JP2008195567A - Zinc oxide based sintered compact and method of manufacturing the same - Google Patents

Zinc oxide based sintered compact and method of manufacturing the same Download PDF

Info

Publication number
JP2008195567A
JP2008195567A JP2007032124A JP2007032124A JP2008195567A JP 2008195567 A JP2008195567 A JP 2008195567A JP 2007032124 A JP2007032124 A JP 2007032124A JP 2007032124 A JP2007032124 A JP 2007032124A JP 2008195567 A JP2008195567 A JP 2008195567A
Authority
JP
Japan
Prior art keywords
zinc oxide
sintered body
zinc
phosphorus compound
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007032124A
Other languages
Japanese (ja)
Inventor
Takeshi Obara
剛 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2007032124A priority Critical patent/JP2008195567A/en
Publication of JP2008195567A publication Critical patent/JP2008195567A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc oxide based sintered compact and a method of manufacturing the same which can suppress the occurrence of particles and abnormal discharge in a step for film-depositing a zinc oxide based transparent thin film. <P>SOLUTION: The zinc oxide based sintered compact having an element ratio P/Zn of phosphorus to zinc of 0.006-0.06, a sintering density of ≥5.4 g/cm<SP>3</SP>and the diameter of a phosphorus compound of ≤5 μm, is obtained by mixing and pulverizing a powdery raw material comprising zinc pyrophosphate or zinc phosphate hydrate and zinc oxide and having 3-20 m<SP>2</SP>/g specific surface area, subjecting the pulverized powdery raw material to rapid drying and granulation, forming the resultant granulated material, increasing the temperature of the resultant formed body at 0.5-10 °C/min in the range of 600-1,000°C and firing at 1,000-1,200°C for 10-30 hr. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸化亜鉛系透明薄膜、特にリンがドープされた酸化亜鉛系透明薄膜の成膜に用いられる酸化亜鉛系焼結体およびその製造方法に関する。   The present invention relates to a zinc oxide-based sintered thin film used for forming a zinc oxide-based transparent thin film, particularly a zinc oxide-based transparent thin film doped with phosphorus, and a method for producing the same.

酸化亜鉛は、毒性がなく、その資源が豊富であり、かつ、安価であるため、以前よりガスセンサ、蛍光体、バリスタ、圧電材料、および透明電極の材料として、用いられている。   Zinc oxide has been used as a material for gas sensors, phosphors, varistors, piezoelectric materials, and transparent electrodes since it is not toxic, has abundant resources, and is inexpensive.

また、酸化亜鉛は、直接遷移型で、そのバンドギャップエネルギが3.2eVと広いため、可視光領域において高い透過率を有し、Al23添加やGa23添加により、比抵抗値が10-4Ω・cm台となる。このため、太陽電池の材料としても広く使用されている。 In addition, since zinc oxide is a direct transition type and has a wide band gap energy of 3.2 eV, it has a high transmittance in the visible light region. By adding Al 2 O 3 or Ga 2 O 3 , a specific resistance value is obtained. Is on the order of 10 −4 Ω · cm. For this reason, it is widely used as a material for solar cells.

加えて、酸化亜鉛は、バンドギャップが広く、その励起子エネルギが高いこと、安価であることから、LED半導体の材料としても期待されている。さらには、a−Si(アモルファスシリコン)よりも移動度が高いことから、透明半導体の材料としても期待されている。   In addition, zinc oxide is expected as a material for LED semiconductors because of its wide band gap, high exciton energy, and low cost. Furthermore, since it has higher mobility than a-Si (amorphous silicon), it is also expected as a material for transparent semiconductors.

LEDやTFTなどの半導体素子として用いる場合、p型ZnOが必要となり、窒素添加、リン添加などが研究されている。特許文献1には、Zn32などの化合物を用いて、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法によりキャリア濃度の大きいp型半導体を製造することが開示されている。しかしながら、Zn32化合物は殺鼠剤として用いられるように毒性を有し、加熱分解で有毒なPH3(ホスフィン)ガスを発生し、生産上好ましくない。 When used as a semiconductor element such as an LED or TFT, p-type ZnO is required, and addition of nitrogen, addition of phosphorus, and the like have been studied. Patent Document 1 discloses that a p-type semiconductor having a high carrier concentration is produced by a molecular beam epitaxy (MBE) method using a compound such as Zn 3 P 2 . However, the Zn 3 P 2 compound is toxic to be used as a rodenticide and generates toxic PH 3 (phosphine) gas by thermal decomposition, which is not preferable for production.

半導体材料として用いられる酸化亜鉛系透明薄膜を形成する手段としては、MBE法のほか、スパッタリング法、パルスレーザ堆積(PLD:Pulsed Laser Deposition)法を用いることができる。スパッタリング法あるいはPLD法では、薄膜の製造に際して焼結体を使用するが、ドーパントは酸化亜鉛焼結体とは別の蒸着源から供給しており、特殊な装置が使用されていた。一般的なスパッタリング装置を使用するためには、酸化亜鉛焼結体中にドーパントが添加されている必要があるが、この際、焼結体中に絶縁性の化合物が偏在すると、異常放電が生じたり、膜中の組成分布が不均一になる。また、焼結密度が低いとパーティクルが多く発生し、異常放電の原因になる。異常放電が頻繁に起きると、プラズマ放電状態が不安定となり、安定した成膜が行われず、膜特性に悪影響を及ぼす。また、膜中の組成分布が不均一になると所望の特性が得られないという問題がある。   As a means for forming a zinc oxide-based transparent thin film used as a semiconductor material, a sputtering method and a pulsed laser deposition (PLD) method can be used in addition to the MBE method. In the sputtering method or the PLD method, a sintered body is used in the production of a thin film, but the dopant is supplied from a vapor deposition source different from the zinc oxide sintered body, and a special apparatus is used. In order to use a general sputtering apparatus, it is necessary to add a dopant to the zinc oxide sintered body. However, if an insulating compound is unevenly distributed in the sintered body, abnormal discharge occurs. Or the composition distribution in the film becomes non-uniform. Also, if the sintered density is low, many particles are generated, causing abnormal discharge. If abnormal discharge frequently occurs, the plasma discharge state becomes unstable, and stable film formation is not performed, which adversely affects the film characteristics. In addition, if the composition distribution in the film becomes non-uniform, there is a problem that desired characteristics cannot be obtained.

