JPH01139988A - Crucible for melting metal - Google Patents

Crucible for melting metal

Info

Publication number
JPH01139988A
JPH01139988A JP29867087A JP29867087A JPH01139988A JP H01139988 A JPH01139988 A JP H01139988A JP 29867087 A JP29867087 A JP 29867087A JP 29867087 A JP29867087 A JP 29867087A JP H01139988 A JPH01139988 A JP H01139988A
Authority
JP
Japan
Prior art keywords
coating layer
crucible
corrosion
base material
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29867087A
Other languages
Japanese (ja)
Other versions
JPH0544596B2 (en
Inventor
Yutaka Ishiwatari
裕 石渡
Yoshiyasu Ito
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29867087A priority Critical patent/JPH01139988A/en
Publication of JPH01139988A publication Critical patent/JPH01139988A/en
Publication of JPH0544596B2 publication Critical patent/JPH0544596B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crucibles And Fluidized-Bed Furnaces (AREA)

Abstract

PURPOSE: To enhance durability against long time repeated melting of an active metal by providing an underlying coating layer on the inner and outer surface of a basic material and providing a heat insulating coating layer on the outer surface of the outer surface underlying coating layer. CONSTITUTION: A basic material 1 of tungsten formed as a V-shaped container has inner surface applied with an underlying coating layer 2 of niobium and a corrosion resistant coating layer 3 of yttrium and outer surface applied with an underlying coating layer 4 of niobium and a heat insulating coating layer 5 of zirconia. The crucible 15 vacuum sealed in an iron container along with boron nitride powder and subjected to pressure heat treatment using Ar gas as medium. A high melting point metal, e.g. W, Mo, Ta or Nb, and graphite are preferably employed as the basic maternal 1, Y2 O3 , ThO2 , UO2 , BeO, or the like, may be employed as the material of corrosion resistant coating layer 3 being applied to the inner surface of the basic material 1, and ZrO2 , Al2 O3 or TiO2 is preferably employed as the material of corrosion resistant coating layer 5.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は溶融金属に対する耐食性および耐熱性コーティ
ング層を備えた金属溶解用るつぼに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a metal melting crucible provided with a corrosion-resistant and heat-resistant coating layer for molten metal.

(従来の技術) チタニウム、ジルコニウム、ウラニウムのような化学的
に活性で、かつ比較的融点の高い金属溶解用るつぼ材と
してはタングステン、タンタル、モリブデン、ニオブ等
の高融点金属またはグラフフィトが使用されている。し
かし、これらの高融点金属は上記のような活性金属と直
接接触すると反応したり、また合金化してるつぼが溶解
したり、浸食されるばかりでなく、溶湯中に解1ノ出し
溶湯純度を低下させる要因となっている。
(Prior Art) High melting point metals such as tungsten, tantalum, molybdenum, niobium, or graphite are used as crucible materials for melting chemically active metals such as titanium, zirconium, and uranium, which have relatively high melting points. ing. However, when these high melting point metals come into direct contact with the active metals mentioned above, they not only react or alloy, causing the crucible to melt or erode, but also dissolve into the molten metal, reducing the purity of the molten metal. This is a factor that causes

したがって、これら高融点金属の基材内面には溶融金属
溶湯、ジルコニウム、ウラニウムに対して耐熱性、耐食
性にずぐれたイツトリア(Y2O2)、ハフニア(Hf
 02 )等のセラミックコーティング層を施している
。また、この場合、イツトリア、ハフニア等のセラミッ
ク・コーティング層と基材との熱膨張係数の差に基づく
熱応力によるコーティング層が剥離するのを防1tJる
ために、セラミックコーティング層と’3 ’tAとの
間に、両者の中間的熱膨張係数を有する高融点金属また
はセラミックの下地層を設けたものが提案されている。
Therefore, the inner surface of the base material of these high melting point metals is made of yttoria (Y2O2) and hafnia (Hf), which have excellent heat resistance and corrosion resistance against molten metal, zirconium, and uranium.
A ceramic coating layer such as 02) is applied. In this case, in order to prevent the coating layer from peeling off due to thermal stress due to the difference in thermal expansion coefficient between the ceramic coating layer such as Ittria or Hafnia and the base material, the ceramic coating layer and the '3'tA It has been proposed that a base layer of a high melting point metal or ceramic having a coefficient of thermal expansion intermediate between the two is provided between the two.

