JPS63241153A - Heat-resisting member and its production - Google Patents

Heat-resisting member and its production

Info

Publication number
JPS63241153A
JPS63241153A JP62074357A JP7435787A JPS63241153A JP S63241153 A JPS63241153 A JP S63241153A JP 62074357 A JP62074357 A JP 62074357A JP 7435787 A JP7435787 A JP 7435787A JP S63241153 A JPS63241153 A JP S63241153A
Authority
JP
Japan
Prior art keywords
coating layer
base material
heat
temp
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074357A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Ito
義康 伊藤
Koichi Tajima
多嶋 孝一
Motoji Tsubota
基司 坪田
Masashi Takahashi
雅士 高橋
Akinori Nagata
永田 晃則
Yutaka Ishiwatari
裕 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62074357A priority Critical patent/JPS63241153A/en
Publication of JPS63241153A publication Critical patent/JPS63241153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To manufacture a heat-resisting member capable of satisfactorily maintaining its function following to the thermal deformation of a base material, by thermally spraying a coating layer on the surface, to be in contact with a high-temp. material, of a base material at a specific thermal spraying angle into scalelike state. CONSTITUTION:An under coating 2 of Nb, etc., is applied to the side face, to be opposed to a high-temp. material, of a base metal 1 made of Ta, etc. Then, ZrO2, etc., are thermally sprayed on the above at 30-50 deg. thermal spraying angle to form a coating layer 3 into the shape of fish scales curving downwards at respective ends. When temp. is raised by exposure to high-temp. vapor, etc., this heat-resisting member is warped and deformed because thermal conductivity is lower in the coating layer 3 than in the base material 1 and, as a result, a temp. gradient is generated in the plate-thickness direction of the base material 1 and the outside and inside surfaces of the base material 1 differ in the degree of expansion. When the above deformation is generated, cracks 4 occur in the recessed parts of the coating layer 3 in the extremely early stage. The stress acting on the coating layer 3 divided by the cracks 4 is relaxed, and peel strength from the base material 1 is improved.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高温における耐食性を備えたコーティング層
を有する耐熱部材、およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a heat-resistant member having a coating layer with corrosion resistance at high temperatures, and a method for manufacturing the same.

(従来の技術) 一般に高温物質と接して設けられる耐熱部材は、物質と
相対する側に高温物質と反応し難い物質からなるコーテ
ィング層を設けることが行オ〕れる。
(Prior Art) Generally, a heat-resistant member that is provided in contact with a high-temperature substance is provided with a coating layer made of a substance that does not easily react with the high-temperature substance on the side facing the substance.

基材の材料は、たとえば溶融点の高いl’a、Nb等の
金属であり、コーティング層は、たとえば酸化ジルコニ
ウム、酸化イツトリウム等のセラミック材料を溶射等に
よって基材上に施したものが用いられる。
The material of the base material is, for example, a metal with a high melting point such as l'a or Nb, and the coating layer is a ceramic material such as zirconium oxide or yttrium oxide applied onto the base material by thermal spraying or the like. .

ここに右いて、たとえばウランの同位体を分離するため
の設備においては、ウランを加熱溶解して蒸発させるた
めのるつぼの開口に接続され、その上方を包囲して発生
したウラン蒸気を誘導するための封入容器が用いられ、
その上方には製品回収板、廃品回収板等が配置されたう
え、これら全体を真空容器の中に収容した構成が用いら
れろ。
For example, in equipment for separating uranium isotopes, a crucible is connected to the opening of the crucible for heating and melting and vaporizing the uranium, and is used to surround the crucible above and guide the generated uranium vapor. A sealed container is used,
A configuration may be used in which a product collection plate, a waste product collection plate, etc. are placed above it, and all of these are housed in a vacuum container.

これらの構成部材のうち、封入容器等高温のウラン蒸気
にさらされる板材には上記したような耐熱部材が使用さ
れ、ウラン蒸気に対する耐食性を確保している。
Among these structural members, the above-mentioned heat-resistant members are used for plate materials exposed to high-temperature uranium vapor, such as the enclosure container, to ensure corrosion resistance against uranium vapor.

