JPS63241901A - Manufacture of zinc oxide type arrestor element - Google Patents

Manufacture of zinc oxide type arrestor element

Info

Publication number
JPS63241901A
JPS63241901A JP62074291A JP7429187A JPS63241901A JP S63241901 A JPS63241901 A JP S63241901A JP 62074291 A JP62074291 A JP 62074291A JP 7429187 A JP7429187 A JP 7429187A JP S63241901 A JPS63241901 A JP S63241901A
Authority
JP
Japan
Prior art keywords
zinc oxide
oxide type
phosphoric acid
lightning arrester
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074291A
Other languages
Japanese (ja)
Inventor
正洋 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62074291A priority Critical patent/JPS63241901A/en
Publication of JPS63241901A publication Critical patent/JPS63241901A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、酸化亜鉛形避雷器用素子の表面部を緻密に
して耐環境性を向上させるための、酸化亜鉛形避雷器素
子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing a zinc oxide type lightning arrester element for making the surface portion of the zinc oxide type lightning arrester element dense and improving its environmental resistance.

〔従来の技術〕[Conventional technology]

第5図は、例えば特公昭55−48441号公報に示さ
れた従来の避雷器用素子を示し、図において、非直線抵
抗体(1)の側面に側面高抵抗層(2)、さらにガラス
層(3)が設けられている。非直線抵抗体(1)の上下
面には電極(4)が設けられている。
FIG. 5 shows a conventional lightning arrester element disclosed, for example, in Japanese Patent Publication No. 55-48441. 3) is provided. Electrodes (4) are provided on the upper and lower surfaces of the non-linear resistor (1).

以上の構成において、側面抵抗層(2)は沿面放電を防
止し、放電耐量を大きくするために、非直線抵抗体(1
)の外周部に形成される。その組成は特公昭55−48
441号公報に示されているように、ZnO−8i02
−BizO3−8bzO3系混合物よりなる。これら混
合物を1000℃〜1400℃の温度範囲で焼成し、Z
nySbzOt2なるスピネル粒子やZn25 i04
などを生成することによって、高抵抗I@を形成する。
In the above configuration, the side resistance layer (2) is provided with the nonlinear resistor (1) in order to prevent creeping discharge and increase discharge withstand capacity.
) is formed on the outer periphery of the Its composition is from the 1970s to 1980s.
As shown in Publication No. 441, ZnO-8i02
-BizO3-8bzO3-based mixture. These mixtures were fired at a temperature range of 1000°C to 1400°C, and Z
Spinel particles called nySbzOt2 and Zn25 i04
etc., to form a high resistance I@.

しかし、このようにして形成された側面高抵抗層(2)
は、厚さが不均一になったり、ピンホールを含むことが
ある。そのため、ガラス層(3)をさらに形成すること
がある。
However, the side high resistance layer (2) formed in this way
may have uneven thickness or contain pinholes. Therefore, a glass layer (3) may be further formed.

ガラス層(3)は側面高抵抗層(2)と同じ機能と、側
面高抵抗層(2)のピンホールを埋めることによって、
耐環境性を向上させる役割りを担う。
The glass layer (3) has the same function as the side high resistance layer (2), and by filling the pinholes in the side high resistance layer (2),
It plays a role in improving environmental resistance.

ガラス層(3)はガラスフリットとエチルセルロース、
ブチルカルピトールを含むバインダとを混合し、セロソ
ルブアセテート等の溶剤を加えて混練しペーストを作り
、これで側面高抵抗7m (21を被覆し、200℃〜
400℃でバインダを除去し、400℃〜700℃で焼
き付けて形成する。
The glass layer (3) is made of glass frit and ethyl cellulose,
Mix with a binder containing butyl calpitol, add a solvent such as cellosolve acetate and knead to make a paste.
The binder is removed at 400°C, and the film is formed by baking at 400°C to 700°C.

〔発明が解決しようとする問題点3 以上のような従来の酸化亜鉛形MW器素子の製造方法は
、避重器用素子の耐環境性を向上させるために以上のよ
うに製造されるので、製造工程が増え、人手や熱エネル
ギーを多く必要としていた。
[Problem to be Solved by the Invention 3 The conventional method for manufacturing zinc oxide type MW device elements as described above is manufactured as described above in order to improve the environmental resistance of the element for a shelter. This required more steps, more manpower, and more heat energy.

