JPS6324133A - Measuring method for surface temperature of base material in plasma - Google Patents

Measuring method for surface temperature of base material in plasma

Info

Publication number
JPS6324133A
JPS6324133A JP16105086A JP16105086A JPS6324133A JP S6324133 A JPS6324133 A JP S6324133A JP 16105086 A JP16105086 A JP 16105086A JP 16105086 A JP16105086 A JP 16105086A JP S6324133 A JPS6324133 A JP S6324133A
Authority
JP
Japan
Prior art keywords
plasma
base material
surface temperature
far infrared
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16105086A
Other languages
Japanese (ja)
Inventor
Masaaki Tobioka
正明 飛岡
Akihiko Ikegaya
明彦 池ヶ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16105086A priority Critical patent/JPS6324133A/en
Publication of JPS6324133A publication Critical patent/JPS6324133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To accurately measure the surface temperature of a base material in plasma by measuring the spectrum in a far infrared region of >=80,000Angstrom wavelength during a plasma surface reforming treatment. CONSTITUTION:A so-called black body radiation spectrum emitted by the surface 11 of the base material passes through a transmission window 22 during plasma CVD reaction. Then, a near infrared component of about <=80,000Angstrom wavelength is removed and only its far infrared component is incident on a far infrared radiation thermometer 3. Plasma, on the other hand, has nearly no spectrum distribution in >=80,000Angstrom wavelength, so the far infrared component never contains unnecessary energy components due to the influence of the plasma. Then, the distribution of the radiation spectrum incident on the thermometer 3 is measured to accurately obtain the temperature of the base material surface 11 in the plasma.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はプラズマ中の基材表面温度測定法に関し、さ
らに詳細にいえば、プラズマを利用して基材表面の薄膜
形成やエツチング(以下総称して「プラズマ表面改質」
という。)を行なう際に、該基材の表面温度を測定する
方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for measuring the surface temperature of a substrate in plasma, and more specifically, it relates to a method for measuring the surface temperature of a substrate in plasma. "Plasma surface modification"
That's what it means. ), it relates to a method for measuring the surface temperature of the substrate.

〈従来の技術〉 上記のプラズマ表面改質方法は、プラズマの有する極め
て活性的な反応力を利用するものであるため、従来の気
相化学反応笠を利用した表面改質方法に比べて、より低
い基材温度で処理を行なうことができるばかりか、例え
ば、ダイヤモンドのような従来合成不可能であった物質
を析出させることもできることから、最近産業界で注目
を浴びるようになっている。
<Prior art> The plasma surface modification method described above utilizes the extremely active reaction force of plasma, so it is more effective than the conventional surface modification method using a gas phase chemical reaction shade. Recently, it has been attracting attention in the industrial world because it not only allows processing at low substrate temperatures, but also allows the precipitation of substances that were previously impossible to synthesize, such as diamond.

このようなプラズマ改質技術において、最も重要かつ基
本的な表面改質条件の一つは、基材の表面温度である。
In such plasma modification technology, one of the most important and basic surface modification conditions is the surface temperature of the base material.

上記基材の表面温度を測定する場合、例えば気相化学反
応を利用づる薄膜形成法であれば、熱雷対または基材表
面からの放射エネルギーを測定する赤外線放射温度計を
使用することができる。
When measuring the surface temperature of the base material, for example, in the case of a thin film formation method that utilizes a gas phase chemical reaction, a thermal lightning pair or an infrared radiation thermometer that measures the radiant energy from the surface of the base material can be used. .

〈発明が解決しようとする問題点〉 しかし、プラズマ表面改質方法では、プラズマを発生さ
せるのに、一般にマイクロ波等の大電力の高周波電界を
基材の近傍に印加するので、熱雷対による温度測定は困
難であった。また、プラズマは、波長が4,000 A
〜8,000 Aの可視光域を中心として、10.00
0八を越えた赤外領域にも若干そのスペクトル分布を有
づるものであるから、赤外線放射温度計を用いて放射エ
ネルギーを測定する際に、プラズマの発光をも測定して
しまい、測定値が極めて不正確になるという欠点があっ
た。
<Problems to be Solved by the Invention> However, in the plasma surface modification method, a high-power high-frequency electric field such as a microwave is generally applied near the base material to generate plasma. Temperature measurements were difficult. In addition, plasma has a wavelength of 4,000 A
~8,000 A, centered on the visible light range, 10.00
There is a slight spectral distribution in the infrared region exceeding 0.08, so when measuring radiant energy using an infrared radiation thermometer, the plasma emission is also measured, and the measured value is The drawback was that it was extremely inaccurate.