そこで、リンがドープされた酸化亜鉛系焼結体においても、絶縁性の化合物が偏在しないものが求められていたが、これまでのところ異常放電の発生が抑制されるような十分なものは得られていなかった。
特開2002−94114号公報
Therefore, there has been a demand for zinc oxide-based sintered bodies doped with phosphorus, in which an insulating compound is not unevenly distributed, but so far, a sufficient one capable of suppressing the occurrence of abnormal discharge is obtained. It was not done.
JP 2002-94114 A

本発明は、酸化亜鉛系透明薄膜の成膜工程において、異常放電の発生を抑制しうる酸化亜鉛系焼結体およびその製造方法を提供することを目的とする。   An object of this invention is to provide the zinc oxide type sintered compact which can suppress generation | occurrence | production of abnormal discharge in the film-forming process of a zinc oxide type transparent thin film, and its manufacturing method.

本発明に係る酸化亜鉛系焼結体は、リンと亜鉛の元素比P/Znが0.006〜0.06であり、焼結密度が5.4g/cm3以上であって、リン化合物の径が5μm以下であることを特徴とする。 The zinc oxide-based sintered body according to the present invention has an element ratio P / Zn between phosphorus and zinc of 0.006 to 0.06, a sintered density of 5.4 g / cm 3 or more, The diameter is 5 μm or less.

本発明に係る酸化亜鉛系焼結体を製造するためには、ピロ燐酸亜鉛または燐酸亜鉛水和物と酸化亜鉛とからなる比表面積が3〜20m2/gの原料粉末を混合しつつ粉砕した後に、急速乾燥造粒を行い、得られた造粒物を成形した後、得られた成形体を、600〜1000℃の温度範囲を0.5〜10℃/minで昇温し、1000〜1200℃にて10〜30時間、焼成する。 In order to produce the zinc oxide-based sintered body according to the present invention, the raw material powder having a specific surface area of 3 to 20 m 2 / g composed of zinc pyrophosphate or zinc phosphate hydrate and zinc oxide was pulverized while being mixed. Then, after carrying out rapid dry granulation and shape | molding the obtained granulated material, the temperature range of 600-1000 degreeC is heated at 0.5-10 degreeC / min, and the obtained molded object is 1000-1000. Bake at 1200 ° C. for 10-30 hours.

前記焼成は常圧焼結法で行うことが好ましく、その場合には、前記600〜1000℃の温度範囲における昇温工程において、2〜20L/minの流量で酸素ガスを導入することが好ましい。   The firing is preferably performed by a normal pressure sintering method. In this case, it is preferable to introduce oxygen gas at a flow rate of 2 to 20 L / min in the temperature raising step in the temperature range of 600 to 1000 ° C.

本発明に係る酸化亜鉛系焼結体を用いると、成膜中において、焼結体に異常放電の発生が少ないため、効率的に、安価に、省エネルギで、高品質のリンがドープされた酸化亜鉛系透明薄膜を成膜することが可能となる。   When the zinc oxide-based sintered body according to the present invention is used, since the occurrence of abnormal discharge in the sintered body is small during film formation, it is efficiently, inexpensively, energy-saving, and doped with high-quality phosphorus. A zinc oxide-based transparent thin film can be formed.

[焼結体]
本発明に係る酸化亜鉛系焼結体は、リンと亜鉛の元素比P/Znが0.006〜0.06であり、焼結密度が5.4g/cm3以上であって、リン化合物が5μm以下で分布する、すなわち、リン化合物の径が5μm以下であることを特徴とする。
[Sintered body]
The zinc oxide-based sintered body according to the present invention has an element ratio P / Zn between phosphorus and zinc of 0.006 to 0.06, a sintered density of 5.4 g / cm 3 or more, and a phosphorus compound. The distribution is 5 μm or less, that is, the diameter of the phosphorus compound is 5 μm or less.

本発明者は、前述の課題を解決するために、リンがドープされた酸化亜鉛系透明薄膜の成膜に用いる酸化亜鉛系焼結体について解析を行い、鋭意検討を行った結果、酸化亜鉛系焼結体をスパッタリング法やPLD法において利用可能とするためには、以下の事項が必要とされるとの知見を得た。   In order to solve the above-mentioned problems, the present inventor conducted analysis on a zinc oxide-based sintered body used for forming a zinc oxide-based transparent thin film doped with phosphorus, and as a result of earnest examination, In order to make the sintered body usable in the sputtering method and the PLD method, it has been found that the following matters are required.

(1)焼結密度が5.4g/cm3以上であること、
(2)リン化合物の径が5μm以下で分布すること。
(1) The sintered density is 5.4 g / cm 3 or more,
(2) The phosphorus compound has a diameter of 5 μm or less.

(リンと亜鉛の元素比)
本発明に係る酸化亜鉛系焼結体のリンと亜鉛の元素比P/Znは、0.006〜0.06である。P/Znが0.006未満であると、リン添加の効果が得られず、一方、0.06を超えると、焼結密度が低くなる。
(Element ratio of phosphorus and zinc)
The element ratio P / Zn of phosphorus and zinc in the zinc oxide-based sintered body according to the present invention is 0.006 to 0.06. If P / Zn is less than 0.006, the effect of phosphorus addition cannot be obtained, while if it exceeds 0.06, the sintered density is lowered.

なお、焼結体中において、リンはリン化合物として存在する。具体的には、Zn227のようなリン亜鉛酸化物として存在する。 In the sintered body, phosphorus exists as a phosphorus compound. Specifically, it exists as a phosphozinc oxide such as Zn 2 P 2 O 7 .

