JPS63241365A - Optical voltage/electric field sensor - Google Patents

Optical voltage/electric field sensor

Info

Publication number
JPS63241365A
JPS63241365A JP62074289A JP7428987A JPS63241365A JP S63241365 A JPS63241365 A JP S63241365A JP 62074289 A JP62074289 A JP 62074289A JP 7428987 A JP7428987 A JP 7428987A JP S63241365 A JPS63241365 A JP S63241365A
Authority
JP
Japan
Prior art keywords
bgo
light
converted
anisotropy
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074289A
Other languages
Japanese (ja)
Inventor
Jiyunji Hinatsu
日夏 順次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62074289A priority Critical patent/JPS63241365A/en
Publication of JPS63241365A publication Critical patent/JPS63241365A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce scattering of bias points between probes due to anisotropy of crystal and variations in the degree of modulation, by reducing the thickness of a BSO or BGO element having Pockels effect. CONSTITUTION:Light emitted from a light source 1 is introduced to a sensor section 10 through an optical fiber 3a to be converted into a linearly polarized light with the passage thereof through a polarizer 5 and further into a circularly polarized light with a 1/4 wavelength plate 6. The circularly polarized light passes through BGO elements 7 having Pockels effect to cause a change in the polarization state thereof according to an AC voltage applied. The change in the polarization state thereof is converted with an analyzer 8 to a change in the intensity of light and received with a photodetector 2 through a rod lens 4b and an optical fiber 3b to be converted into an electrical signal. here, anisotropy between the BGO elements 7 can be lessened by reducing below 400mum the thickness of a surface in the direction of light passes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、BSOあるいはBGO素子を用いた光応用
電圧・電界センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical voltage/electric field sensor using a BSO or BGO element.

〔従来の技術〕[Conventional technology]

従来、BSO(Bi12SiO20)あるいはBGO(
B i 1zGeozo)の亀結晶を用いた光応用電圧
センサについては、例えば特開昭57−98863号公
報に記載されたものがある。第1図は従来のこの種の光
応用電圧センサを示し、光源(1)および光検出器(2
)にそれぞれ光ファイバ(3a)および(3b)を介し
てロッドレンズ(4a)および(4b)が接続されてい
る。
Conventionally, BSO (Bi12SiO20) or BGO (
An optical voltage sensor using a tortoise crystal of B i 1zGeozo is described, for example, in Japanese Patent Application Laid-Open No. 57-98863. Figure 1 shows a conventional optical voltage sensor of this type, including a light source (1) and a photodetector (2).
) are connected to rod lenses (4a) and (4b) via optical fibers (3a) and (3b), respectively.

ロッドレンズ(4a)には、ロッドレンズ(4a)で平
行光線とされた光を直線偏光にする偏光子(5)、さら
にこれを円偏光に変換する1/4波長板(6)が配設さ
れており、次のBGO単結晶素子(7)は、これに印加
された電圧を光の偏光状態の変化に変換する。
The rod lens (4a) is equipped with a polarizer (5) that converts the light parallelized by the rod lens (4a) into linearly polarized light, and a quarter-wave plate (6) that converts this into circularly polarized light. The next BGO single crystal element (7) converts the voltage applied thereto into a change in the polarization state of light.

そうして、光の偏光状態の変化を光強度変化に変換する
検光子(8)からロッドレンズ(4b)K至っている。
The analyzer (8), which converts changes in the polarization state of light into changes in light intensity, leads to the rod lens (4b) K.

電気回路(9)は光検出器(2)が受けた光強度信号を
電気信号に変換し、それを回路的に変調UK比例する値
Kf換する。(1o)はセンサ部をなすプローブである
The electric circuit (9) converts the light intensity signal received by the photodetector (2) into an electric signal, and converts it into a value Kf proportional to the modulation UK. (1o) is a probe forming a sensor section.