〈発明の目的〉 この発明は、上記の問題点に鑑みてなされたものであり
、プラズマ表面改質方法において、基材表面の温度を正
確に測定できる基材表面温度測定法を提供することを目
的とする。
<Object of the Invention> The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a substrate surface temperature measurement method that can accurately measure the temperature of the substrate surface in a plasma surface modification method. purpose.

〈問題点を解決するための手段〉 上記の目的を達成するための、この発明の基材表面温度
測定法は、プラズマ雰囲気中に配置された基材から放射
される放射熱を、波長go、 0OOA以上の赤外線を
透過する遠赤外線透過フィルタを通して、遠赤外線放射
温度計で測定するものである。
<Means for Solving the Problems> In order to achieve the above-mentioned object, the substrate surface temperature measurement method of the present invention uses radiant heat emitted from a substrate placed in a plasma atmosphere at wavelengths go, It is measured with a far-infrared radiation thermometer through a far-infrared transmission filter that transmits infrared rays of 0OOA or more.

く作用〉 上記の構成の基材表面温度測定法であれば、プラズマ雰
囲気中に配置された基材から放射されるいわゆる黒体放
射熱は、遠赤外線透過フィルタを通過づることで、近赤
外線が除去されるので、遠赤外成分のみを遠赤外、線放
射温度計に入射させることができる。このためプラズマ
自体のスペクトル分布の影響を受けることなく、基材表
面温度を正確に測定することができる。
In the substrate surface temperature measurement method with the above configuration, the so-called blackbody radiant heat emitted from the substrate placed in a plasma atmosphere passes through a far-infrared transmission filter, and near-infrared rays are Since it is removed, only the far-infrared component can be made incident on the far-infrared radiation thermometer. Therefore, the base material surface temperature can be accurately measured without being affected by the spectral distribution of the plasma itself.

〈実施例〉 以下、実施例を示1J添付図面によって詳細に説明する
<Example> Hereinafter, an example will be described in detail with reference to the attached drawings 1J.

図は、この光明の基材表面温度測定法の実施に使用され
るプラズマCVD装置を示を概念図である。上記プラズ
マCVD装置は、放電用マイクロ波を発振する入電ツノ
マイクロ波発振1 [1)、発振されたマイクロ波を所
定部に導く導波管(41)、導波管(41)先端部に設
けられたマイクロ波反射板(42)、導波管(41)の
途中を挿通する石英製反応管(2)、および反応管(2
)の内部に設けられた、基材(1)を配置するための基
材支持手段(5)等により構成されており、反応管(2
)の上部側面には、反応ガスの導入孔(21)が、下面
には、真空排気装置(図示せず)に接続される排気孔(
23)がそれぞれ設けられている。
The figure is a conceptual diagram showing a plasma CVD apparatus used to carry out Komei's method for measuring the surface temperature of a substrate. The above plasma CVD apparatus includes an incoming horn microwave oscillation 1 [1] that oscillates microwaves for discharging, a waveguide (41) that guides the oscillated microwave to a predetermined part, and a waveguide (41) provided at the tip of the waveguide (41). quartz reaction tube (2) inserted in the middle of the waveguide (41), and the reaction tube (2).
) for arranging the base material (1), and the like.
) has a reaction gas introduction hole (21) on its upper side, and an exhaust hole (21) connected to a vacuum evacuation device (not shown) on its bottom surface.
23) are provided respectively.

また、反応管(2の上面には、波長的80.000八以
上の遠赤外線を透過させるフィルタとしての機能を果す
Zn5e製の透過窓(22)が配設されており、さらに
この透過窓(22)の上部に、およそ80,000Å以
上の遠赤外領域に感度を有している遠赤外線放射温度計
(3)を、透過窓(22)を挟んで基材(1)と対向さ
せである。
In addition, a transmission window (22) made of Zn5e is provided on the top surface of the reaction tube (2), which functions as a filter that transmits far infrared rays with a wavelength of 80.0008 or more. 22), a far-infrared radiation thermometer (3) having sensitivity in the far-infrared region of about 80,000 Å or more is placed opposite the base material (1) with the transmission window (22) in between. be.