(発明が解決しようとする問題点) ここにおいて上述した封入容器等の板材は高真空(〜l
O−“torr)中に置かれており、ウランを溶解して
いるるつぼの熱は輻射乃至は直接の熱伝導によって上記
した板材に伝わる。板材はコーティング層の熱伝導率が
基材のそれよりも低いこと、封入容器等においては輻射
熱は片面にのみ作用すること、その内外の温度差が大き
いことなどの理由によって、温度上昇・下降する過程で
熱変形を生ずる。
(Problem to be solved by the invention) Here, the plate material of the above-mentioned enclosure etc. is under high vacuum (~l
The heat of the crucible in which the uranium is melted is transferred to the above-mentioned plate material by radiation or direct heat conduction. Thermal deformation occurs in the process of temperature rise and fall due to the following reasons: radiant heat acts only on one side of a sealed container, etc., and there is a large temperature difference between the inside and outside of the container.

基材が変形してその上に施されたコーティング層が剥離
すると、板材の耐食性が損わ話もで、一般にこのような
板材については基材の板厚を増加したり、複雑なリブ構
造を設けたりして対処しているが、部材全体の重量が増
加するばかりでなく、コーティング層の剥離に対しても
十分な効果は得られなかった。
If the base material deforms and the coating layer applied on it peels off, the corrosion resistance of the board may be impaired, and it is generally recommended to increase the thickness of the base material or add a complicated rib structure to the board. However, not only did this increase the weight of the entire member, but it also did not provide a sufficient effect on the peeling of the coating layer.

本発明の目的は、基材の熱的変形に追従してその機能を
十分保持することができる耐熱部材、およびその製造方
法を提供することにある。
An object of the present invention is to provide a heat-resistant member that can follow thermal deformation of a base material and sufficiently maintain its functions, and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明の第1の発明においては、基材の高温物質と相対
する面に、少なくとも一層のセラミック部材からなる耐
食性のコーティング層を有する耐熱部材に、うろこ状を
なして高温物質に接面するコーティング層を設けた。
(Means for Solving the Problems) In the first aspect of the present invention, a scale-like structure is provided on a heat-resistant member having a corrosion-resistant coating layer made of at least one ceramic member on the surface of the base material facing the high-temperature substance. A coating layer was provided that was in contact with the high-temperature substance.

また本発明の第2の発明においては、基材の高温物質と
相対する面に、少なくとも一層のセラミック材からなる
耐食性のコーティング層を溶射して施す耐熱部材の製造
方法において、高温物質に接面するコーティング層を、
溶射角30度乃至50度にて溶射する方法を採用した。
Further, in the second aspect of the present invention, in the method for producing a heat-resistant member, the method for producing a heat-resistant member includes thermally spraying a corrosion-resistant coating layer made of at least one ceramic material on the surface of the base material facing the high-temperature substance. coating layer,
A method of thermal spraying at a spraying angle of 30 degrees to 50 degrees was adopted.

(作用) セラミック材からなる完成したコーティング層は、一般
に表面が比較的滑らかで粒子間結合力が高く硬いものと
されるが1本発明は、これをうろこ状とするときわめて
柔軟性の高い被膜層が得られることに着目してなされた
もので、またこれの製造方法として、セラミックス材を
溶射角30度乃至50度で基材に溶射することによって
、先行付着粒子の遮蔽現象を利用しうろこ状のコーティ
ング層を得ている。これによって耐熱部材が温度変化を
うけて変形しても、コーティング層は基材の変形によく
追随し、基材から剥離し難くなる。
(Function) A completed coating layer made of a ceramic material is generally considered to be hard with a relatively smooth surface and a high interparticle bonding force. However, in the present invention, when this coating layer is made into scales, it becomes an extremely flexible coating layer. This method was developed with a focus on the ability to obtain a scaly shape by thermally spraying a ceramic material onto a base material at a spraying angle of 30 degrees to 50 degrees. A coating layer is obtained. As a result, even if the heat-resistant member is deformed due to temperature changes, the coating layer closely follows the deformation of the base material, making it difficult to peel off from the base material.

(実施例) 以下本発明の一実施例を第1図乃至第5図を参照して説
明する。
(Embodiment) An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.

第1図および第2図は、本発明をたとえば垂直方向に配
置された板状の耐熱材に適用した場合の一実施例の、そ
れぞれ部分断面図およびその正面図である。
FIGS. 1 and 2 are a partial sectional view and a front view, respectively, of an embodiment in which the present invention is applied to, for example, a plate-shaped heat-resistant material arranged in a vertical direction.

第1図において、Ta製の基材1の高温物質と相対する
側面には、Nbの下地コーティング2を施した上にZr
O,を溶射(たとえばプラズマ溶射)して形成されたコ
ーティング層3が設けられている。
In FIG. 1, the side surface of a base material 1 made of Ta that faces the high-temperature substance is coated with a base coating 2 of Nb and then coated with Zr.
A coating layer 3 is provided which is formed by thermal spraying (for example, plasma spraying) O.