以上の構成により、光源(1)から出射された光は、光
ファイバ(3a)を介してセンサ部(10)に導かれる
。この光は偏光子(5)を通過することにより直線偏光
に変換される。さらに1/4波長板(6)により円偏光
に変換される。この円偏光は、ポッケルス効果をもつB
GO素子(7)を通過することにより、BGO素子(7
)に印加されている交流電圧に応じて偏光状態ノ変化が
生じる。この偏光状態の変化は検光子(8)により光の
強度変化に変換される。この光はロンドレンズ’(4b
 )により集光され、光ファイバ(3b)を介して光検
出器(2)で受光され、電気的な信号に変換される。こ
の電気信号は、第2図に示すようK、1/4波長板(6
)により光学バイアスをかけられて生じる直流信号と、
 BGO素子(7)に印加された交流電圧に応じた交流
信号(12)の亘ね合わせである。電気回路(9)はこ
の直流信号(11)と又原信号(12)とを分割し、か
つ、交流信号(12)を直流信号弁(11)で割算する
ことにより、光ファイバ(3a)、(3b’)のロスの
変化をキャンセルし、BGO素子(7)に印加された交
流信号に比例したイ直を出力する。
With the above configuration, light emitted from the light source (1) is guided to the sensor section (10) via the optical fiber (3a). This light is converted into linearly polarized light by passing through a polarizer (5). It is further converted into circularly polarized light by a quarter wavelength plate (6). This circularly polarized light has a Pockels effect.
By passing through the GO element (7), the BGO element (7)
) The polarization state changes depending on the alternating current voltage applied to the polarization state. This change in polarization state is converted into a change in light intensity by an analyzer (8). This light is Rondo Lens' (4b
), the light is received by the photodetector (2) via the optical fiber (3b), and converted into an electrical signal. This electrical signal is transmitted through K, a quarter-wave plate (6
) and a DC signal generated by applying an optical bias.
This is the adjustment of the AC signal (12) according to the AC voltage applied to the BGO element (7). The electric circuit (9) divides this DC signal (11) and the original signal (12), and divides the AC signal (12) by the DC signal valve (11) to connect the optical fiber (3a). , (3b') and outputs an AC signal proportional to the AC signal applied to the BGO element (7).

〔発明が解決しようとする間魂点〕[The problem that the invention is trying to solve]

以上のような従来の光応用電圧センサでは、 BGO素
子(7)の厚さが1f1以上あり、内部応力等による光
学的異方性がある。この光学的異方性は、多くのBGO
素子(7)の間で約0.5度のリタデーションのバラツ
キがあり、このため各プローブ(10)の間で、光学的
バイアスが、44.5〜45.5度にバラツキを生じる
。このため、直流分が各プローブ(1o)間で異なり、
変調度のバラツキを生じるため、個々のプローブに対し
て電子回路のゲインの媚整をする必要が生じるという問
題点があった。
In the conventional optical voltage sensor as described above, the BGO element (7) has a thickness of 1f1 or more, and has optical anisotropy due to internal stress or the like. This optical anisotropy is a characteristic of many BGOs.
There is a variation in retardation of about 0.5 degrees between the elements (7), which causes an optical bias variation of 44.5 to 45.5 degrees between each probe (10). Therefore, the DC component differs between each probe (1o),
Since variations in the modulation degree occur, there is a problem in that it is necessary to adjust the gain of the electronic circuit for each probe.

この発明は上記のような問題点を解消するためになされ
たもので、1面々のグローブ゛(10)の変調度のバラ
ツキをなくし、すべてのプローブ(10)に対して、同
じゲインに固定された電子回路(9)で対応がつくよう
にするとともに、電子回路(9)のゲイン調整を不要と
する光応用電圧・電界センサを得ることを目的とする。
This invention was made in order to solve the above-mentioned problems, and it eliminates the variation in the modulation degree of the globe (10) from one surface to the other, and fixes the gain to the same value for all the probes (10). It is an object of the present invention to provide an optical voltage/electric field sensor that can be handled by a built-in electronic circuit (9) and that does not require gain adjustment of the electronic circuit (9).

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る光応用電圧−電界センサは、 BGO素
子の異方性を極小としたものである。
The optical voltage-electric field sensor according to the present invention has a BGO element with minimal anisotropy.

〔作 用〕[For production]

この発明においては、プローブの変調度のバラツキが小
さくなり、プローブと電子回路間の互換性が実現される
In this invention, variations in the modulation degree of the probe are reduced, and compatibility between the probe and the electronic circuit is realized.

〔実施例〕〔Example〕

この発明の全体の構成は、第1図に示したものと同じで
あり、説明を省略する。ただし、BGO素子(7)の光
が通る方向の面の厚みは400μm以下とする。
The overall configuration of this invention is the same as that shown in FIG. 1, and its explanation will be omitted. However, the thickness of the surface of the BGO element (7) in the direction in which light passes is 400 μm or less.