このような耐食コーティング層を有する耐熱部材を採用
した一例として、第5図に示すようにチタン金属溶解用
るつぼがあげられる。このるつぼはグラフィッ1−によ
って形成された基材1の内面にニオブの下地コーティン
グ層2を施した」−にイソ1〜リアのセラミックコーテ
ィング層3がHJJGプられたもので、耐食コーティン
グ層3内にチタニウム金属溶湯7を収容するようになっ
ている。なa′3、このるつぼは冷却機能を有した冷却
用ハース6の中に収納され使用される。
An example of a heat-resistant member having such a corrosion-resistant coating layer is a crucible for melting titanium metal, as shown in FIG. In this crucible, a niobium base coating layer 2 is applied to the inner surface of a base material 1 formed by graphic 1-, and ceramic coating layers 3 from iso 1 to rear are applied by HJJG on the inner surface of a base material 1 formed by graphic 1. The molten titanium metal 7 is accommodated in the chamber. a'3, this crucible is used while being housed in a cooling hearth 6 having a cooling function.

また、このような内面下地および耐食コーティング層2
.3は、たとえばプラズマ溶剣法によって厚さ0.1〜
5.Oes程度に形成され、第5図中の8部を拡大した
第6図(a)に示されるように、通常、そのコーティン
グm2.3の内部には10〜30%の空孔8を有してい
る。
In addition, such an inner surface base and corrosion-resistant coating layer 2
.. 3 has a thickness of 0.1~
5. As shown in FIG. 6(a), which is an enlarged view of part 8 in FIG. ing.

(発明が解決しようとする問題点) たとえば上述のるつぼに収容されたチタニウムの金属溶
S7が適宜の手段を用いて加熱、溶融されると’flj
@I、たチタニウムの金属溶s7と接するコーテイング
層3内面と冷却用ハース6と接する基材1の外面との温
度差は1,500〜2,2O0℃となる。その際、耐食
コーティング層3のセラミックコーティング層材イツト
リアの熱伝導率は基材1であるグラファイト、内面下地
コーティング層2のニオブに比べ著しく小さいため、る
つぼの板厚方向の′l!A度分布は第6図(b)に示し
たようになる。すなわら、前述の温度差のほとんどは耐
食コーティング層3間で生じ、その熱応力によりコーテ
ィング層3は剥離もしくは破損する。
(Problems to be Solved by the Invention) For example, when the molten titanium metal S7 contained in the above-mentioned crucible is heated and melted using an appropriate means, 'flj
@I, the temperature difference between the inner surface of the coating layer 3 in contact with the titanium metal melt s7 and the outer surface of the base material 1 in contact with the cooling hearth 6 is 1,500 to 2,200°C. At this time, the thermal conductivity of the ceramic coating layer material Ittria of the corrosion-resistant coating layer 3 is significantly lower than that of graphite, which is the base material 1, and niobium, which is the inner surface base coating layer 2. The A degree distribution is as shown in FIG. 6(b). That is, most of the temperature difference mentioned above occurs between the corrosion-resistant coating layers 3, and the coating layer 3 is peeled off or damaged due to the thermal stress.

ざらに上記コーティング層2.3を形成する溶射被膜内
には10〜30%の空孔8を有しているので、このるつ
ぼを用いてたとえばチタニウムを溶解すると、溶解した
チタニウムの金属溶湯7が空孔8内に浸透し、下地コー
ティングB2ヤ基材1と接触、反応し、溶融させること
により表面の耐食コーティング層3を剥離させるととも
に基材1を浸食する。
The thermal sprayed coating that roughly forms the coating layer 2.3 has 10 to 30% of pores 8, so when titanium, for example, is melted using this crucible, the molten metal 7 of titanium melts. The base coating B2 penetrates into the pores 8, contacts and reacts with the base material 1, and is melted, thereby peeling off the corrosion-resistant coating layer 3 on the surface and eroding the base material 1.