(焼結密度)
本発明に係る酸化亜鉛系焼結体の焼結密度は、5.4g/cm3以上である。焼結密度が高いほど、成膜時にパーティクルと呼ばれる酸化物粉の発生が少なくなる。このパーティクルは、低級酸化物であり、薄膜の透過率などに対して悪影響を及ぼす。なお、焼結密度とは、焼結体の単位体積当りの重量で、焼結体を加工した後の、重量と寸法から求められる。
(Sintering density)
The sintered density of the zinc oxide-based sintered body according to the present invention is 5.4 g / cm 3 or more. The higher the sintered density, the less the generation of oxide powder called particles during film formation. These particles are lower oxides and have an adverse effect on the transmittance of the thin film. The sintered density is the weight per unit volume of the sintered body, and is determined from the weight and dimensions after processing the sintered body.

(リン化合物)
本発明に係る酸化亜鉛系焼結体におけるリン化合物の径は5μm以下である。焼結体中に、径が5μmを超える、特に、径が10〜100μm程度である粗大なリン化合物が存在すると、成膜における異常放電の原因となる。特に、成膜時における異常放電の発生を抑制するためには、このリン化合物の径を1μm未満とすることが好ましい。
(Phosphorus compound)
The diameter of the phosphorus compound in the zinc oxide based sintered body according to the present invention is 5 μm or less. If a coarse phosphorous compound having a diameter of more than 5 μm, particularly having a diameter of about 10 to 100 μm, is present in the sintered body, it causes abnormal discharge during film formation. In particular, in order to suppress the occurrence of abnormal discharge during film formation, the diameter of the phosphorus compound is preferably less than 1 μm.

リン化合物の径(リン化合物の大きさ)は、SEM観察によっても確認できるが、酸化亜鉛系焼結体の複数の任意部分の断面を鏡面研磨した後、電子線マイクロアナライザ(EPMA)を用いたEPMA面分析によってリンの濃度分布を測定し、リン濃度の高い領域の最大長さにより求めることもできる。   The diameter of the phosphorus compound (the size of the phosphorus compound) can be confirmed by SEM observation, but the cross section of a plurality of arbitrary parts of the zinc oxide-based sintered body was mirror-polished and then an electron beam microanalyzer (EPMA) was used. It is also possible to measure the concentration distribution of phosphorus by EPMA surface analysis and obtain the maximum length of a region having a high phosphorus concentration.

焼結密度およびリン化合物の径に関する条件を具備することにより、長期的にパーティクルおよび異常放電の発生が少ない成膜用焼結体を得ることができる。   By providing the conditions regarding the sintering density and the diameter of the phosphorus compound, it is possible to obtain a film-forming sintered body with less generation of particles and abnormal discharge over the long term.

[焼結体の製造方法]
次に、本発明の酸化亜鉛系焼結体の製造工程において、酸化亜鉛系焼結体に影響する各因子について、以下に説明する。
[Method for producing sintered body]
Next, each factor affecting the zinc oxide-based sintered body in the manufacturing process of the zinc oxide-based sintered body of the present invention will be described below.

(原料粉末)
本発明の酸化亜鉛系焼結体を得るための原料には、酸化亜鉛と、ピロ燐酸亜鉛または燐酸亜鉛水和物を用いる。リンを添加するためには、上記化合物の他にZn32、P25の使用が考えられるが、前述のようにZn32には毒性の問題がある。また、P25は吸湿性が強く、スラリーにしたときに強酸になるなどの問題がある。それに対して、ピロ燐酸亜鉛または燐酸亜鉛水和物には、このような問題がない。
(Raw material powder)
As raw materials for obtaining the zinc oxide sintered body of the present invention, zinc oxide and zinc pyrophosphate or zinc phosphate hydrate are used. In order to add phosphorus, it is possible to use Zn 3 P 2 and P 2 O 5 in addition to the above compounds, but Zn 3 P 2 has a problem of toxicity as described above. Further, P 2 O 5 has a strong hygroscopic property and has a problem that it becomes a strong acid when made into a slurry. On the other hand, zinc pyrophosphate or zinc phosphate hydrate does not have such a problem.

本発明では、比表面積が3〜20m2/gの原料粉末を用いる。いずれかの原料粉末の比表面積が3m2/g未満であると、原料粉末の充填密度が高くなるが、粒径が大きく、表面エネルギが小さいため、焼結駆動力が小さくなり、得られる酸化亜鉛系焼結体の焼結密度を5.4g/cm3以上と高密度にすることができない。一方、20m2/gよりも大きいと、原料粉末の充填密度が低くなり、そこで生じた空孔が、得られる酸化亜鉛系焼結体の低密度化の原因となる。特に、成膜時における異常放電の発生を抑制するためには、原料粉末の比表面積に5〜15m2/gを選択することが好ましい。 In the present invention, a raw material powder having a specific surface area of 3 to 20 m 2 / g is used. If the specific surface area of any of the raw material powders is less than 3 m 2 / g, the packing density of the raw material powders becomes high, but the particle size is large and the surface energy is low, so the sintering driving force is reduced and the resulting oxidation The sintered density of the zinc-based sintered body cannot be as high as 5.4 g / cm 3 or more. On the other hand, when it is larger than 20 m 2 / g, the packing density of the raw material powder becomes low, and the voids generated there cause a reduction in density of the obtained zinc oxide-based sintered body. In particular, in order to suppress the occurrence of abnormal discharge during film formation, it is preferable to select 5 to 15 m 2 / g for the specific surface area of the raw material powder.

(混合)
最初に原料粉末を混合する。混合については、湿式または乾式によるボールミル、振動ミル、ビーズミルなどを用いることができる。均一で微細な結晶粒および空孔を得るためには、短時間で、凝集体の解砕効率が高く、添加物の分散状態も良好となるビーズミル混合法が、最も好ましい。
(mixture)
First, the raw material powder is mixed. For mixing, a wet or dry ball mill, vibration mill, bead mill, or the like can be used. In order to obtain uniform and fine crystal grains and vacancies, the bead mill mixing method is most preferable because it provides a high efficiency of crushing aggregates and a good dispersion state of additives in a short time.

ビーズミルによる粉砕および混合の時間は、装置の大きさ、処理するスラリー量によって異なるが、スラリー中の粒度分布がすべて1μm以下となり、均一になるように調整すると良い。   The time for pulverization and mixing by the bead mill varies depending on the size of the apparatus and the amount of slurry to be processed, but it is preferable to adjust the particle size distribution in the slurry to be 1 μm or less and uniform.