また、バインダ除去が不十分などのため酸素不足の状態
が生じ、ガラス焼付の工程で素子のV−I特性を悪化さ
せるなどの問題点があった。
In addition, insufficient removal of the binder causes a state of oxygen deficiency, which causes problems such as deterioration of the VI characteristics of the device during the glass baking process.

この発明は上記のような問題点を解消するためになされ
たもので、熱エネルギーを多く必要とせずにv−1特性
も悪化させることなく、耐環境性の大きい素子を製造す
ることができる酸化亜鉛形避雷器素子の製造方法を得る
ことを目的とする。
This invention was made in order to solve the above-mentioned problems, and it is an oxidation method that makes it possible to manufacture elements with high environmental resistance without requiring a lot of thermal energy and without deteriorating the V-1 characteristics. The purpose of this invention is to obtain a method for manufacturing a zinc type lightning arrester element.

c問題点を解決するための手段〕 この発明に係る酸化亜鉛形社重器素子の製造方法は、酸
化亜鉛形避富器素子用成形体を燐酸を含む溶液に浸漬し
た後、850℃〜950℃の温度範囲で1次焼成し、側
面高抵抗層形成用材料を被覆して2次焼成を行う。
Means for Solving Problem c] The method for manufacturing a zinc oxide type heavy equipment element according to the present invention includes immersing a molded body for a zinc oxide type futuristic element in a solution containing phosphoric acid, and then heating the molded body at a temperature of 850°C to 950°C. The first firing is performed in a temperature range of 0.degree. C., and the second firing is performed after coating with a material for forming a high resistance layer on the side surface.

〔作 用〕[For production]

この発明のように燐酸を含む溶液に成形体を浸漬すると
、成形体の微小な空隙に硼酸が侵入し、2次焼成により
、この燐酸と成形体が反応し成形体の表面を緻密化する
When a molded body is immersed in a solution containing phosphoric acid as in the present invention, boric acid enters the minute voids of the molded body, and during secondary firing, the phosphoric acid reacts with the molded body to densify the surface of the molded body.

〔実施例〕〔Example〕

以下、この発明の一実施例について説明する。 An embodiment of the present invention will be described below.

酸化亜鉛を主成分とし、添加物としてそれぞれ0.1〜
2.0モル%の酸化ビスマス、酸化アンチモン、酸化コ
バルト、酸化マンガン、酸化クロム。
The main component is zinc oxide, and each additive is 0.1~
2.0 mol% bismuth oxide, antimony oxide, cobalt oxide, manganese oxide, chromium oxide.

酸化シリコンおよび0.001〜0.1モル%の硝酸ア
ルミニウムを選び、粉砕、混合、造粒の後、成形体を成
形した。この成形体を過飽和な燐酸(H3PO4)水溶
液に1分間浸漬し、乾燥後、950℃で1次焼成を行っ
た。次に側面高抵抗層形成用のZnO−8iO2−Bi
 203−8bzO3系混合物を付着し、1190℃で
2次焼成を行った。研磨、1!極付けをし、実験品Aを
得た。
Silicon oxide and 0.001 to 0.1 mol % of aluminum nitrate were selected, and after pulverization, mixing, and granulation, a molded body was formed. This molded body was immersed in a supersaturated phosphoric acid (H3PO4) aqueous solution for 1 minute, dried, and then primary fired at 950°C. Next, ZnO-8iO2-Bi for forming a side high resistance layer.
A 203-8bzO3-based mixture was applied and secondary firing was performed at 1190°C. Polishing, 1! After attaching the poles, Experimental Product A was obtained.

なお、1次焼Ffl温度を950°Cとしたのは、2次
焼成時の側面高抵抗層と素体の割れを防ぐためである。
Note that the primary firing Ffl temperature was set to 950°C in order to prevent cracking of the side high resistance layer and the element body during the secondary firing.

成形体を燐眠水@液に浸漬せずに、他の工程は上記実験
品Aと同様にして実験品Bを得た。
Experimental product B was obtained in the same manner as experimental product A, except that the molded body was not immersed in phosphorescent water.