このコーティング層3は先端が下方を向いたあたかも魚
のうろこ状に形成されている。コーティング層3はその
うろこの先端が下向きになるように、すなわちうろこ間
の凹陥部の開口が下向きになるように設けられている。
This coating layer 3 is formed in the shape of a fish scale with the tip facing downward. The coating layer 3 is provided so that the tips of its scales face downward, that is, the openings of the recesses between the scales face downward.

下地コーティング2は。Base coating 2.

コーティングM3の基材1への付着を容易とするために
通常設けられるものである。
This is normally provided to facilitate attachment of the coating M3 to the base material 1.

次にこれの作用について第3図を参照して説明する。Next, the effect of this will be explained with reference to FIG.

常温で作製された耐熱材は高温物質に曝され温度上昇す
ると、コーティング層3の方が基材1よりも熱伝導率が
低いため、第3図中に破線Tで示したように基材1の板
厚方向の温度匂配を生じ、表裏で膨張の程度が異なるた
め湾曲し変形する。
When a heat-resistant material produced at room temperature is exposed to a high-temperature substance and the temperature rises, the coating layer 3 has a lower thermal conductivity than the base material 1, so as shown by the broken line T in FIG. This creates a temperature gradient in the thickness direction of the plate, and the degree of expansion differs between the front and back sides, causing it to curve and deform.

基材1の湾曲変形が生じた場合、きわめて初期の段爾で
コーティング層3の凹陥部に亀裂4が生じる。変形のご
く初期に亀裂4が生じることで、分断されたコーティン
グ層3に作用する応力は緩和され、基材1からの剥離強
度は、従来のコーティング層3が施されたものに比べて
10〜50%程度向上する。
When the base material 1 undergoes a curved deformation, cracks 4 occur in the recessed portions of the coating layer 3 at a very early stage. By generating cracks 4 at the very early stage of deformation, the stress acting on the divided coating layer 3 is relaxed, and the peel strength from the base material 1 is 10 to 10% higher than that of a conventional coating layer 3. Improved by about 50%.

また変形の初期に生じる亀裂4はコーティング層3の凹
陥部に発生し、旦つコーティング層3はそのうろこの先
端が下向きになっているので、高温物質がたとえば蒸気
であった場合、コーティング層コ3の表面で液化したと
しても、その液滴5は、第4図および第5図に示すよう
にうろこ状部の先端を流下し、基材1への浸透には至ら
ない。
Furthermore, the cracks 4 that occur at the initial stage of deformation occur in the concave parts of the coating layer 3, and since the tips of the scales of the coating layer 3 are directed downward, if the high-temperature substance is steam, for example, the coating layer Even if the droplets 5 liquefy on the surface of the substrate 3, the droplets 5 flow down the tips of the scales as shown in FIGS. 4 and 5, and do not penetrate into the base material 1.

なおコーティング層3を形成する溶射物質は、ZrO,
に限らずYz Os e 1lf02 * Thai 
+ MgO等のセラミックスを用いてもよい、また基材
1もTa以外の高融点金属を使用することができる。特
に高温物質がウラン蒸気の場合、コーティング層3をZ
rO,のうちでも特に8%Y103安定化ZrO,を用
いて形成すると、これは溶融金属との濡れ性が悪いこと
から、上述した液化物(この場合溶融ウラン)の浸透防
止効果は一層顕著に現れる。
The sprayed material forming the coating layer 3 is ZrO,
Not limited to Yz Os e 1lf02 *Thai
+ Ceramics such as MgO may be used, and the base material 1 may also be made of a high melting point metal other than Ta. Especially when the high temperature substance is uranium vapor, the coating layer 3 is
When formed using rO, especially 8% Y103 stabilized ZrO, since this has poor wettability with molten metal, the above-mentioned effect of preventing penetration of liquefied material (molten uranium in this case) is even more remarkable. appear.

次に前記した耐熱部材を得るのに好適な製造方法の一実
施例の要部を、第6図を参照して説明する。
Next, a main part of an embodiment of a manufacturing method suitable for obtaining the above-mentioned heat-resistant member will be explained with reference to FIG.