また、基材1とし下地コーティング層2の界面および下
地コーティング層2と耐食コーティング層3の界面のよ
うな溶射被膜界面は全く化学的反応を伴わず、単に機械
的に結合しているので、その密着力は著しく低く、チタ
ニウム金属溶湯7の凝固時の収縮によりコーティング層
が引きはがされるという問題点があった。
In addition, the thermal spray coating interfaces, such as the interface between the base material 1 and the base coating layer 2, and the interface between the base coating layer 2 and the corrosion-resistant coating layer 3, do not involve any chemical reaction and are simply mechanically bonded. The adhesion was extremely low, and there was a problem in that the coating layer was peeled off due to shrinkage during solidification of the molten titanium metal 7.

本発明の目的は上記問題点を解決するためになされたも
ので、長時間の繰り返し活性金属の溶解対する耐久性を
著しく向上させたコーティング層を有するるつぼを提供
することにある。
An object of the present invention was made to solve the above-mentioned problems, and it is an object of the present invention to provide a crucible having a coating layer that has significantly improved durability against repeated dissolution of active metals over a long period of time.

[発明の構成] (問題点を解決するための手段) 本発明は、基材の内面にセラミックス材からなる下地コ
ーティング層を介して耐食コアティング層を設【プた金
属溶解用るつぼにおいて、前記下地コーティング層を前
記基材の内、外面に設け、かつ外面下地コーティング層
の外面に断熱コーティング層を設けてなることを特徴と
する。また、本発明では基材にごラミック材をコーティ
ング層後、加圧処理を施してなることを特徴とする。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a crucible for metal melting in which a corrosion-resistant coating layer is provided on the inner surface of a base material via a base coating layer made of a ceramic material. A base coating layer is provided on the inner and outer surfaces of the base material, and a heat insulating coating layer is provided on the outer surface of the outer base coating layer. Further, the present invention is characterized in that the base material is coated with a layer of lamic material and then subjected to pressure treatment.

(作 用) 第1図のA部を拡大した第2図(a)に、るつぼの縦断
面を拡大して示すように、基材1の内面に下地コーティ
ング層2を介して耐食コーティング層3を施した後、る
つぼ基材1の外面に高融点金属などの外面下地コーティ
ング層4を施し、そのコーティング層4の外面にセラミ
ックの断熱コーティング層5を設(プることにより、る
つぼ断面の温度分布は第2図(b)に示したようになる
(Function) As shown in FIG. 2(a), which is an enlarged view of part A in FIG. After that, an outer base coating layer 4 made of a high-melting point metal or the like is applied to the outer surface of the crucible base material 1, and a heat-insulating ceramic coating layer 5 is applied to the outer surface of the coating layer 4, thereby controlling the temperature of the cross section of the crucible. The distribution is as shown in FIG. 2(b).

従来例では第6図(b)に示したように基材1の内面に
設【プた耐食コーティング層3が同時に断熱の役割をし
ていたので、耐食コーティング層3間の温度差が大きく
、その熱応力により破損していた。これに対して本発明
では、第2図(b)に示したように、外面下地コーティ
ング層4の外面にも基材1より熱伝導率が著しく小さく
かつ厚い断熱コーティング層5を設りることにより、同
コーティング層5内で大きな温度勾配を持たせることが
できる。その結果、耐食コーティング層3内の温度低下
を著しく低減でき、熱応ツノによる一食コーティング層
3の破損を完全に防止できる。
In the conventional example, as shown in FIG. 6(b), the corrosion-resistant coating layer 3 provided on the inner surface of the base material 1 also served as a heat insulator, so the temperature difference between the corrosion-resistant coating layers 3 was large. It was damaged due to the thermal stress. On the other hand, in the present invention, as shown in FIG. 2(b), a heat insulating coating layer 5 is provided also on the outer surface of the outer surface base coating layer 4, and the thermal conductivity is significantly lower than that of the base material 1 and is thicker. As a result, a large temperature gradient can be created within the coating layer 5. As a result, the temperature drop within the corrosion-resistant coating layer 3 can be significantly reduced, and damage to the single-corrosion coating layer 3 due to heat-responsive horns can be completely prevented.