これら実験品A、Bを100℃の油中に放置し耐油試験
を行った。
These experimental products A and B were left in oil at 100°C to perform an oil resistance test.

素子に1fiAを流すのに必要な藺、圧をVBnAとす
るとき、■1mAX0.5なる電圧を素子に課電し、素
子を流れる電流の変化を測定して第2図を得た。
When the voltage required to cause 1fiA to flow through the element is VBnA, a voltage of 1 mAX0.5 was applied to the element, and the change in the current flowing through the element was measured to obtain Figure 2.

この図かられかるように、実験品Aは、100℃の油中
で200 Hr課屯しても直流の増加は認められなかっ
た。一方、実験品Bでは、油が素子に侵入したため(こ
れはガスクロマトグラフにより油成分を検出した)、素
子の抵抗値が下がり、電流が増加した。
As can be seen from this figure, no increase in direct current was observed in experimental product A even after 200 hours of use in oil at 100°C. On the other hand, in experimental product B, oil entered the element (the oil component was detected using a gas chromatograph), so the resistance value of the element decreased and the current increased.

燐酸(H3PO4= 0,5 P2O5・1.5 H2
O)を加熱すると、H2Oが蒸発してPzOsとなり、
酸化燐となる。
Phosphoric acid (H3PO4= 0.5 P2O5・1.5 H2
When O) is heated, H2O evaporates and becomes PzOs,
It becomes phosphorous oxide.

第3図は、エフ・エル・カトナクとエフ・エイ・フンメ
/l/ (F*LsKatnack and FIIA
eHunmel )が[ジャーナル オブ エレクトロ
ケミカル ソサイティ(J。
Figure 3 shows F*LsKatnack and FIIA
eHunmel) [Journal of Electrochemical Society (J.

F:、lectrochem、5oc0.) 1 o 
5 C31132(1958) Jに発表した酸化燐と
酸化亜鉛の状態図であり、第4図は、イー−エム・レヴ
インとアール・ニス・ロス(E−M・Levin an
d R*S*Roth)が[ジャーナル オプ リサー
チ ナショナル ビューロー スタンダード(J 、R
e5eavchNat1.Bur、5fandards
、) 68Ar2]202(1964>JK全発表た酸
化燐とビスマスの状態図であり、bccはボディ セン
タ キュービック フェーズ(body center
edcubic phase) 、Cはキュービック(
cubic) BizOa 。
F:, electrochem, 5oc0. ) 1 o
5 C31132 (1958) This is a phase diagram of phosphorous oxide and zinc oxide published in J.
d R*S*Roth) is [Journal Op Research National Bureau Standard (J, R
e5eavchNat1. Bur, 5 standards
,) 68Ar2] 202 (1964> JK fully published phase diagram of phosphorous oxide and bismuth, bcc is body center cubic phase (body center cubic phase)
edcubic phase), C is cubic (
cubic) BizOa.

ssはソリッド ソリューショy(solid 5ol
ntion)を示している。
ss is solid solution
tion).

これら状態図から分かるように、酸化燐は酸化亜鉛と共
晶反応し、酸化ビスマスとも反応をする。
As can be seen from these phase diagrams, phosphorus oxide undergoes a eutectic reaction with zinc oxide and also reacts with bismuth oxide.

酸化亜鉛粒子は液状の酸化ビスマスを介して液相成長す
るが、酸化燐の存在は酸化ビスマスの活動を活発化し液
相成長を促進する。又、酸化燐は酸化亜鉛とも反応し酸
化亜鉛の粒成長を促進する。
Zinc oxide particles grow in a liquid phase via liquid bismuth oxide, but the presence of phosphorus oxide activates the activity of bismuth oxide and promotes liquid phase growth. In addition, phosphorus oxide also reacts with zinc oxide and promotes grain growth of zinc oxide.

よって燐酸溶液に浸漬して燐酸が浸漬した素体部では焼
結反応がより一層進み、緻密な層が形成されると考えら
れる。
Therefore, it is thought that the sintering reaction progresses even further in the element body part immersed in phosphoric acid by immersing it in a phosphoric acid solution, and a dense layer is formed.