上記の構成において、ガス導入孔(21)から導入され
た反応ガスは、反応管(2)内に満たされ、マイクロ波
の放電によって活性化され、分解を起こし、u a (
nの表面(11)上に析出することによって膜が形成さ
れる。
In the above configuration, the reaction gas introduced from the gas introduction hole (21) fills the reaction tube (2), is activated by microwave discharge, causes decomposition, and causes ua (
A film is formed by depositing on the surface (11) of n.

上記プラズマCVD反応中に、基材表面(11)から放
射されるいわゆる黒体放射スペクトルは、透過窓(22
)を通過することによって、波長的ao、 oo。
During the plasma CVD reaction, the so-called blackbody radiation spectrum emitted from the substrate surface (11) is reflected by the transmission window (22).
), the wavelength ao, oo.

へ以下の近赤外成分が除去され、その遠赤外成分のみが
、遠赤外線放射温度計(3)に入射することになる。と
ころで、プラズマは80,000Å以上の波長にほとん
どスペクトル分布を持たないため、上記遠赤外成分には
、プラズマの影響による不要なエネルギー成分が会まれ
ることはない。したがって、遠赤外線放射温度計(3]
に入射した放射スペクトル分布を測定することによって
、プラズマ中の基材表面(11)の温度を正確に測定す
ることができる。
The near-infrared components below are removed, and only the far-infrared components enter the far-infrared radiation thermometer (3). By the way, since plasma has almost no spectral distribution at wavelengths of 80,000 Å or more, unnecessary energy components due to the influence of plasma are not present in the far-infrared component. Therefore, far infrared radiation thermometer (3)
By measuring the radiation spectral distribution incident on the plasma, the temperature of the substrate surface (11) in the plasma can be accurately measured.

尚、この発明は上記の実施例に限定されるものではなく
、例えばプラズマCVD装置のほかにスパッタリング装
置、プラズマエツチング装置等、プラズマを用いた表面
改質装置一般に使用づることができ、その他この発明の
要旨を変更しない範囲内において、種々の設計変更を施
すことが可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and can be used in general surface modification devices using plasma, such as sputtering devices, plasma etching devices, etc., in addition to plasma CVD devices, and can be used in other surface modification devices using plasma. Various design changes can be made without changing the gist of the invention.

く試験例〉 J Is、5KH57高速度鋼(硬度)(Rc60)を
基材として、図示のプラズマCVD装置を用いて、CH
とト12とによる混合ガス(混合vj合;Cトイ4/ト
12−1/100ンを毎分25yIfつ導入し、15T
orrに保持した状態で、2.45GIIz、 500
Wのマイクロ波を印加し、反応管内にプラズマを発生さ
せた。この状態で、約5時間にわたって、基材表面に約
5μm厚のダイヤモンドを堆積させた。この間に、Zn
5e製赤外腺透過窓を通して、遠赤外線放射温度計によ
って基材表面温度を測定したところ約850℃であった
。これと並行して、通常の赤外線放射温度計で測定した
ところ、420℃付近で不安定な値を指示した。プラズ
マCVD処理後の基材の硬度測定、組織観察の結果から
、処理温度は800〜900°Cであることが分ったの
で、この発明の基材表面温度測定法の正確性を確認する
ことができた。
Test example> Using J Is, 5KH57 high speed steel (hardness) (Rc60) as a base material, CH
A mixed gas of 12 and 12 (mixture vj;
When held at orr, 2.45GIIz, 500
W microwave was applied to generate plasma in the reaction tube. In this state, diamond with a thickness of about 5 μm was deposited on the surface of the base material for about 5 hours. During this time, Zn
The surface temperature of the base material was measured using a far-infrared radiation thermometer through an infrared transmission window manufactured by Co., Ltd. 5e, and found to be approximately 850°C. At the same time, measurements using a regular infrared radiation thermometer showed unstable values around 420°C. From the results of hardness measurement and microstructural observation of the substrate after plasma CVD treatment, it was found that the treatment temperature was 800 to 900°C, so it was necessary to confirm the accuracy of the substrate surface temperature measurement method of this invention. was completed.