第6図においてTa1lの薄板の基材1の表面には、直
角方向からNb粉末を溶射して下地コーティング2を施
しである。この下地コーティング2の上に、90度以下
の溶射角θをもたせて配置した溶射ガン6を平行移動さ
せながら、ZrO,、(8%Y80.安定化ZrO,で
あってよい)を溶射しコーティング層3を形成させる6
図中符号7は溶射粒子の飛跡を表す。
In FIG. 6, a base coating 2 is applied to the surface of a Ta1l thin plate base material 1 by thermally spraying Nb powder from a right angle direction. On top of this base coating 2, ZrO, (8% Y80, which may be stabilized ZrO,) is thermally sprayed onto the base coating 2 while moving the thermal spray gun 6, which is arranged with a thermal spray angle θ of 90 degrees or less, in parallel. forming layer 3 6
Reference numeral 7 in the figure represents the trajectory of thermal spray particles.

ところで溶射によって板材に薄膜を形成する場合、ち密
な薄膜を得るためにその溶射角度は一般に90度方向か
ら行なわれ、傾斜を与えるとしても45度程度までとさ
れている。これは溶射角度を小とすると、溶射初期に板
材に付着した粒子が後から飛来する粒子に対してかげの
部分を作ることとなり、その進路を妨害するいわゆる遮
蔽現象が生ずる。この現象が生じたときの被膜は、従来
非常に被膜の気孔率が高く、且つうねりが生じたきわめ
て劣悪なものとされていた。
By the way, when forming a thin film on a plate material by thermal spraying, the spraying angle is generally 90 degrees in order to obtain a dense thin film, and even if an inclination is applied, it is limited to about 45 degrees. This is because if the spraying angle is made small, the particles that adhere to the plate material at the beginning of the spraying will create a shadow area for the particles that fly in later, causing a so-called shielding phenomenon that obstructs the path of the particles. Conventionally, when this phenomenon occurs, the coating has a very high porosity and is considered to be extremely poor in that it has waviness.

しかしながら本実施例においては、上記の溶射角Oを3
0度乃至40度の範囲の一定値を選び、溶射ロボット等
を用いて溶射条件の変動を防止して溶射することにより
、上記した遮蔽現象の効果が顕著に且つ規則的に発揮さ
れ、耐熱・耐食性に優れたうろこ状に重なりあった被膜
からなるコーティング層3が得られる。良好なコーティ
ング層3が得られた溶射条件の一例を第1表に示す。
However, in this example, the above-mentioned spray angle O was changed to 3
By selecting a constant value in the range of 0 degrees to 40 degrees and spraying while preventing fluctuations in the spray conditions using a spray robot, etc., the effect of the above-mentioned shielding phenomenon is exhibited noticeably and regularly, and heat resistance and A coating layer 3 consisting of overlapping scale-like films with excellent corrosion resistance is obtained. Table 1 shows an example of thermal spraying conditions under which a good coating layer 3 was obtained.

(以下余白) このようにして得られたコーティング層3は気孔に富み
、その充填率は、直角方向から溶射されたものの70〜
90%程度となっている。すなわち充填率が低いため粒
子間の結合力が低下し、温度上昇によっ・て湾曲変形を
生じた場合、うろこの根幹に近く被膜が薄い部分で容易
に亀裂が発生することになる。
(Left below) The coating layer 3 thus obtained is rich in pores, and its filling rate is 70 to 70% even though it is thermally sprayed from the right angle.
It is about 90%. In other words, because the filling rate is low, the bonding force between particles decreases, and when curved deformation occurs due to temperature rise, cracks easily occur in areas where the coating is thin near the base of the scales.

このコーティング層3の充填率と直角に溶射したものの
充填率の比が、溶射角θによって変化する様子を実験し
た結果を第7図に示す、溶射角が60度以下になると、
コーティング層3はうろこ状を呈する傾向をみせはじめ
るが完全ではなく、また30度未満では溶射被膜自体の
形成が困薙になる。
Figure 7 shows the results of an experiment to see how the ratio of the filling rate of this coating layer 3 to that of the coating layer sprayed at right angles changes depending on the spraying angle θ.When the spraying angle becomes 60 degrees or less,
The coating layer 3 starts to show a tendency to take on a scaly shape, but it is not perfect, and if the angle is less than 30 degrees, it becomes difficult to form the sprayed coating itself.

したがって溶射角は30度乃至50度の範囲が適切であ
る。
Therefore, the appropriate thermal spray angle is in the range of 30 degrees to 50 degrees.