またプラズマ溶射などの比較的容易に膜厚をコントロー
ルできる手法を用いることにより、耐食・]−ディング
層3および断熱コーティング層5の厚さを変えることが
できるので、溶解する材料、金属溶湯7と耐食コーティ
ング層3の材料との反応開始温度、各使用材料の熱伝導
率等に合わせて、るつぼの熱伝導率を自由に決めること
も可能である。
In addition, by using a method that allows relatively easy control of the film thickness such as plasma spraying, the thickness of the corrosion-resistant coating layer 3 and the heat-insulating coating layer 5 can be changed. It is also possible to freely determine the thermal conductivity of the crucible in accordance with the reaction start temperature with the material of the corrosion-resistant coating layer 3, the thermal conductivity of each material used, and the like.

ざらに、このようなるつぼを熱間静水圧加圧法(トII
P>、冷間静水圧加圧法(CIP)、ホットプレス法等
により加熱、加圧処理を施すことにより、従来1〜30
%存在していた溶射被膜中の空孔8を数%以下に低減し
、緻密化することで、金属溶湯7の耐食コーティング層
3内への浸透を防止するとともに、他に機械的アンカー
効果により結合していた基材1と下地コーティング層2
、下地コーティング層2と耐食コーティング層3の界面
を、拡散反応により強固な結合力を得ることかてぎる。
In general, such crucibles are heated using hot isostatic pressing method (To II).
P>, conventionally 1 to 30
By reducing the pores 8 in the thermal sprayed coating, which previously existed in the sprayed coating, to a few percent or less and making it denser, it is possible to prevent the molten metal 7 from penetrating into the corrosion-resistant coating layer 3, as well as to prevent the molten metal 7 from penetrating into the corrosion-resistant coating layer 3. Bonded base material 1 and base coating layer 2
, the interface between the base coating layer 2 and the corrosion-resistant coating layer 3 is made to have a strong bonding force through a diffusion reaction.

その結果、従来の加圧・加熱処理を施さない場合に比較
るつぼの寿命は飛躍的に向上する。
As a result, the life of the crucible is dramatically improved compared to the case where the conventional pressure and heat treatment is not performed.

(実施例) 以下、本発明に係る金属溶解用るつぼの一実施例を、第
1図を参照して説明する。
(Example) Hereinafter, an example of a metal melting crucible according to the present invention will be described with reference to FIG. 1.

第1図においてV字形容器状にタングステンにより形成
した基材1の内面にニオブからなる内面下地コーティン
グ層2と、イツトリアからなる耐食コーティング層3を
施し、また基材1の外面に同じくニオブの外面下地コー
ティング層4とジルコニアの断熱コーティング層5を施
した。
In FIG. 1, an inner surface base coating layer 2 made of niobium and a corrosion-resistant coating layer 3 made of yttoria are applied to the inner surface of a base material 1 formed of tungsten in the shape of a V-shaped container, and an outer surface of the base material 1 is also made of niobium. A base coating layer 4 and a heat insulating coating layer 5 of zirconia were applied.

このようにして形成されたるつぼにおのおのコーティン
グ層の緻密化と密着強度向上のためトIIP5I!l埋
(熱間静水圧加圧法)を行った。HIP処理はこのるつ
ぼを窒化ボロン粉末とともに鉄製容器内に真空封入し、
Arガスを媒体として、加圧・加熱処理を行った。なお
l−I I P処理は1 、2O0〜1.500℃、1
,000〜1,500k(IP/cfで、60〜12O
分間保持の条件で行った。
In order to densify each coating layer and improve adhesion strength to the crucible thus formed, IIP5I! 1-embedding (hot isostatic pressing method) was performed. The HIP process vacuum-seals this crucible together with boron nitride powder in a steel container.
Pressure and heat treatment were performed using Ar gas as a medium. Note that the l-I IP treatment was performed at 1,2O0 to 1.500°C, 1
,000~1,500k (IP/cf, 60~12O
The test was carried out under conditions of holding for a minute.