以上の構成により、BGO素子(7)の厚みが400μ
m以下と小さくしている。BGO素子(7)の異方性は
厚みに比例するので、BGO素子(7)の厚みは従来の
ものの略115以下となっている。したがって、BGO
素子(7)間の異方性のバラツキは従来のものに比較し
て小さくなり、115以下、すなわち0.1度以下のバ
ラツキとなる。
With the above configuration, the thickness of the BGO element (7) is 400 μm.
It is kept small, less than m. Since the anisotropy of the BGO element (7) is proportional to the thickness, the thickness of the BGO element (7) is approximately 115 mm or less than the conventional one. Therefore, B.G.O.
The variation in anisotropy between the elements (7) is smaller than that of the conventional device, and is 115 degrees or less, that is, 0.1 degree or less.

また、光学バイアスによる直流分は5in2θに比例す
る。一方、交流分はこの微分に比例するから、2 si
nθ強θに比例する。したがって、変調度Mは下記の値
に比例する。
Further, the direct current component due to the optical bias is proportional to 5 in2θ. On the other hand, since the AC component is proportional to this differential, 2 si
nθ is proportional to strong θ. Therefore, the modulation degree M is proportional to the following value.

Mocωt(θ) ただし、θはBGO素子(7)の異方性および1/4波
長板(6)のリタデーションのプローブ全体の光学バイ
アス値である。
Mocωt(θ) where θ is the optical bias value of the entire probe for the anisotropy of the BGO element (7) and the retardation of the quarter-wave plate (6).

BGO素子(7)の異方性による変調度のプローブ(1
0)間のバラツキは次の式で表わされる。
Probe (1) of modulation degree due to anisotropy of BGO element (7)
0) is expressed by the following formula.

cot (ψ) ここで、ψは1/4波長板(6)のリタデーション、α
はBGO素子(7)の異方性のリタデーションのバラツ
キの最大値である。したがって、ψ=45°。
cot (ψ) where ψ is the retardation of the quarter-wave plate (6), α
is the maximum value of the anisotropic retardation variation of the BGO element (7). Therefore, ψ=45°.

α≦o2°degであるから、プローブ(1o)間の変
調度のバラツキは、1.4%以下となる。現在の光応用
電圧センサーの精度は、1.5%程度であるから、同じ
ゲインに固定された電子回路(9)を使用しても、各プ
ローブ(1o)は使用可能となる。
Since α≦o2°deg, the variation in modulation degree between probes (1o) is 1.4% or less. Since the accuracy of current optical voltage sensors is about 1.5%, each probe (1o) can be used even if the electronic circuit (9) is fixed to the same gain.

すなわち、グローブ(1o)と電子回路(9)の間に互
換性が得られる。
That is, compatibility is obtained between the glove (1o) and the electronic circuit (9).

なお、上記実施例はBGO結晶を用いた場合について説
明したが、BSO結晶を用いた場合も同じである。
Note that although the above embodiments have been described using BGO crystals, the same applies to cases where BSO crystals are used.

また、1/4波長板(6)は偏光子(5)とBGO素子
(7)との間に介在した例について説明したが、検光子
(8)とI(Go素子(7)の間に介在してもよい。
In addition, although we have explained an example in which the 1/4 wavelength plate (6) is interposed between the polarizer (5) and the BGO element (7), May intervene.

また、上記実施例では電圧センサについて説明したが、
盲、界センサとして用いてもよいことは言うまでもない
In addition, although the voltage sensor was explained in the above embodiment,
Needless to say, it can also be used as a blind or field sensor.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明は、ポッケルス効果をもつBS
OあるいはBGO素子の厚みを薄(したので、これらの
結晶の異方性によるグローブ間のバイアス点のバラツキ
が小さくなり、したがってこれによる変調度のバラツキ
が小さくなり、プローブと電気回路間の互換性が得られ
る。
As described above, this invention is based on BS with Pockels effect.
Because the thickness of the O or BGO element is thin, the variation in the bias point between globes due to the anisotropy of these crystals is reduced, and therefore the variation in modulation depth due to this is reduced, improving compatibility between the probe and the electrical circuit. is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光応用電圧センサの斜視図、第2図は同
じくセンサの信号の出力状態を示す線図である。 (7)・・BGO素子(単結晶)。 なお、各図中、同一符号は同一、又は相当部分を示す。 7:BGO奮+(単、g&)
FIG. 1 is a perspective view of a conventional optical voltage sensor, and FIG. 2 is a diagram showing the signal output state of the sensor. (7)...BGO element (single crystal). In each figure, the same reference numerals indicate the same or equivalent parts. 7: BGO strenuous + (single, g&)

