JPS61239620A - Plasma chemical vapor deposition (cvd) device - Google Patents

Plasma chemical vapor deposition (cvd) device

Info

Publication number
JPS61239620A
JPS61239620A JP8017085A JP8017085A JPS61239620A JP S61239620 A JPS61239620 A JP S61239620A JP 8017085 A JP8017085 A JP 8017085A JP 8017085 A JP8017085 A JP 8017085A JP S61239620 A JPS61239620 A JP S61239620A
Authority
JP
Japan
Prior art keywords
plasma
substrate
film
mask
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8017085A
Other languages
Japanese (ja)
Inventor
Masahiro Tanaka
政博 田中
Kazufumi Azuma
和文 東
Hiroyuki Saegusa
裕幸 三枝
Mitsuo Nakatani
中谷 光雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP8017085A priority Critical patent/JPS61239620A/en
Publication of JPS61239620A publication Critical patent/JPS61239620A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Abstract

PURPOSE:To enable to form an interface under the condition which does not differ much from the internal part of each layer when a semiconductor junction is formed by performing a plasma CVD is performed by a method wherein a substrate mask, with which the substrate is shut off from plasma, is operated based on the signal sent from an analytical means with which the activating seed in the plasma is measured. CONSTITUTION:The emitted light of plasma 3 is condensed by a quartz lens 4 through the quartz window 2 of a CVD device 1, the light is made spectral analyzing using a grating 5, it is received by a detector 6, its electric signal is passed through an amplifier 7 and an A/D transformer 8, inputted into an electronic computer, and the analysis of the signal is performed. The determination of the normal condition of plasma is given based on the result of said analysis. A substrate mask 11 is removed from a substrate 12 through the intermediary of a substrate mask transmission, and after a film-forming work is performed for the prescribed period, the substrate mask is covered on the substrate 12, and the film-forming process is completed. As the film is formed when plasma chemical reaction is in normal state, each layer and the interface can be formed uniformly.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプラズマCVD装置にかかわり、特に界面部分
の制御性と再現性の優れた半導体膜i    の形成に
好適なプラズマCVD装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a plasma CVD apparatus, and particularly to a plasma CVD apparatus suitable for forming a semiconductor film i with excellent controllability and reproducibility of an interface portion.

〔発明の背景〕[Background of the invention]

従来のプラズマCVD装置は、ドーピングプロフィル制
御の目的で、p型、n型および真性の各半導体層をそれ
ぞれ分離された反応室内で形成するようになっていた。
In conventional plasma CVD apparatuses, p-type, n-type, and intrinsic semiconductor layers are formed in separate reaction chambers for the purpose of doping profile control.

この麺の装置としては1例えば桑野らの’ Prepa
ration and Pro−pertiea of
 Amorphous 5ilicon Produc
ed by      ”(a Con5ecutiv
e * 5eparated Reaction Ch
amberMethod ’ : Japanese 
Journal of Applied Ph−ysi
ca * Vol、 21 r No、3 + p41
5なる文献に記・載された装置などが挙げられる。しか
し、従来の装置では、各半導体層間の界面部分の形成に
ころであるにもかかわらず、従来法によれば放    
□\はなんらの配慮もなされていなかった。従って、各
半導体層の界面は接合形成にとって重要なと電開始直後
および放電停止時の特異な条件下で形成されるため、構
造的にも物性的にも内部とは異なったものとなり、界面
の制御は困難であった。
As a device for this noodle, for example, Kuwano et al.'s 'Prepa'
ration and pro-perty of
Amorphous 5ilicon Product
ed by ”(a Con5ecutiv
e * 5eparated Reaction Ch
amberMethod' : Japanese
Journal of Applied Ph-ysi
ca * Vol, 21 r No, 3 + p41
Examples include devices described and described in the document No. 5. However, although the conventional equipment is difficult to form the interface between each semiconductor layer, the conventional method
No consideration was given to □\. Therefore, since the interface between each semiconductor layer is formed under unique conditions, which are important for junction formation, immediately after the start of the discharge and when the discharge is stopped, the interface between the semiconductor layers becomes structurally and physically different from the inside. Control was difficult.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、プラズマCVDによって半導体の接合
を形成する際、界面を各層内部とあまり異ならない条件
下で形成することが可能なプラズマCVD装置を提供す
ることにある。
An object of the present invention is to provide a plasma CVD apparatus that can form a semiconductor junction by plasma CVD under conditions that do not significantly differ from those inside each layer at the interface.

〔発明の概要〕[Summary of the invention]

界面部分を各層内部とあまり異ならない条件下で形成す
るためには、放電開始後からプラス11.     マ
内の化学反応が定常状態となるまでの間は成膜しないよ
うにし、かつ放電終了より前に成膜を停止すればよい。
In order to form the interface portion under conditions that are not very different from those inside each layer, it is necessary to increase the temperature by +11. It is sufficient that the film formation is not performed until the chemical reaction within the battery reaches a steady state, and that the film formation is stopped before the end of the discharge.