次にコーティング層を施した20(d) x 150(
w) X 2(1)膿の試験片の中央に押圧力を加えた
とき、コしたものとの比が、溶射角θによって変化する
様子を実験した結果を8図に示す。この比はやはり溶射
角が4IO度以下になると上昇を開始し、溶射角が30
と度で約1.5に達した。
Next, a coating layer was applied to 20(d) x 150(
w) X 2 (1) When a pressing force is applied to the center of a test piece of pus, the ratio to that of the pus changes depending on the spray angle θ. The results of an experiment are shown in Figure 8. This ratio also starts to increase when the spray angle becomes less than 4IO degrees, and when the spray angle becomes 30
It reached about 1.5 degrees.

なおコーティング層3を形成する溶射物質は、ZrO2
に限らず、 Y2O3,1lfO,、Tho21Mgo
等のセラミックスを用いてもよい、また基材1もTa以
外の高融点金属を使用することができる。
The sprayed material forming the coating layer 3 is ZrO2.
Not limited to Y2O3, 1lfO,, Tho21Mgo
The base material 1 may also be made of a high melting point metal other than Ta.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、耐熱・耐食性のコーティング層を有す
る耐熱部材が繰返し加熱・冷却されても、コーティング
層が剥離し薙い耐熱部材およびその製造方法を提供する
ことができる。
According to the present invention, it is possible to provide a heat-resistant member in which the coating layer does not peel off even when the heat-resistant member having a heat-resistant and corrosion-resistant coating layer is repeatedly heated and cooled, and a method for manufacturing the heat-resistant member.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す側面部分断面図、第2
図は第1図の正面図、第3図は第1図の作用を説明する
ための部分断面図、第4図および第5図はそれぞれ第1
図の結果を説明するための側面部分断面図およびその正
面図、第6図は本発明の製造方法の一実施例を示す側面
部分断面図、第7図および第8図はそれぞれ第6図の効
果を説明するための線図である。 1・・・基材       2・・・下地コーティング
3・・・コーティング層  4・・・亀裂5・・・液滴
       6・・・溶射ガン代理人 弁理士 則 
近 憲 佑 同  三俣弘文 第1図 第2図 第 61XJ 第3図 第4図 第5図
FIG. 1 is a side partial cross-sectional view showing one embodiment of the present invention, and FIG.
The figure is a front view of Fig. 1, Fig. 3 is a partial sectional view for explaining the action of Fig. 1, and Figs.
6 is a side partial sectional view showing an embodiment of the manufacturing method of the present invention, and FIGS. 7 and 8 are respectively the same as those shown in FIG. 6. FIG. 3 is a diagram for explaining the effect. 1...Base material 2...Base coating 3...Coating layer 4...Crack 5...Droplet 6...Thermal spray gun agent Patent attorney Rules
Yudo Chika Ken Hirofumi MitsumataFigure 1Figure 2Figure 61XJ Figure 3Figure 4Figure 5

Claims (1)

【特許請求の範囲】 1、基材の高温物質と相対する面に少なくとも一層のセ
ラミック材からなる耐食性のコーティング層を有する耐
熱部材において、うろこ状をなして前記高温物質に接面
する前記コーティング層を設けたことを特徴とする耐熱
部材。 2、前記うろこ状をなしたコーティング層はZrO_2
、Y_2O_3、HfO_2、ThO_2、MgOの内
のいずれか1種からなる特許請求の範囲第1項記載の耐
熱部材。 3、前記高温物質は高温蒸気であり、前記うろこ状をな
したコーティング層の開口方向を、前記うろこ状をなし
たコーティング層の表面に付着した前記高温蒸気の液化
物の流動方向に一致させてなる特許請求の範囲第1項記
載の耐熱部材。 4、基材の高温物質と相対する面に少なくとも一層のセ
ラミック材からなる耐食性のコーティング層を溶射して
施す耐熱部材の製造方法において前記高温物質に接面す
るコーティング層を溶射角30度乃至50度にて溶射す
ることを特徴とする耐熱部材の製造方法。 5、前記高温物質に接面するコーティング層はZrO_
2、Y_2O_3、HfO_2、ThO_2、MgOの
内のいずれか1種を溶射する特許請求の範囲第4項記載
の耐熱部材の製造方法。
[Scope of Claims] 1. In a heat-resistant member having at least one corrosion-resistant coating layer made of a ceramic material on the surface of the base material facing the high-temperature substance, the coating layer has a scale shape and is in contact with the high-temperature substance. A heat-resistant member characterized by being provided with. 2. The scale-shaped coating layer is ZrO_2
, Y_2O_3, HfO_2, ThO_2, and MgO. 3. The high-temperature substance is high-temperature steam, and the opening direction of the scale-shaped coating layer is made to match the flow direction of the liquefied high-temperature steam adhering to the surface of the scale-shaped coating layer. A heat-resistant member according to claim 1. 4. In a method for producing a heat-resistant member, in which a corrosion-resistant coating layer made of at least one ceramic material is thermally sprayed on the surface of a base material facing a high-temperature substance, the coating layer facing the high-temperature substance is sprayed at a spraying angle of 30 degrees to 50 degrees. A method for producing a heat-resistant member, characterized in that thermal spraying is performed at a temperature of 30°C. 5. The coating layer in contact with the high temperature substance is ZrO_
2. The method for manufacturing a heat-resistant member according to claim 4, wherein any one of Y_2O_3, HfO_2, ThO_2, and MgO is thermally sprayed.
JP62074357A 1987-03-30 1987-03-30 Heat-resisting member and its production Pending JPS63241153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074357A JPS63241153A (en) 1987-03-30 1987-03-30 Heat-resisting member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074357A JPS63241153A (en) 1987-03-30 1987-03-30 Heat-resisting member and its production