Claims (1)

【特許請求の範囲】[Claims] Bi_1_2SiO_2_0およびBi_1_2GeO
_2_0いずれかの単結晶に印加される電圧および電界
のいずれかを検出する光応用電圧・電界センサにおいて
、光が通る方向に垂直な面の厚さが400μm以下であ
る前記単結晶を備えてなることを特徴とする光応用電圧
・電界センサ。
Bi_1_2SiO_2_0 and Bi_1_2GeO
_2_0 An optical voltage/electric field sensor that detects either a voltage or an electric field applied to any of the single crystals, comprising the single crystal having a thickness of 400 μm or less on a surface perpendicular to the direction in which light passes. An optical voltage/electric field sensor characterized by the following.
JP62074289A 1987-03-30 1987-03-30 Optical voltage/electric field sensor Pending JPS63241365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074289A JPS63241365A (en) 1987-03-30 1987-03-30 Optical voltage/electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074289A JPS63241365A (en) 1987-03-30 1987-03-30 Optical voltage/electric field sensor

Publications (1)

Publication Number Publication Date
JPS63241365A true JPS63241365A (en) 1988-10-06

Family

ID=13542822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074289A Pending JPS63241365A (en) 1987-03-30 1987-03-30 Optical voltage/electric field sensor

Country Status (1)

Country Link
JP (1) JPS63241365A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667538A (en) * 1991-01-31 1997-09-16 Eveready Battery Company, Inc. Electrochromic thin film state-of-charge detector for on-the-cell application
US5672440A (en) * 1991-01-31 1997-09-30 Eveready Battery Company Cell tester device employing a cathodically depositable metal ion electrolyte solution
US5737114A (en) * 1991-01-31 1998-04-07 Eveready Battery Company, Inc. Label having an incorporated electrochromic state-of-charge indicator for an electrochemical cell
CN111441085A (en) * 2020-03-04 2020-07-24 中国地质大学(武汉) Design method of BGO crystal used in optical waveguide electric field sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5667538A (en) * 1991-01-31 1997-09-16 Eveready Battery Company, Inc. Electrochromic thin film state-of-charge detector for on-the-cell application
US5672440A (en) * 1991-01-31 1997-09-30 Eveready Battery Company Cell tester device employing a cathodically depositable metal ion electrolyte solution
US5737114A (en) * 1991-01-31 1998-04-07 Eveready Battery Company, Inc. Label having an incorporated electrochromic state-of-charge indicator for an electrochemical cell
US5849046A (en) * 1991-01-31 1998-12-15 Eveready Battery Company, Inc. Electrochromic thin film state-of-charge detector for on-the-cell application
CN111441085A (en) * 2020-03-04 2020-07-24 中国地质大学(武汉) Design method of BGO crystal used in optical waveguide electric field sensor
CN111441085B (en) * 2020-03-04 2021-07-20 中国地质大学(武汉) Design method of BGO crystal used in optical waveguide electric field sensor

Similar Documents

Publication Publication Date Title
US4465969A (en) Voltage and electric field measuring device using light
EP0083196B1 (en) Voltage and electric field measuring device using light
US4539519A (en) Fiber optics device for measuring the intensity of an electric current utilizing the Faraday effect
JP2521395B2 (en) Optical voltage / electric field sensor
JPS62297716A (en) Method and device for measuring magnitude of physical quantity
US4010632A (en) Piezooptical measuring transducer
US5559442A (en) Process and sensor for measuring electric voltages and/or electric field intensities
JPS63241365A (en) Optical voltage/electric field sensor
US5028865A (en) Device having main and secondary optical sensors
GB1182189A (en) Automatic Control of Strain Modulator.
JPS60263866A (en) Optical electric field sensor
JP2580443B2 (en) Optical voltage sensor
JPH04143679A (en) Optical magnetic field sensor
JPS5935156A (en) Optical current transformer
JPH05119075A (en) Optical voltage sensor
JPS60205379A (en) Light-applied magnetic field sensor
JPS59119334A (en) Pressure sensor
JPS61250573A (en) Light applied current/magnetic field sensor
JPH08220149A (en) Photovoltaic sensor
SU989518A1 (en) Electric optical device for adjusting light radiation intensity
JPS61165665A (en) Apparatus for detecting voltage electric field
JPH07128419A (en) Optical sensor
JPS61237027A (en) Optical sensor
JPH0749358A (en) Optical current transformer
JPH02227620A (en) Optical measuring instrument