そのためには、基板をプラ11゜ズマから遮断する移動
可能なマスクを設け、このマスクでプラズマ内の化学反
応が定常状態になるまで基板を覆っておいて、定常状態
になってから開くようにし、また放電を停止する前に再
び基板を覆うようにすればよい。本発明はこl。
To do this, a movable mask is provided that isolates the substrate from the 11° plasma, and this mask covers the substrate until the chemical reaction in the plasma reaches a steady state, and then opens. , and the substrate may be covered again before stopping the discharge. This invention is here.

の点に着目してなされたもので、プラズマ中の活性種を
計測する分析手段と、該分析手段からj    の信号
により動作して基板をプラズマから遮断する基板マスク
とを設け、上述のマスク動作を行わせるようにしたもの
である。       、1゜プラズマ内の化学反応が
定常状態になった時点の検出には、プラズマ発光分析や
CAR8のようにプラズマの状態を逐次モニタできる手
法が望ましい。定常状態の判定は、プラズマ内の反応で
生じた化学種からの信号強度を測定し、(1)信号強度
がある値を越えたとき、(11)信号強度の時間微分が
0となったとき、0巾複数の化学種からの信号を測定し
て、強度の相対比が一定値となったとき、これを計測し
その結果によって定常状態を判定する方法を用いて行う
ことかで・。
This method was developed with a focus on the above points, and includes an analysis means for measuring active species in plasma and a substrate mask that is operated by a j signal from the analysis means to shield the substrate from the plasma. It is designed to make the user perform the following steps. , 1° To detect when the chemical reaction within the plasma reaches a steady state, it is desirable to use a method that can successively monitor the state of the plasma, such as plasma emission spectroscopy or CAR8. Steady state is determined by measuring the signal intensity from chemical species generated by reactions within the plasma, and (1) when the signal intensity exceeds a certain value, (11) when the time derivative of the signal intensity becomes 0. , by measuring signals from multiple chemical species, measuring when the relative ratio of intensities reaches a constant value, and determining a steady state based on the results.

きる。Wear.

基板マスクの材料としては、プラズマの安定性を保つた
めに絶縁物が望ましく、ガラス、石英r 811N4 
+ SiCrアルミナ等のセラミックス材料が耐熱性も
あり適している。
The material for the substrate mask is preferably an insulator to maintain plasma stability, such as glass or quartz R811N4.
+ Ceramic materials such as SiCr alumina are suitable because of their heat resistance.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例としてプラズマ発光分析を用い
てプラズマ内の化学反応をモニタし、基板マスクを制御
した例について述べる。
Hereinafter, as an embodiment of the present invention, an example will be described in which a chemical reaction in plasma is monitored using plasma emission spectrometry and a substrate mask is controlled.

本実施例の構成を第1図に示す。図において、プラズマ
CVD装置1には石英窓2を設け、これを通して装置外
に出てきたプラズマ発光3をレンズ4で集光し、その光
をグレーティング5で分光した後、これをデテクタ6で
受けて電気信号に変える。ついで、この電気信号を増幅
器゛7で増幅した後、これをA−D変換器8でデジタル
信号にし、その信号を電子計算機9に入力して信号の解
析を行い、その結果により基板マスク動力10を動作さ
せ、石英製の基板マスク11を基板12から外す。そし
て、一定時開成膜を行11っ−た稜、基板マスク11を
基板12にかぶせて成膜を終了させ、さらに放電を停止
する。なお、図中、符号13は高周波電源、14はガス
供給系を示す。
The configuration of this embodiment is shown in FIG. In the figure, a plasma CVD apparatus 1 is provided with a quartz window 2. Plasma emission 3 coming out of the apparatus through this is collected by a lens 4, and after the light is separated by a grating 5, it is received by a detector 6. and convert it into an electrical signal. Next, this electrical signal is amplified by an amplifier 7, converted into a digital signal by an A-D converter 8, and input into a computer 9 to analyze the signal. Based on the results, the substrate mask power 10 is is operated to remove the quartz substrate mask 11 from the substrate 12. Then, the substrate mask 11 is placed over the substrate 12 on the edge where the film is formed for a certain period of time, and the film formation is completed, and the discharge is further stopped. In addition, in the figure, the code|symbol 13 shows a high frequency power supply, and 14 shows a gas supply system.

次に、本実施例の装置を用いた場合の電子計1へ算機に
よる情報処理のアルゴリズムの例を、プ。
Next, an example of an algorithm for information processing by a computer in the electronic meter 1 when using the apparatus of this embodiment will be described.