処理時間が短いと、原料粉末を均一に粉砕し、混合することができないため、得られる酸化亜鉛系焼結体に空孔が生じ、相対密度の低下につながるおそれがある。一方、スラリー中の粒度分布を1μm以下に調整しても、長時間の粉砕および混合を行うと、微粒子が存在するようになり、原料粉末の充填密度が低くなって、得られる酸化亜鉛系焼結体の相対密度の低下を招きやすい。この処理時間については、混合方法、原料粉末の粒径などの諸条件に基づいて決定されるため、実施に際しては予め最適条件を求めておく必要がある。   When the treatment time is short, since the raw material powder cannot be uniformly pulverized and mixed, voids are generated in the obtained zinc oxide-based sintered body, which may lead to a decrease in relative density. On the other hand, even if the particle size distribution in the slurry is adjusted to 1 μm or less, if the grinding and mixing are performed for a long time, fine particles are present, the packing density of the raw material powder is lowered, and the resulting zinc oxide-based firing is obtained. It tends to cause a decrease in the relative density of the aggregate. Since this processing time is determined based on various conditions such as the mixing method and the particle size of the raw material powder, it is necessary to obtain optimum conditions in advance.

また、混合する際には、バインダを任意量だけ添加し、同時に混合を行う。バインダには、ポリビニルアルコール、酢酸ビニルなどを用いることができる。   Further, when mixing, an arbitrary amount of binder is added and mixed at the same time. As the binder, polyvinyl alcohol, vinyl acetate, or the like can be used.

以上により、原料粉末スラリーを得る。   Thus, a raw material powder slurry is obtained.

(急速乾燥造粒)
次に、原料粉末スラリーから造粒粉を得る。本発明では、造粒に際して、急速乾燥造粒を行う。急速乾燥造粒をするための装置としては、スプレードライヤが広く用いられている。具体的な乾燥条件は、原料粉末スラリーのスラリー濃度、乾燥に用いる熱風温度および風量などの諸条件により、決定されるため、実施に際しては、予め最適条件を求めておくことが必要となる。
(Rapid drying granulation)
Next, granulated powder is obtained from the raw material powder slurry. In the present invention, rapid drying granulation is performed during granulation. Spray dryers are widely used as devices for rapid drying granulation. Specific drying conditions are determined by various conditions such as the slurry concentration of the raw material powder slurry, the temperature of hot air used for drying, and the amount of air flow. Therefore, it is necessary to obtain optimum conditions in advance.

自然乾燥では、原料粉末の比重差によって沈降速度が異なるため、ピロ燐酸亜鉛または燐酸亜鉛水和物と、酸化亜鉛との分離が起こり、均一な造粒粉が得られなくなる。不均一となった造粒粉を用いて焼結体を作製すると、粗大なリン化合物の相、すなわち、径が10〜100μm程度のリン化合物が発生し、成膜時における異常放電の原因となる。   In natural drying, since the sedimentation speed varies depending on the specific gravity difference of the raw material powder, separation of zinc pyrophosphate or zinc phosphate hydrate from zinc oxide occurs, and uniform granulated powder cannot be obtained. When a sintered body is produced using the non-uniform granulated powder, a coarse phosphorus compound phase, that is, a phosphorus compound having a diameter of about 10 to 100 μm is generated, which causes abnormal discharge during film formation. .

(成形)
造粒粉に対して、金型プレスまたは冷間静水圧プレス(CIP)により、98MPa(1ton/cm2)以上の圧力で成形を施し、成型体を得る。特に、CIPを用いて、196MPa以上の圧力で成形することが好ましい。
(Molding)
The granulated powder is molded at a pressure of 98 MPa (1 ton / cm 2 ) or higher by a die press or cold isostatic press (CIP) to obtain a molded body. In particular, it is preferable to mold at a pressure of 196 MPa or more using CIP.

(焼成)
本発明の酸化亜鉛系焼結体を得るための焼結方法としては、常圧焼結法のほか、ホットプレス、酸素加圧、熱間静水圧などの加圧焼結法も採用することができる。ただし、製造コストの低減、大量生産の可能性、容易に大型の焼結体を製造できるといった観点から、常圧焼結法を採用することが好ましい。
(Baking)
As a sintering method for obtaining the zinc oxide-based sintered body of the present invention, a pressure sintering method such as hot pressing, oxygen pressurization, hot isostatic pressing, etc. can be employed in addition to the atmospheric pressure sintering method. it can. However, it is preferable to employ a normal pressure sintering method from the viewpoints of reducing manufacturing costs, possibility of mass production, and easy production of large sintered bodies.

焼成温度は、1000〜1200℃とする。焼成温度が1000℃未満であると、焼結密度を5.4g/cm3以上とすることができず、成膜時のパーティクル発生の原因となる。一方、焼成温度が1200℃を超えると、酸化亜鉛と炉床板の反応が起こり、炉床板が脆くなるため、生産上、好ましくない。同時に、酸化亜鉛の昇華により、焼結密度が逆に下がってしまう。特に、焼成温度を1050〜1150℃とすることが好ましい。 The firing temperature is 1000 to 1200 ° C. If the firing temperature is less than 1000 ° C., the sintered density cannot be made 5.4 g / cm 3 or more, which causes generation of particles during film formation. On the other hand, when the firing temperature exceeds 1200 ° C., the reaction between zinc oxide and the hearth plate occurs, and the hearth plate becomes brittle. At the same time, the sintered density is lowered by the sublimation of zinc oxide. In particular, the firing temperature is preferably 1050 to 1150 ° C.

焼成時間は、10〜30時間とする。焼成時間が10時間より短いと、成形体が十分に焼結せず、焼結密度が5.4g/cm3を下回る。一方、焼成時間が30時間を超えると、酸化亜鉛と炉床板の反応が起こり、炉床板が脆くなるため、生産上、好ましくない。特に、焼成時間を20〜30時間とすることが好ましい。 The firing time is 10 to 30 hours. When the firing time is shorter than 10 hours, the compact is not sufficiently sintered, and the sintered density is less than 5.4 g / cm 3 . On the other hand, if the firing time exceeds 30 hours, the reaction between zinc oxide and the hearth plate occurs, and the hearth plate becomes brittle, which is not preferable for production. In particular, the firing time is preferably 20 to 30 hours.