このようにして得られたるつぼは、冷却用の銅製ハース
6内に外壁が密着するような形で納められており、るつ
ぼ内にはチタン7を収容している。
The crucible thus obtained is housed in a copper hearth 6 for cooling so that the outer wall is in close contact with the crucible, and titanium 7 is housed inside the crucible.

なお、基材1の内、外面の下地コーティング層2.4は
プラズマ溶射により施工し、また耐食コーティング層3
の膜厚は2O0μm、断熱コーティング層5の膜厚は1
,000μmにプラズマ溶射で形成した。
The base coating layer 2.4 on the outer surface of the base material 1 is applied by plasma spraying, and the anti-corrosion coating layer 3.
The film thickness of the heat insulating coating layer 5 is 2O0 μm, and the film thickness of the heat insulating coating layer 5 is 1
,000 μm by plasma spraying.

しかして、本発明において、基材1はWlMO。Therefore, in the present invention, the base material 1 is WlMO.

Ta 、Nb等の高融点金属およびグラフフィトが良い
が、耐食コーティング層3が破損し、溶融全屈が浸透し
た場合を考慮すると、■+、zr、uなどの金属溶湯7
にある程度の耐食性を有しているWまたはTaが望まし
い。
High-melting point metals such as Ta and Nb and graphite are good, but considering the case where the corrosion-resistant coating layer 3 is damaged and the molten molten metal penetrates,
W or Ta is desirable because it has a certain degree of corrosion resistance.

基板1の内面に施す耐食コーティング層3の材質はTi
、Zr、tJなどのWI瀉に対し反応開始温度ができる
だけ高いものが良く、Y2O3以外にもThO2、UO
2、トげ02、BeO等であっても良い。また、耐食コ
ーティング層5の材質は耐食コーティング層3と同じで
も良いが金属溶湯7に対する耐食性はあまり必要としな
いため、コーティング層が、容易でかつ薄膜でも充分な
熱伝導率となるZr 02 、A、ez 03 、M!
II O。
The material of the corrosion-resistant coating layer 3 applied to the inner surface of the substrate 1 is Ti.
, Zr, tJ, etc., the reaction initiation temperature is as high as possible, and in addition to Y2O3, ThO2, UO
2, Thorn 02, BeO, etc. may be used. Further, the material of the corrosion-resistant coating layer 5 may be the same as that of the corrosion-resistant coating layer 3, but since corrosion resistance against the molten metal 7 is not required, the coating layer can be formed easily and with sufficient thermal conductivity even in a thin film, such as Zr 02 or A. ,ez 03,M!
II O.

Tl 02 、等が望ましい。Tl 02, etc. are desirable.

また、内外面のコーティング層3.5の下地コーティン
グ層2.4の材質としては、融点が高く、しかも基1t
A1とコーティング層3.5との中間的な熱WBrfi
率を有するものが適しており、Nb以外に、Ti 、C
r1V、Ru1Rh1およびAl2O3でも良い。
In addition, the material of the base coating layer 2.4 of the coating layer 3.5 on the inner and outer surfaces has a high melting point and a base of 1t.
Intermediate thermal WBrfi between A1 and coating layer 3.5
In addition to Nb, Ti, C
r1V, Ru1Rh1 and Al2O3 may also be used.

このようにして基材1内の内、外両面にセラミックの下
地コーティング層2.4を設けることにより、るつぼ断
面方向の温度分布は第2図(b)に示したにうになる。
By providing the ceramic base coating layer 2.4 on both the inner and outer surfaces of the base material 1 in this manner, the temperature distribution in the cross-sectional direction of the crucible becomes as shown in FIG. 2(b).