その結果、この実施例による素子の断面は第1図のよう
に示すことができる。第1図で、符号(1)。
As a result, the cross section of the device according to this embodiment can be shown as shown in FIG. In FIG. 1, symbol (1).

(2) 、 (41は第5図におけると同様な部分であ
る。(5a)は素体の側面側に形成された緻密な層、(
5b)は素体の上、下面部に形成された緻密な層を示す
(2), (41 is the same part as in Fig. 5. (5a) is a dense layer formed on the side surface of the element body,
5b) shows a dense layer formed on the upper and lower surfaces of the element body.

燐酸溶液に浸漬した後、2次焼成を行うと以上のような
反応により微密な層(5aL(5b)が形成される。こ
のため本素子は、高過油中に放置されても油の侵入をこ
の緻密な層(5a)、(5b)によって妨げることがで
きるので、油によるV−I特性劣化は生じない。
When secondary firing is performed after immersion in a phosphoric acid solution, a fine layer (5aL (5b)) is formed due to the above reaction.Therefore, even if this element is left in a high-purity oil, it will not absorb oil. Since penetration can be prevented by these dense layers (5a) and (5b), no deterioration of the VI characteristic due to oil occurs.

なお、上記実施例では、燐酸溶液を水を用いて炸裂した
場合について示したが、アルコールを用いて炸裂しても
よい。
In the above embodiments, the phosphoric acid solution was exploded using water, but it may also be exploded using alcohol.

また、燐酸溶液に浸漬中、超音波などによる振動を素子
と溶液にかけ、燐酸の浸入を促進すると、一層効果的で
ある。
Further, it is even more effective to apply vibrations such as ultrasonic waves to the element while it is immersed in the phosphoric acid solution to promote penetration of the phosphoric acid.

さらに、燐酸溶液に浸漬する代りに、溶液をスプレーで
吹きつけても効果はある。
Furthermore, instead of dipping in the phosphoric acid solution, spraying the solution can also be effective.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、酸化亜鉛形避富器素
子用成形体を燐酸溶液に浸漬した後、1次焼成し、側面
高抵抗層形成用材料を被覆して2次畑成したので、緻密
な層が形成され、耐環境性が向上し、V−I特性を安定
に製造でき、歩留りが高くなるという効果がある。
As described above, according to the present invention, a molded body for a zinc oxide type fan escaper element is immersed in a phosphoric acid solution, and then subjected to primary firing, and then coated with a material for forming a side high resistance layer to form a secondary field. Therefore, a dense layer is formed, environmental resistance is improved, VI characteristics can be stably manufactured, and the yield is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図はこの発明の一実施例を説明するための
もので、第】図は製作した素子の断面図、第2図は耐油
性試験結果を示す特性紛図、第3図はZn0−PzOs
系の状態図、第4図はBizOs −P2O3系の状態
図、第5図は従来の酸化亜鉛形避麿器素子の断面図であ
る。 (1)・・酸化亜鉛形の非直線抵抗体、(2)・・側面
高抵抗層、(4)拳・電極、(5a)、(5b)・・緻
密な層。 なお、各図中、同一符号は同−又は相当部分を示す。 1 : 作直pL拍1し俸 2 : イpIJ面島1で(亨1「層 4 電極 5a、5b : 纜牙1層 1e溌虜〔イヒ、牽 (IX−=!(≧)r。 5白中掃電呵閤(Hr) 犀3図 犀4図 MOL −Is 手続補正書 昭和6410月21日
Figures 1 to 4 are for explaining one embodiment of the present invention, where Figure 1 is a cross-sectional view of the fabricated element, Figure 2 is a characteristic graph showing the oil resistance test results, and Figure 3 is a characteristic diagram showing the results of the oil resistance test. is Zn0-PzOs
FIG. 4 is a phase diagram of the BizOs-P2O3 system, and FIG. 5 is a cross-sectional view of a conventional zinc oxide type arrester element. (1)... Zinc oxide type non-linear resistor, (2)... Side high resistance layer, (4) Fist/electrode, (5a), (5b)... Dense layer. In each figure, the same reference numerals indicate the same or corresponding parts. 1: Sakunai pL beat 1 and pay 2: IpIJ Menjima 1 (亨 1 "layer 4 electrodes 5a, 5b: 纯 1 layer 1e 挌唌〔Ihi, き (IX-=!(≧)r. 5 Hakuchu Kanden Kan (Hr) Rhinoceros 3rd figure Rhinoceros 4th figure MOL-Is Procedural amendment dated October 21, 1982