さらに、焼成に際しての昇温速度は、600〜1000℃の温度範囲における昇温速度を0.5〜10℃/minとする必要がある。600〜1000℃の温度範囲は、焼結が最も進行する範囲であり、この温度範囲での昇温速度が0.5℃/minより遅くなると、結晶粒成長が著しくなって、高密度化を達成することができない。一方、昇温速度が10℃/minより速くなると、焼結炉内の均熱性が低下し、その結果、焼結中の収縮量に分布が生じて、焼結体が割れるおそれがある。特に、この昇温速度は2℃/min以上とすることが好ましい。   Furthermore, the temperature increase rate at the time of baking needs to be 0.5-10 degreeC / min in the temperature range of 600-1000 degreeC. The temperature range of 600 to 1000 ° C. is the range in which the sintering proceeds most. When the rate of temperature increase in this temperature range is slower than 0.5 ° C./min, the crystal grain growth becomes remarkable and the density is increased. Cannot be achieved. On the other hand, when the rate of temperature rise is faster than 10 ° C./min, the heat uniformity in the sintering furnace is lowered, and as a result, the amount of shrinkage during the sintering is distributed, which may break the sintered body. In particular, the rate of temperature increase is preferably 2 ° C./min or more.

なお、焼成に常圧焼結法を用いる場合に、焼結密度を一層高くするためには、600℃から1000℃までの昇温過程で酸素を導入することが好ましい。酸素を導入する場合の酸素流量としては、2〜20L/minが好ましい。酸化亜鉛の粉末は、蒸発しやすいので、焼結中の酸素流量が2L/min未満であると、金属酸化物の蒸発抑制(密度増大)効果が薄れて、焼結密度が低くなってしまう。一方、20L/minを超えると、その流量によって焼結炉内が冷却され、均熱性が低下してしまう。   In the case of using the atmospheric sintering method for firing, it is preferable to introduce oxygen during the temperature rising process from 600 ° C. to 1000 ° C. in order to further increase the sintering density. The oxygen flow rate when introducing oxygen is preferably 2 to 20 L / min. Since zinc oxide powder is easy to evaporate, if the oxygen flow rate during sintering is less than 2 L / min, the effect of suppressing the evaporation of metal oxide (increase in density) is diminished and the sintering density is lowered. On the other hand, if it exceeds 20 L / min, the inside of the sintering furnace is cooled by the flow rate, and soaking is reduced.

焼結体の製造工程における諸条件を、以上の通りに制御することにより、焼結密度が5.4g/cm3であり、リン化合物の径が5μm以下である酸化亜鉛系焼結体を得ることができる。かかる酸化亜鉛系焼結体を所定形状に加工して、スパッタリング法やPLD法による成膜に用いると、成膜時にパーティクルや異常放電が生じることなく、酸化亜鉛系透明薄膜を得ることができる。 By controlling the various conditions in the production process of the sintered body as described above, a zinc oxide-based sintered body having a sintered density of 5.4 g / cm 3 and a phosphorus compound diameter of 5 μm or less is obtained. be able to. When such a zinc oxide-based sintered body is processed into a predetermined shape and used for film formation by sputtering or PLD, a zinc oxide-based transparent thin film can be obtained without causing particles or abnormal discharge during film formation.

[実施例1]
比表面積10.5m2/gの酸化亜鉛の粉末、および比表面積13.2m2/gの燐酸亜鉛水和物の粉末を、リンと亜鉛の元素比P/Znが0.01となるように配合し、バインダとしてポリビニルアルコールを1質量%添加して、ビーズミルにて原料粉末の粒度が1μm以下になるまで混合しつつ粉砕し、スラリーを得た。混合時間は、1時間であった。
[Example 1]
A zinc oxide powder having a specific surface area of 10.5 m 2 / g and a zinc phosphate hydrate powder having a specific surface area of 13.2 m 2 / g were adjusted so that the element ratio P / Zn of phosphorus and zinc was 0.01. The mixture was added, 1% by mass of polyvinyl alcohol was added as a binder, and the mixture was pulverized by mixing with a bead mill until the particle size of the raw material powder became 1 μm or less, thereby obtaining a slurry. The mixing time was 1 hour.

なお、比表面積の測定は、全自動BET比表面積測定装置(株式会社マウンテック製、Macsorb HM Model-1208)で行った。   The specific surface area was measured with a fully automatic BET specific surface area measuring device (Macsorb HM Model-1208, manufactured by Mountec Co., Ltd.).

得られたスラリーを取り出して、スラリー供給速度140ml/min、熱風温度140℃、熱風量8Nm3/minの条件で、スプレードライヤを用いて急速乾燥造粒をして、造粒物を得た。 The obtained slurry was taken out, and subjected to rapid drying granulation using a spray dryer under the conditions of a slurry supply rate of 140 ml / min, a hot air temperature of 140 ° C., and a hot air amount of 8 Nm 3 / min to obtain a granulated product.

得られた造粒物を冷間静水圧プレスにて294MPa(3ton/cm2)の圧力で成形し、直径100mm、厚さ8mmの円盤状の成形体を得た。 The obtained granulated product was molded with a cold isostatic press at a pressure of 294 MPa (3 ton / cm 2 ) to obtain a disk-shaped molded body having a diameter of 100 mm and a thickness of 8 mm.

次に、得られた成形体を、大気中にて、600℃までは0.5℃/minの速度で昇温し、酸素ガスを10L/minで導入しながら、600〜1100℃の温度範囲では3℃/minの速度で昇温した。その後、1100℃にて20時間の保持を行い、焼結体を得た。得られた焼結体の焼結密度を、質量と寸法より算出した。   Next, the obtained molded body was heated in the atmosphere at a rate of 0.5 ° C./min up to 600 ° C., and oxygen gas was introduced at 10 L / min, and a temperature range of 600 to 1100 ° C. Then, the temperature was increased at a rate of 3 ° C./min. Thereafter, holding at 1100 ° C. for 20 hours was performed to obtain a sintered body. The sintered density of the obtained sintered body was calculated from the mass and dimensions.