すなわち熱伝導率が小さく、大きな温度勾配を生じるコ
ーティング層間の温度差を従来例に比べ半減でき、ぞの
結果、熱対応力によるコーティング層3.5の剥離、破
損を完全に防止できる。
That is, the temperature difference between the coating layers, which have low thermal conductivity and cause a large temperature gradient, can be halved compared to the conventional example, and as a result, peeling and damage of the coating layer 3.5 due to thermal response force can be completely prevented.

さらに、基材1にコーティング層2.3.4.5を溶r
JJtM工俊、加圧、加熱処理を施すことにより、溶射
被膜コーティング層内の空孔8の旬を著しく低減でき、
また空孔8の形態も三次元的につながった開気孔へと変
わるため、耐食コーティング層3内への金属溶湯7の浸
透はなくなる。また、溶射コーティング層界面での拡散
反応により、その密着強度を著しく向上し、金属溶湯7
の凝固収縮に際しても耐食コーティング層3が剥離する
ことはない。
Furthermore, coating layer 2.3.4.5 is melted on base material 1.
By applying pressure and heat treatment, the number of pores in the sprayed coating layer can be significantly reduced.
Further, since the form of the pores 8 changes to three-dimensionally connected open pores, the penetration of the molten metal 7 into the corrosion-resistant coating layer 3 is eliminated. In addition, due to the diffusion reaction at the interface of the thermal spray coating layer, the adhesion strength is significantly improved, and the molten metal 7
Even during solidification and shrinkage, the corrosion-resistant coating layer 3 does not peel off.

上記実施例と従来例との比較実験を行った際の基材とコ
ーティング層材質の組合せを第1表に示す。     
          (以下余白)第1表 本実施例では第1表に示した構成を有する第1図に示し
たような内径40mm、高さ35mmのるつぼを形成し
、そのるつぼ内にチタニウムを入れ、電子ビームで溶解
した。その際、室4 (RT)とi 、 aoo℃(る
つぼ内面温度)との間を繰り返し加熱し、目視により耐
食コーティング層に割れまたは剥離が生じるまでの回数
を測定した結果を第3図に示す。第3図中、よこ軸は従
来例と実施例を、たて軸は亀裂または剥離発生までの繰
り返し加熱回数である。
Table 1 shows the combinations of base materials and coating layer materials used in comparative experiments between the above embodiment and the conventional example.
(Margins below) Table 1 In this example, a crucible with an inner diameter of 40 mm and a height of 35 mm as shown in FIG. It was dissolved in At that time, heating was repeated between chamber 4 (RT) and i, aoooC (crucible inner surface temperature), and the number of times until cracking or peeling occurred in the corrosion-resistant coating layer was visually measured. The results are shown in Figure 3. . In FIG. 3, the horizontal axis shows the conventional example and the example, and the vertical axis shows the number of repeated heating until cracking or peeling occurs.

第3図から明らかのように、内面のみ耐食コーティング
層を施した従来例では仝べて1〜2回の加熱により、内
面コーティング層に亀裂が発生した。これに対して内、
外面にコーティング層を施した本発明例では2O回以上
の繰り返しに耐え、コーティング層の破壊形態も熱応力
による亀裂の発生は認められなかった。
As is clear from FIG. 3, in the conventional example in which a corrosion-resistant coating layer was applied only to the inner surface, cracks occurred in the inner surface coating layer after heating once or twice. In contrast, within
The example of the present invention in which a coating layer was applied to the outer surface was able to withstand repetitions of 20 times or more, and no cracks were observed in the coating layer due to thermal stress.

また、基材の内外面にセラミックをコーティング層俊、
HIP9a理を施して形成したるつぼ(実施例V)はコ
ーティング層の密着強度が向上し、コーティング層が剥
離するまでの加熱繰り返し数は、同じ構成でHIP処理
しない場合(実施例■)に比較して1.5倍近くであっ
た。
In addition, a ceramic coating layer is applied to the inner and outer surfaces of the base material.
The crucible formed by HIP9a process (Example V) has improved adhesion strength of the coating layer, and the number of heating cycles until the coating layer peels off is compared to the same structure without HIP process (Example ■). It was nearly 1.5 times.