ラズマCVD法で作られる代表的な半導体であるアモル
ファスシリコンの成膜の場合を例とし。
Let us take as an example the case of film formation of amorphous silicon, which is a typical semiconductor produced by the plasma CVD method.

て、第2図により説明する。アモルファスシリコンは、
モノシランガスをプラズマ中で分解し1.(活性種にし
て、200℃前後に加熱された基板上    7に析出
させて作られる。そのとき、プラズマか    ざ、3 らの発光は、モノシランの分解で生シタ5iH(“、f
z42on09、H(e * 655nm )、H2,
80、:こ、゛ St  %SiH等からのものである。そこで、特に・
    ・、強度の高いSiHとHからの発光である4
20nmと655nmの光に注目し、定常状態の判定を
行った。
This will be explained with reference to FIG. Amorphous silicon is
Decomposing monosilane gas in plasma 1. (It is made by precipitating it as an active species on a substrate heated to around 200°C. At that time, the light emitted from the plasma beam 3 is generated by the decomposition of monosilane.
z42on09, H(e*655nm), H2,
80: This is made from ゛St%SiH, etc. Therefore, especially
・Emission from SiH and H with high intensity 4
Steady state was determined by focusing on light of 20 nm and 655 nm.

定常状態は、420nmの光の強度の時間変化が毎秒全
強度の10チ以下となり、かつ655nmの光と420
nmの光の強度比が4:1より大きいといつ、・1条件
で判定した。このときの成膜条件は、圧力15.5Pa
、高周波出力80W、モノシランガス流量S CCms
基板温度200℃であった。なお、判定条件は成膜条件
により異なり、従ってあらかじめ同じ条件でプラズマ反
応を観測し、それぞれ1゜の条件に合わせてそれぞれの
発光強度の比を設定する必要がある。
In a steady state, the time change in the intensity of 420 nm light is less than 10 degrees of the total intensity per second, and the intensity of 420 nm light and 420 nm light are
When the intensity ratio of the nm light was greater than 4:1, it was judged under the 1 condition. The film forming conditions at this time were a pressure of 15.5 Pa.
, high frequency output 80W, monosilane gas flow rate S CCms
The substrate temperature was 200°C. Note that the determination conditions differ depending on the film formation conditions, and therefore it is necessary to observe the plasma reaction in advance under the same conditions and set the ratio of the respective emission intensities in accordance with the 1 degree condition.

上記判定条件を満足すれば、マスクを基板から外す命令
が出され、成膜を開始し、同時に時間を計測し始める。
If the above judgment conditions are satisfied, a command is issued to remove the mask from the substrate, film formation is started, and time measurement begins at the same time.

そして、所定の時間が経過1.。Then, a predetermined time elapses 1. .

すると、マスクを閉じ、成膜を停止し、ついで放電を止
める。
Then, the mask is closed, film formation is stopped, and then the discharge is stopped.

なお、本実施例によれば、界面部のみならず、膜厚の制
御を正確にする効果も得られる。
Note that, according to this embodiment, it is possible to obtain the effect of accurately controlling not only the interface portion but also the film thickness.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラズマCVDによって成膜を行うに
際し、基板上に形成された膜中に、プラズマ内の化学反
応が定常状態以外の条件で成膜される成分が含まれるこ
とんないので、各層中の均一性が高まり、特に層間の界
面部分の、、。
According to the present invention, when forming a film by plasma CVD, the film formed on the substrate does not contain components that are formed under conditions other than the steady state of the chemical reaction in the plasma. Uniformity within each layer increases, especially at the interface between layers.

物性、特性の再現性、制御性を高めるという効果が得ら
れる。
The effect of improving the reproducibility and controllability of physical properties and characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるプラズマCVD装置の一実施例の
構成図、第2図は該実施例の装置を1用いた場合の成膜
制御のアルゴリズムの一例を示す流れ図である。 、    >−y’5XwcVD装置・2・・・石英窓
、     3・・・プラズマ発光、4・・・レンズ、
     5山グレーテイング、6・・・デテクタ、 
   7・・・増幅器、8・・・A−D  変換器、 
9・・・電子計算機、10・・・基板マスク動力、11
・・・基板マスク、12・・・基板、     13・
・・高周波電源、14・・・ガス供給系、。
FIG. 1 is a block diagram of an embodiment of a plasma CVD apparatus according to the present invention, and FIG. 2 is a flowchart showing an example of a film deposition control algorithm when one of the apparatuses of the embodiment is used. , >-y'5XwcVD device・2...Quartz window, 3...Plasma emission, 4...Lens,
5-mounted grating, 6...detector,
7...Amplifier, 8...A-D converter,
9...Electronic computer, 10...Substrate mask power, 11
...Substrate mask, 12...Substrate, 13.
...High frequency power supply, 14...Gas supply system.