その後、焼結体の一部を切断して、切断部を鏡面研磨後、EPMA面分析にてリン化合物の径を測定したところ、1μmを超えるリン化合物は存在しなかった。なお、リン化合物の径は、鏡面研磨した試料から無作為に選定した300μm角の領域を、EPMA面分析によってリンの濃度分布を測定し、リン濃度の高い領域の最大長さをリン化合物の径として計測した。   Thereafter, a part of the sintered body was cut, the cut portion was mirror-polished, and the diameter of the phosphorus compound was measured by EPMA surface analysis. As a result, no phosphorus compound exceeding 1 μm was present. The phosphorus compound diameter was determined by measuring the concentration distribution of phosphorus in a 300 μm square region randomly selected from a mirror-polished sample by EPMA surface analysis, and determining the maximum length of the region with a high phosphorus concentration as the diameter of the phosphorus compound. As measured.

得られた焼結体を、直径75mm、厚さ6mmの円盤状に加工して、スパッタリングターゲットを作製した。得られたスパッタリングターゲットを用いて、DCマグネトロンスパッタリング中の異常放電回数を調べた。スパッタリング条件は、投入電力200W、Arガス圧0.3Paに固定した。実験開始から、10時間、経過後において、10分間あたりに発生する異常放電回数を測定した。得られた結果を表1に示す。   The obtained sintered body was processed into a disk shape having a diameter of 75 mm and a thickness of 6 mm to produce a sputtering target. Using the obtained sputtering target, the number of abnormal discharges during DC magnetron sputtering was examined. The sputtering conditions were fixed at an input power of 200 W and an Ar gas pressure of 0.3 Pa. The number of abnormal discharges generated per 10 minutes after the lapse of 10 hours from the start of the experiment was measured. The obtained results are shown in Table 1.

[実施例2]
比表面積3.8m2/gの酸化亜鉛の粉末、および比表面積3.5m2/gの燐酸亜鉛水和物の粉末を用いたこと以外は、実施例1と同様にして、焼結体を作製した。
[Example 2]
A sintered body was obtained in the same manner as in Example 1 except that a zinc oxide powder having a specific surface area of 3.8 m 2 / g and a zinc phosphate hydrate powder having a specific surface area of 3.5 m 2 / g were used. Produced.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[実施例3]
比表面積18.5m2/gの酸化亜鉛の粉末、および比表面積19.1m2/gの燐酸亜鉛水和物の粉末を用いたこと以外は、実施例1と同様にして、焼結体を作製した。
[Example 3]
A sintered body was obtained in the same manner as in Example 1 except that a zinc oxide powder having a specific surface area of 18.5 m 2 / g and a zinc phosphate hydrate powder having a specific surface area of 19.1 m 2 / g were used. Produced.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[実施例4]
焼結を、1000℃にて10時間の保持により行ったこと以外は、実施例1と同様にして、焼結体を作製した。
[Example 4]
A sintered body was produced in the same manner as in Example 1 except that the sintering was performed at 1000 ° C. for 10 hours.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[実施例5]
焼結を、1200℃にて30時間の保持により行ったこと以外は、実施例1と同様にして、焼結体を作製した。
[Example 5]
A sintered body was produced in the same manner as in Example 1 except that the sintering was performed at 1200 ° C. for 30 hours.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[実施例6]
焼結時に、酸素ガスを20L/minで導入したこと以外は、実施例1と同様にして、焼結体を作製した。
[Example 6]
A sintered body was produced in the same manner as in Example 1 except that oxygen gas was introduced at 20 L / min during sintering.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[実施例7]
焼結時に、酸素ガスを2L/minで導入したこと以外は、実施例1と同様にして、焼結体を作製した。
[Example 7]
A sintered body was produced in the same manner as in Example 1 except that oxygen gas was introduced at 2 L / min during sintering.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[実施例8]
焼結の際に、600〜1100℃の温度範囲では0.5℃/minで昇温を行ったこと以外は、実施例1と同様にして焼結体を作製した。
[Example 8]
A sintered body was produced in the same manner as in Example 1 except that the temperature was raised at 0.5 ° C./min in the temperature range of 600 to 1100 ° C. during sintering.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[実施例9]
焼結の際に、600〜1100℃の温度範囲では10℃/minで昇温を行ったこと以外は、実施例1と同様にして焼結体を作製した。
[Example 9]
A sintered body was produced in the same manner as in Example 1 except that the temperature was raised at 10 ° C./min in the temperature range of 600 to 1100 ° C. during sintering.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[比較例1]
比表面積2.5m2/gの酸化亜鉛の粉末、および比表面積2.0m2/gの燐酸亜鉛水和物の粉末を用いたこと以外は、実施例1と同様にして、焼結体を作製した。なお、スラリーの粒度分布を測定したところ、ビーズミルによる混合を実施例1と同じ粉砕時間で行ったにも係わらず、最大10μmの粒子が観察された。得られた焼結体の焼結密度は、5.31g/cm3であり、5.4g/cm3を下回った。
[Comparative Example 1]
A sintered body was prepared in the same manner as in Example 1 except that a zinc oxide powder having a specific surface area of 2.5 m 2 / g and a zinc phosphate hydrate powder having a specific surface area of 2.0 m 2 / g were used. Produced. When the particle size distribution of the slurry was measured, particles having a maximum size of 10 μm were observed even though mixing by the bead mill was performed for the same pulverization time as in Example 1. Obtained sintered density of the sintered body is 5.31 g / cm 3, below the 5.4 g / cm 3.

実施例1と同様に測定したリン化合物の大きさについては、最大10μmのリン化合物が存在した。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   About the magnitude | size of the phosphorus compound measured similarly to Example 1, the phosphorus compound of a maximum of 10 micrometers existed. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[比較例2]
比表面積21.5m2/gの酸化亜鉛の粉末、および比表面積20.8m2/gの燐酸亜鉛水和物の粉末を用いたこと以外は、実施例1と同様にして、焼結体を作製した。得られた焼結体の焼結密度は、5.28g/cm3であり、5.4g/cm3を下回った。
[Comparative Example 2]
A sintered body was obtained in the same manner as in Example 1, except that a zinc oxide powder having a specific surface area of 21.5 m 2 / g and a zinc phosphate hydrate powder having a specific surface area of 20.8 m 2 / g were used. Produced. Obtained sintered density of the sintered body is 5.28 g / cm 3, below the 5.4 g / cm 3.