Claims (3)

【特許請求の範囲】[Claims] (1)酸化亜鉛形避雷器素子用成形体を燐酸を含む溶液
に浸漬した後、850℃〜950℃の温度範囲で1次焼
成し、側面高抵抗層形成用材料を被覆して2次焼成を行
う酸化亜鉛形避雷器素子の製造方法。
(1) After immersing a molded body for a zinc oxide type lightning arrester element in a solution containing phosphoric acid, it is first fired in a temperature range of 850°C to 950°C, then coated with a material for forming a side high resistance layer, and then subjected to a second firing. A method for manufacturing a zinc oxide type lightning arrester element.
(2)過飽和な燐酸水溶液を用いる特許請求の範囲第1
項記載の酸化亜鉛形避雷器素子の製造方法。
(2) Claim 1 using a supersaturated phosphoric acid aqueous solution
A method for manufacturing a zinc oxide type lightning arrester element as described in .
(3)過飽和な燐酸アルコール溶液を用いる特許請求の
範囲第1項記載の酸化亜鉛形避雷器素子の製造方法。
(3) A method for manufacturing a zinc oxide type lightning arrester element according to claim 1, using a supersaturated phosphoric acid alcohol solution.
JP62074291A 1987-03-30 1987-03-30 Manufacture of zinc oxide type arrestor element Pending JPS63241901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074291A JPS63241901A (en) 1987-03-30 1987-03-30 Manufacture of zinc oxide type arrestor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074291A JPS63241901A (en) 1987-03-30 1987-03-30 Manufacture of zinc oxide type arrestor element

Publications (1)

Publication Number Publication Date
JPS63241901A true JPS63241901A (en) 1988-10-07

Family

ID=13542886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074291A Pending JPS63241901A (en) 1987-03-30 1987-03-30 Manufacture of zinc oxide type arrestor element

Country Status (1)

Country Link
JP (1) JPS63241901A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195567A (en) * 2007-02-13 2008-08-28 Sumitomo Metal Mining Co Ltd Zinc oxide based sintered compact and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008195567A (en) * 2007-02-13 2008-08-28 Sumitomo Metal Mining Co Ltd Zinc oxide based sintered compact and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4920328A (en) Material for resistor body and non-linear resistor made thereof
US20090155693A1 (en) Dispersed solution of carbon-containing materials for the production of current collectors
JP3453857B2 (en) Manufacturing method of multilayer varistor
US4326187A (en) Voltage non-linear resistor
JPS63241901A (en) Manufacture of zinc oxide type arrestor element
US3938069A (en) Metal oxide varistor with passivating coating
DE4116734C1 (en)
JP2815990B2 (en) Manufacturing method of nonlinear resistor
JP2573445B2 (en) Non-linear resistor
JP2744016B2 (en) Manufacturing method of nonlinear resistor
JPS62252105A (en) Manufacture of zinc oxide type arrestor element
JPH10312908A (en) Side high-resistance agent for zinc oxide varistor and zinc oxide varistor provided therewith
JP2573446B2 (en) Non-linear resistor
JPH0935909A (en) Manufacture of nonlinear resistor
JP2001052907A (en) Ceramic element and manufacturing method
JPS62208601A (en) Manufacture of voltage nonlinear resistance device
JPH036801A (en) Voltage-dependent nonlinear resistor
JPH0525362B2 (en)
JP2001044008A (en) Zinc oxide nonlinear resistor and manufacture method therefor
JPH05174832A (en) Fuel electrode for high temperature solid electrolyte type fuel cell
JPS59218703A (en) Voltage nonlinear resistor
JPH09270304A (en) Manufacture of nonlinear resistor
JPS5879704A (en) Method of producing nonlinear resistor
JPH0258804A (en) Manufacture of zinc oxide varistor
JPS6025006B2 (en) Voltage nonlinear resistor