〈発明の効果〉 以上のようにこの発明は、プラズマ表面改質処理中に、
波長go、 ooo八以への遠赤外線領域のスペクトル
を測定することによって、プラズマ中の基材の表面温度
を正確に測定することができるという特有の効果を奏す
る。
<Effects of the Invention> As described above, the present invention provides the following effects during plasma surface modification treatment:
By measuring the spectrum in the far infrared region with wavelengths of go, ooo, and more, a unique effect is achieved in that the surface temperature of the substrate in plasma can be accurately measured.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この発明の基材表面温度測定法の実施に使用され
るプラズマCVD装置を示す慨念図。
The figure is a conceptual diagram showing a plasma CVD apparatus used for carrying out the substrate surface temperature measurement method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマ雰囲気中に配置された基材からの放射熱を
、波長80,000Å以上の赤外線を透過する遠赤外線
透過フィルタを通して、遠赤外線放射温度計で測定する
ことを特徴とするプラズマ中の基材表面温度測定法。
1. A substrate in a plasma characterized by measuring radiant heat from a substrate placed in a plasma atmosphere with a far-infrared radiation thermometer through a far-infrared transmission filter that transmits infrared rays with a wavelength of 80,000 Å or more. Material surface temperature measurement method.
JP16105086A 1986-07-09 1986-07-09 Measuring method for surface temperature of base material in plasma Pending JPS6324133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16105086A JPS6324133A (en) 1986-07-09 1986-07-09 Measuring method for surface temperature of base material in plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16105086A JPS6324133A (en) 1986-07-09 1986-07-09 Measuring method for surface temperature of base material in plasma

Publications (1)

Publication Number Publication Date
JPS6324133A true JPS6324133A (en) 1988-02-01

Family

ID=15727652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16105086A Pending JPS6324133A (en) 1986-07-09 1986-07-09 Measuring method for surface temperature of base material in plasma

Country Status (1)

Country Link
JP (1) JPS6324133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009148A1 (en) * 1989-12-11 1991-06-27 Hitachi, Ltd. Device for vacuum treatment and device for and method of film formation using said device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182643A (en) * 1974-11-08 1976-07-20 Shimadzu Corp ENSEKIGAIBUNKOKODOKEIYOHANSHAFUIRUTA

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5182643A (en) * 1974-11-08 1976-07-20 Shimadzu Corp ENSEKIGAIBUNKOKODOKEIYOHANSHAFUIRUTA

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991009148A1 (en) * 1989-12-11 1991-06-27 Hitachi, Ltd. Device for vacuum treatment and device for and method of film formation using said device

Similar Documents

Publication Publication Date Title
Dumin Measurement of film thickness using infrared interference
JPS6324133A (en) Measuring method for surface temperature of base material in plasma
Adams et al. Optoacoustic Spectrometry of Surfaces: Dielectric Coatings for Laser Mirrors
Ostrogorsky et al. Infrared absorbance of B2O3 at temperatures to 1250° C
JPS5665973A (en) Vapor depositing method
US4228452A (en) Silicon device with uniformly thick polysilicon
JP4746983B2 (en) Silicon wafer temperature measurement method
JPH02298829A (en) Heat treatment apparatus
JPS5647569A (en) Plasma etching method
Bermudez Observation of adsorption and reaction of NH 3 on crystalline Al 2 O 3 under steady-state conditions using external-reflection infrared spectroscopy
GB2230607A (en) Temperature- controlled bodies
JPH10170343A (en) Temperature measuring apparatus
JPH059728A (en) Formation of thin film
JPS5665974A (en) Vapor deposition controlling method
Thompson et al. Optical measurements of vapor pressures of Rb and a Rb–K mixture
JPS6372128A (en) Thin film manufacturing device
JPS62113425A (en) Semiconductor manufacturing equipment
JPS61239620A (en) Plasma chemical vapor deposition (cvd) device
KR20020077753A (en) Apparatus for measurement of film thickness variation speed and monitoring of process condition
Sampson et al. Wavelength considerations for improved silicon wafer temperature measurement by ellipsometry
JPS5974636A (en) Measuring device for film thickness
JPH0391701A (en) Reflection preventive film and its formation, and photoelectric device equipped with the same
Blayo et al. In situ infrared ellipsometry study of the vibrational properties, and the growth of amorphous semiconductor ultrathin films
JPS6138432A (en) Pyroelectric type infrared detection element
TW317642B (en) Chamber effluent monitoring system and semiconductor processing system comprising absorption spectroscopy measurement system, and methods of use