実施例1と同様に測定したリン化合物の大きさについては、5μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, no phosphorus compound exceeding 5 μm was present. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[比較例3]
焼結を、1000℃にて5時間の保持により行ったこと以外は、実施例1と同様にして、焼結体を作製した。得られた焼結体の焼結密度は、5.29g/cm3であり、5.4g/cm3を下回った。
[Comparative Example 3]
A sintered body was produced in the same manner as in Example 1 except that the sintering was carried out at 1000 ° C. for 5 hours. Obtained sintered density of the sintered body is 5.29 g / cm 3, below the 5.4 g / cm 3.

実施例1と同様に測定したリン化合物の大きさについては、5μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, no phosphorus compound exceeding 5 μm was present. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[比較例4]
焼結を、1200℃にて35時間の保持により行ったこと以外は、実施例1と同様にして、焼結体を作製した。得られた焼結体の焼結密度は、5.33g/cm3であり、5.4g/cm3を下回った。
[Comparative Example 4]
A sintered body was produced in the same manner as in Example 1 except that the sintering was performed at 1200 ° C. for 35 hours. Obtained sintered density of the sintered body is 5.33 g / cm 3, below the 5.4 g / cm 3.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[比較例5]
焼結の際に、600〜1100℃の温度範囲では0.3℃/minで昇温を行ったこと以外は、実施例1と同様にして焼結体を作製した。得られた焼結体の焼結密度は、5.32g/cm3であり、5.4g/cm3を下回った。
[Comparative Example 5]
A sintered body was produced in the same manner as in Example 1 except that the temperature was raised at 0.3 ° C./min in the temperature range of 600 to 1100 ° C. during sintering. Obtained sintered density of the sintered body is 5.32 g / cm 3, below the 5.4 g / cm 3.

実施例1と同様に測定したリン化合物の大きさについては、1μmを超えるリン化合物は存在しなかった。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, there was no phosphorus compound exceeding 1 μm. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[比較例6]
実施例1と同様に作製したスラリーを使用し、高温槽で自然乾燥し、300μm以下に粉砕して、造粒物を得たこと以外は、実施例1と同様にして焼結体を作製した。得られた焼結体の焼結密度は、5.29g/cm3であり、5.4g/cm3を下回った。
[Comparative Example 6]
A sintered body was produced in the same manner as in Example 1 except that the slurry produced in the same manner as in Example 1 was used, naturally dried in a high-temperature tank, and pulverized to 300 μm or less to obtain a granulated product. . Obtained sintered density of the sintered body is 5.29 g / cm 3, below the 5.4 g / cm 3.

実施例1と同様に測定したリン化合物の大きさについては、最大20μmのリン化合物が存在した。また、得られた焼結体について、実施例1と同様にスパッタリングターゲットを作製し、DCマグネトロンスパッタリング中の異常放電回数調べた。得られた結果を表1に示す。   Regarding the size of the phosphorus compound measured in the same manner as in Example 1, a maximum of 20 μm of phosphorus compound was present. Moreover, about the obtained sintered compact, the sputtering target was produced similarly to Example 1, and the frequency | count of abnormal discharge in DC magnetron sputtering was investigated. The obtained results are shown in Table 1.

[比較例7]
焼結の際に、600〜1100℃の温度範囲では12℃/minで昇温を行ったこと以外は、実施例1と同様にして焼結を実施したところ、焼結割れが発生した。
[Comparative Example 7]
When sintering was performed in the same manner as in Example 1 except that the temperature was raised at 12 ° C./min in the temperature range of 600 to 1100 ° C., sintering cracks occurred.

実施例1〜9は、表1からわかるように、得られた酸化亜鉛系焼結体の焼結密度が5.4g/cm3以上であり、得られた焼結体には、径が1μmを超えるリン化合物が存在していない。 In Examples 1 to 9, as can be seen from Table 1, the sintered density of the obtained zinc oxide-based sintered body is 5.4 g / cm 3 or more, and the obtained sintered body has a diameter of 1 μm. There is no phosphorus compound exceeding.

これに対して、比較例1および比較例2は、酸化亜鉛の粉末、および燐酸亜鉛水和物の粉末の比表面積が、本発明の範囲外にある。比較例1においては、焼結体の焼結密度が低く、さらにリン化合物も見られ、異常放電が発生した。また、比較例2においても、焼結体の焼結密度について要件を満たさず、異常放電が発生した。   On the other hand, in Comparative Example 1 and Comparative Example 2, the specific surface areas of the zinc oxide powder and the zinc phosphate hydrate powder are outside the scope of the present invention. In Comparative Example 1, the sintered density of the sintered body was low, phosphorus compounds were also observed, and abnormal discharge occurred. Also in Comparative Example 2, the requirements for the sintered density of the sintered body were not satisfied, and abnormal discharge occurred.

比較例3〜5は、焼結条件が本発明の範囲外にあり、焼結体の焼結密度について要件を満たさず、異常放電が発生した。   In Comparative Examples 3 to 5, the sintering conditions were outside the scope of the present invention, the requirements for the sintered density of the sintered body were not satisfied, and abnormal discharge occurred.

比較例6は、造粒を自然乾燥で行ったため、焼結体の焼結密度について要件を満たさず、さらにリン化合物も存在していた。したがって、異常放電が発生した。   In Comparative Example 6, since granulation was performed by natural drying, the requirements for the sintered density of the sintered body were not satisfied, and a phosphorus compound was also present. Therefore, abnormal discharge occurred.

また、比較例7は、昇温が速すぎ、焼結割れが生じ、スパッタリングターゲットが作製できなかった。   Moreover, in Comparative Example 7, the temperature rise was too fast, sintering cracks occurred, and a sputtering target could not be produced.