Publications (1)

Publication Number Publication Date
JPS63241153A true JPS63241153A (en) 1988-10-06

Family

ID=13544793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074357A Pending JPS63241153A (en) 1987-03-30 1987-03-30 Heat-resisting member and its production

Country Status (1)

Country Link
JP (1) JPS63241153A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005886A2 (en) * 1989-10-20 1991-05-02 Union Carbide Coatings Service Technology Corporation Thermal barrier coating for substrates and process for producing it
DE102005050873A1 (en) * 2005-10-21 2007-04-26 Rolls-Royce Deutschland Ltd & Co Kg Process to manufacture a ceramic-coated gas turbine engine blade incorporating a regular array of surface irregularities
JP2007284758A (en) * 2006-04-18 2007-11-01 Tosoh Corp Vacuum device member, its manufacturing method, and vacuum device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005886A2 (en) * 1989-10-20 1991-05-02 Union Carbide Coatings Service Technology Corporation Thermal barrier coating for substrates and process for producing it
DE102005050873A1 (en) * 2005-10-21 2007-04-26 Rolls-Royce Deutschland Ltd & Co Kg Process to manufacture a ceramic-coated gas turbine engine blade incorporating a regular array of surface irregularities
DE102005050873B4 (en) * 2005-10-21 2020-08-06 Rolls-Royce Deutschland Ltd & Co Kg Process for producing a segmented coating and component produced by the process
JP2007284758A (en) * 2006-04-18 2007-11-01 Tosoh Corp Vacuum device member, its manufacturing method, and vacuum device

Similar Documents

Publication Publication Date Title
JPS5887273A (en) Parts having ceramic coated layer and their production
US9524888B2 (en) Stage heater and method of manufacturing shaft
JPH01139988A (en) Crucible for melting metal
JPS63241153A (en) Heat-resisting member and its production
WO2004070076A1 (en) Corrosion-resistant member and method for producing same
KR101088124B1 (en) Target for sputtering process and method of manufacturing the same
JPS586782B2 (en) Ceramics scoring method
US5423475A (en) Diamond coatings for aluminum alloys
JP2011117012A (en) Executing method of thermal barrier coating, heat-resistant member, and gas turbine
US3265519A (en) Article comprising several layers of pyrolytic graphite and substrate coated with said layers
KR20130010557A (en) Hot plate of semiconductor manufacturing apparatus
US6057011A (en) High temperature and highly corrosive resistant sample containment cartridge and method of fabricating same
JPS63233289A (en) Crucible for melting uranium
JPH11124662A (en) Self-repairing heat-insulating film and its production
JPH0379749A (en) Formation of corrosion resisting coating layer
JPH04201075A (en) Blasting method and flame coated film manufacturing method and adhesive lamination member
JPS61288060A (en) Plasma arc thermal spraying method under reduced pressure
Li et al. Study on the Influence of Vacuum Vapor Phase Soldering Process Technology on SiP Component
JPH0312377A (en) Coated structural material
JPH01275750A (en) Thin metallic film manufacturing equipment
JPS6017063A (en) Ceramic coating layer having high toughness and its production
JPH09175876A (en) Heat-resistant member and its production
JPH02129035A (en) Mold for molding optical element
UA30804C2 (en) A composition for obtaining a protective gradient coating on a metal substrate by electron evaporation and condensation in vacuum
JPH0387346A (en) Gradient thermal spraying method