Claims (1)

【特許請求の範囲】 1、真空放電を行うための真空容器、その内部に設けら
れた基板台、および原料ガス供給系からなるプラズマC
VD装置であって、プラズマ中の活性種を計測する分析
手段と、該分析手段からの信号により動作して基板をプ
ラズマから遮断する基板マスクとを設けたことを特徴と
するプラズマCVD装置。 2、プラズマ中の活性種を計測する分析手段がプラズマ
発光分析装置であることを特徴とする特許請求の範囲第
1項に記載のプラズマCVD装置。
[Claims] 1. Plasma C consisting of a vacuum container for performing vacuum discharge, a substrate stand provided inside the container, and a raw material gas supply system.
1. A plasma CVD apparatus comprising: an analysis means for measuring active species in plasma; and a substrate mask operated by a signal from the analysis means to shield a substrate from the plasma. 2. The plasma CVD apparatus according to claim 1, wherein the analysis means for measuring active species in the plasma is a plasma emission spectrometer.
JP8017085A 1985-04-17 1985-04-17 Plasma chemical vapor deposition (cvd) device Pending JPS61239620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8017085A JPS61239620A (en) 1985-04-17 1985-04-17 Plasma chemical vapor deposition (cvd) device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8017085A JPS61239620A (en) 1985-04-17 1985-04-17 Plasma chemical vapor deposition (cvd) device

Publications (1)

Publication Number Publication Date
JPS61239620A true JPS61239620A (en) 1986-10-24

Family

ID=13710853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8017085A Pending JPS61239620A (en) 1985-04-17 1985-04-17 Plasma chemical vapor deposition (cvd) device

Country Status (1)

Country Link
JP (1) JPS61239620A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205520A (en) * 1988-02-12 1989-08-17 Shimadzu Corp Film-formation apparatus
US5665167A (en) * 1993-02-16 1997-09-09 Tokyo Electron Kabushiki Kaisha Plasma treatment apparatus having a workpiece-side electrode grounding circuit
US9528254B2 (en) 2009-11-17 2016-12-27 Shanghai Kohler Electronics, Ltd. Injection member assembly
US9551140B2 (en) 2009-11-17 2017-01-24 Shanghai Kohler Electronics, Ltd. Dryer component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01205520A (en) * 1988-02-12 1989-08-17 Shimadzu Corp Film-formation apparatus
US5665167A (en) * 1993-02-16 1997-09-09 Tokyo Electron Kabushiki Kaisha Plasma treatment apparatus having a workpiece-side electrode grounding circuit
US9528254B2 (en) 2009-11-17 2016-12-27 Shanghai Kohler Electronics, Ltd. Injection member assembly
US9551140B2 (en) 2009-11-17 2017-01-24 Shanghai Kohler Electronics, Ltd. Dryer component

Similar Documents

Publication Publication Date Title
US6972840B1 (en) Method of reducing process plasma damage using optical spectroscopy
US5900633A (en) Spectrometric method for analysis of film thickness and composition on a patterned sample
JP4227301B2 (en) End point detection method in semiconductor plasma processing
JP2005527983A (en) Method and system for data handling, storage and operation
US6627463B1 (en) Situ measurement of film nitridation using optical emission spectroscopy
KR20010029905A (en) Method and apparatus for monitoring a process by employing principal component analysis
JPS6058793B2 (en) Plasma spectroscopic monitoring device
Wang et al. Noninvasive, real-time measurements of plasma parameters via optical emission spectroscopy
JP4267575B2 (en) Method and apparatus for determining etch characteristics using endpoint signals
US7738976B2 (en) Monitoring method of processing state and processing unit
JP3905466B2 (en) Plasma processing method and plasma processing apparatus
JPH07286904A (en) Method and apparatusfor correction of multizone real-time emissivity
Kim et al. Temperature dependence of the optical properties of CdTe
JPS61239620A (en) Plasma chemical vapor deposition (cvd) device
JPH0310082A (en) Method and device for forming deposited film
Roess et al. The Design and Construction of Rapid‐Response Thermocouples for Use as Radiation Detectors in Infra‐Red Spectrographs
JPH04212414A (en) Plasma process equipment
Kiss et al. Comparison of CF 3Cl and C 2 F 6+ Cl2 Plasma Chemistry by Power Modulation
JP3577163B2 (en) Determining the end point of the plasma etching process using an active neural network
Wangmaneerat et al. Determination of temperature and composition of phosphosilicate glass thin films from infrared emission spectral data
JP2885547B2 (en) Method for producing silicon dioxide thin film
Gardner Sensor for measuring the atomic fraction in highly dissociated hydrogen
JPH08298257A (en) Dry etching method by emission spectrum
Niemczyk et al. Monitoring dielectric thin-film production on product wafers using infrared emission spectroscopy
Wang et al. In-line FTIR for epitaxial silicon film thickness measurement on an Applied Materials Centura cluster tool