Figure 2008195567
Figure 2008195567

Claims (3)

リンと亜鉛の元素比P/Znが0.006〜0.06であり、焼結密度が5.4g/cm3以上であって、リン化合物の径が5μm以下であることを特徴とする酸化亜鉛系焼結体。 Oxidation characterized in that the element ratio P / Zn of phosphorus and zinc is 0.006 to 0.06, the sintered density is 5.4 g / cm 3 or more, and the diameter of the phosphorus compound is 5 μm or less. Zinc-based sintered body. ピロ燐酸亜鉛または燐酸亜鉛水和物と酸化亜鉛とからなる比表面積が3〜20m2/gの原料粉末を混合しつつ粉砕した後に、急速乾燥造粒を行い、得られた造粒物を成形し、得られた成形体を、600〜1000℃の温度範囲を0.5〜10℃/minで昇温し、1000〜1200℃にて10〜30時間、焼成することを特徴とする酸化亜鉛系焼結体の製造方法。 After pulverizing the raw material powder composed of zinc pyrophosphate or zinc phosphate hydrate and zinc oxide with a specific surface area of 3 to 20 m 2 / g, rapid drying granulation is performed, and the resulting granulated product is molded. The obtained compact is heated at a temperature range of 600 to 1000 ° C. at 0.5 to 10 ° C./min and fired at 1000 to 1200 ° C. for 10 to 30 hours. A method for producing a sintered body. 前記焼成を常圧焼結法で行い、かつ、前記600〜1000℃の温度範囲における昇温工程において、2〜20L/minの流量で酸素ガスを導入することを特徴とする請求項2に記載の酸化亜鉛系焼結体の製造方法。   3. The oxygen gas is introduced at a flow rate of 2 to 20 L / min in the temperature raising step in the temperature range of 600 to 1000 ° C., wherein the firing is performed by a normal pressure sintering method. Of manufacturing a zinc oxide-based sintered body.
JP2007032124A 2007-02-13 2007-02-13 Zinc oxide based sintered compact and method of manufacturing the same Pending JP2008195567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007032124A JP2008195567A (en) 2007-02-13 2007-02-13 Zinc oxide based sintered compact and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007032124A JP2008195567A (en) 2007-02-13 2007-02-13 Zinc oxide based sintered compact and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008195567A true JP2008195567A (en) 2008-08-28

Family

ID=39754862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007032124A Pending JP2008195567A (en) 2007-02-13 2007-02-13 Zinc oxide based sintered compact and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2008195567A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130708A (en) * 1977-04-20 1978-11-15 Murata Manufacturing Co Zinc oxide base ceramics for high frequency spattering
JPS63241901A (en) * 1987-03-30 1988-10-07 三菱電機株式会社 Manufacture of zinc oxide type arrestor element
JP2002094114A (en) * 2000-09-13 2002-03-29 National Institute Of Advanced Industrial & Technology SEMICONDUCTOR DEVICE COMPRISING ZnO-BASED OXIDE SEMICONDUCTOR LAYER AND ITS FABRICATING METHOD
JP2004175616A (en) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd Zinc oxide-type sintered compact and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53130708A (en) * 1977-04-20 1978-11-15 Murata Manufacturing Co Zinc oxide base ceramics for high frequency spattering
JPS63241901A (en) * 1987-03-30 1988-10-07 三菱電機株式会社 Manufacture of zinc oxide type arrestor element
JP2002094114A (en) * 2000-09-13 2002-03-29 National Institute Of Advanced Industrial & Technology SEMICONDUCTOR DEVICE COMPRISING ZnO-BASED OXIDE SEMICONDUCTOR LAYER AND ITS FABRICATING METHOD
JP2004175616A (en) * 2002-11-27 2004-06-24 Sumitomo Metal Mining Co Ltd Zinc oxide-type sintered compact and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5205696B2 (en) Gallium oxide based sintered body and method for producing the same
KR101274279B1 (en) Indium oxide sintered body, indium oxide transparent conductive film, and method for manufacturing the transparent conductive film
US8569192B2 (en) Sintered complex oxide, method for producing sintered complex oxide, sputtering target and method for producing thin film
JP4885274B2 (en) Amorphous composite oxide film, crystalline composite oxide film, method for producing amorphous composite oxide film, and method for producing crystalline composite oxide film
JP5224073B2 (en) Oxide deposition material and method for producing the same
JP5376117B2 (en) ZnO sputtering target and manufacturing method thereof
JP2010037161A (en) Oxide sintered compact, method for producing the same, sputtering target and semiconductor thin film
JP6264846B2 (en) Oxide sintered body, sputtering target and manufacturing method thereof
KR20140079384A (en) Zn-Si-O SYSTEM OXIDE SINTERED BODY, METHOD FOR PRODUCING SAME, AND TRANSPARENT CONDUCTIVE FILM
JP5387248B2 (en) Semiconductor oxide thin film
JP5692224B2 (en) Zinc oxide sintered tablet and method for producing the same
TWI546273B (en) In-Ga-Zn-based oxide sputtering target and a method for manufacturing the same
JP5285149B2 (en) Sintered body for ZnO-Ga2O3-based sputtering target and method for producing the same
JP5369444B2 (en) GZO sintered body manufacturing method
US20190389772A1 (en) Oxide sintered body
WO2016136611A1 (en) Oxide sintered body and sputtering target comprising oxide sintered body
CN108698937B (en) Sn-Zn-O oxide sintered body and method for producing same
CN114127029A (en) Oxide sputtering target
JP2014125422A (en) Oxide sintered body, oxide sintered body sputtering target and its manufacturing method
JP2004175616A (en) Zinc oxide-type sintered compact and its manufacturing method
JP4026194B2 (en) ZnO-Ga2O3-based sintered body for sputtering target and method for producing the same
JP2008195567A (en) Zinc oxide based sintered compact and method of manufacturing the same
JP6468158B2 (en) ZnO-Ga2O3-based oxide sintered tablet for vapor deposition and method for producing the same
JP5602820B2 (en) Manufacturing method of ZnO sintered body
JP2022108736A (en) IGZO sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110927