14
r...Following receiver 15...Bending following motor
lG...tube end receiver missing 3 Fig. 4 Mouth and ear 5 Fig. Time calculation T'7 Fig. z Fig. 6

Claims (1)

【特許請求の範囲】 1、管端にネジが加工されている管に対して、光束を軸
方向に走査し、受光部にてネジ部からの反射光を捉え、
これを光電変換した電気信号を処理してネジの表面検査
を行う装置において、 前記受光部の両側に配設される複数の追従 用受光器と、 前記追従用受光器からの出力電気信号に基 き受光部が前記反射光を一定条件で捉えるように受光部
を追従せしめる追従機構と、 前記管端を越える位置に投射される光束を 受光する管端受光器と、 前記電気信号を2値化する波形整形器と、 前記波形整形器の出力として得られるパル ス列を受けてパルス幅を測定する時間幅測定器とを具備
し、 前記パルス幅に基いてネジ表面の欠陥の有 無を判定すべくなしたことを特徴とするネジ表面検査装
置。
[Claims] 1. A light beam is scanned in the axial direction of a tube whose end is threaded, and a light receiving portion captures the reflected light from the threaded portion,
A device for inspecting the surface of a screw by processing an electric signal obtained by photoelectrically converting the photoelectric signal, which comprises: a plurality of tracking light receivers disposed on both sides of the light receiving section; a tracking mechanism that causes the light receiving section to follow the reflected light so that the light receiving section captures the reflected light under certain conditions; a tube end light receiver that receives the light beam projected to a position beyond the tube end; and a binarization of the electric signal. It is equipped with a waveform shaper and a time width measuring device that receives a pulse train obtained as an output of the waveform shaper and measures the pulse width, and is designed to determine the presence or absence of defects on the screw surface based on the pulse width. A screw surface inspection device characterized by:
JP20969285A 1985-09-20 1985-09-20 Inspection instrument for surface of screw Granted JPS6269113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20969285A JPS6269113A (en) 1985-09-20 1985-09-20 Inspection instrument for surface of screw

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20969285A JPS6269113A (en) 1985-09-20 1985-09-20 Inspection instrument for surface of screw

Publications (2)

Publication Number Publication Date
JPS6269113A true JPS6269113A (en) 1987-03-30
JPH0422444B2 JPH0422444B2 (en) 1992-04-17

Family

ID=16577049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20969285A Granted JPS6269113A (en) 1985-09-20 1985-09-20 Inspection instrument for surface of screw

Country Status (1)

Country Link
JP (1) JPS6269113A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413405A (en) * 1987-07-08 1989-01-18 Kawasaki Steel Co Surface shape measuring instrument
JP2008185462A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Method and apparatus for judging quality of screw
JP2010523988A (en) * 2007-04-12 2010-07-15 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for optical measurement of external threads
JP2010210292A (en) * 2009-03-06 2010-09-24 Jfe Steel Corp Apparatus and method for measuring screw shape
WO2011093372A1 (en) * 2010-01-29 2011-08-04 住友金属工業株式会社 Defect inspection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6413405A (en) * 1987-07-08 1989-01-18 Kawasaki Steel Co Surface shape measuring instrument
JP2008185462A (en) * 2007-01-30 2008-08-14 Toyota Motor Corp Method and apparatus for judging quality of screw
JP2010523988A (en) * 2007-04-12 2010-07-15 ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Method and apparatus for optical measurement of external threads
JP2010210292A (en) * 2009-03-06 2010-09-24 Jfe Steel Corp Apparatus and method for measuring screw shape
WO2011093372A1 (en) * 2010-01-29 2011-08-04 住友金属工業株式会社 Defect inspection device
US9121833B2 (en) 2010-01-29 2015-09-01 Nippon Steel & Sumitomo Metal Corporation Defect inspecting apparatus

Also Published As

Publication number Publication date
JPH0422444B2 (en) 1992-04-17

Similar Documents

Publication Publication Date Title
JP5349742B2 (en) Surface inspection method and surface inspection apparatus
US4483615A (en) Method and apparatus for detecting checks in glass tubes
US3814946A (en) Method of detecting defects in transparent and semitransparent bodies
JPH01143945A (en) Detecting method for defect in tape
JPH0786470B2 (en) Disk surface inspection method and device
JPH11351850A (en) Method and apparatus for inspection of flaw in end part
US4099051A (en) Inspection apparatus employing a circular scan
JPS6269113A (en) Inspection instrument for surface of screw
JPS59141008A (en) Threaded portion inspecting device
JP2008145428A (en) Rod lens array inspection device and method
US8547547B2 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
JPH0833354B2 (en) Defect inspection equipment
JPH11230912A (en) Apparatus and method for detection of surface defect
JPS63298035A (en) Defect inspecting device
JPS6125042A (en) Surface-defect examining device
JPS5960344A (en) Method and device for automatically inspecting surface by coherent laser luminous flux
JPS6358135A (en) Pipe inner surface measuring apparatus
JPH0228815B2 (en)
US4077723A (en) Method of measuring thickness
JPH07270336A (en) Device for inspection of defect
JPS6191507A (en) Apparatus for measuring angle of inclination
JPS6358134A (en) Pipe inner surface shape measuring apparatus
JP3277400B2 (en) Optical disk defect inspection device
JPS62235511A (en) Surface condition inspecting apparatus
SU1296837A1 (en) Device for checking geometric dimensions and flaws of specimens with dissipating surfaces