さらに、実施例工と実施例Vの構成を有するるつぼを用
い、るつぼの内面温度を1,800℃と一定とした場合
の腐食減量を第4図に示す。なお、第4図よこ軸は浸漬
時間、たて軸は腐食減量を示している。第4図から明ら
かのように)−11P51!l理を実施しなかった実施
例■の場合には溶融チタニウムコーティング層内の空孔
を浸透し、基材と反応、溶解することによりコーティン
グ層が剥離したため、腐食減量に増加するのが認められ
た。これに対し、HI P2O理を施した実施例Vの場
合には空孔が著しく低減されているため、溶融チタニウ
ムの空孔内へ浸透は起こらず腐食減量はほとんど認めら
れなかった。
Furthermore, using crucibles having the configurations of Example Work and Example V, the corrosion loss when the inner surface temperature of the crucible was kept constant at 1,800° C. is shown in FIG. In addition, in FIG. 4, the horizontal axis shows the immersion time, and the vertical axis shows the corrosion weight loss. As is clear from Figure 4) -11P51! In the case of Example 2 in which the molten titanium treatment was not carried out, the coating layer was peeled off by penetrating the pores in the molten titanium coating layer, reacting with the base material, and dissolving, so an increase in corrosion loss was observed. Ta. On the other hand, in the case of Example V in which HI P2O treatment was performed, the number of pores was significantly reduced, so that molten titanium did not penetrate into the pores and almost no corrosion loss was observed.

[発明の効果] 本発明によれば長時間かつ繰り返しの高温負荷に対して
耐久性も向上させた寿命の長い活性金属溶解用るつぼを
提供することができる。
[Effects of the Invention] According to the present invention, it is possible to provide a crucible for melting active metals having a long life and improved durability against long-term and repeated high-temperature loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る金属溶解用るつぼの一実施例を示
す縦断面図、第2図(a)は第1図のA部を拡大して示
す部分断面図、第2図(b)は第2図(a)に対応した
断面の温度分布を示す特性図、第3図は従来例と本発明
例との亀裂または剥離発生状態を比較して示す特性図、
第4図は本発明例における浸漬時間と腐食減量との関係
を示す特性図、第5図は従来の活性金属溶解用るつぼを
示す縦断面図、第6図(a)は第5図のB部を拡大して
示す部分断面図、第6図(b)は第6図(a)に対応し
た断面の温度の分イロを示す特性図である。 1・・・・・・・・・基材 2・・・・・・・・・内面下地コーティング層3−−−
 ・−・−・耐食コーティング層4・・・・・・・・・
外面下地コーティング層5・・・・・・・・・断熱コー
ティング層6・・・・・・・・・冷却用ハース 7・・・・・・・・・金属溶湯 8・・・・・・・・・空孔 出願人     株式会社 東芝 代理人 弁理士 須 山 佐 − 第 19 第2= 第32 侵墳時間(旬) 第5=
FIG. 1 is a longitudinal sectional view showing an embodiment of a metal melting crucible according to the present invention, FIG. 2(a) is a partial sectional view showing an enlarged portion A of FIG. 1, and FIG. 2(b) 2 is a characteristic diagram showing the temperature distribution of the cross section corresponding to FIG.
Fig. 4 is a characteristic diagram showing the relationship between immersion time and corrosion loss in the example of the present invention, Fig. 5 is a vertical cross-sectional view showing a conventional active metal melting crucible, and Fig. 6(a) is B of Fig. 5. FIG. 6(b) is a partial cross-sectional view showing a portion enlarged, and is a characteristic diagram showing temperature variation of the cross section corresponding to FIG. 6(a). 1...Base material 2...Inner surface base coating layer 3---
・-・-・Corrosion-resistant coating layer 4・・・・・・・・・
External base coating layer 5... Heat insulation coating layer 6... Cooling hearth 7... Molten metal 8... ...Vacancy applicant Toshiba Corporation Patent attorney Sasa Suyama - 19th 2nd= 32nd Burial Time (Shun) 5th=

Claims (7)

【特許請求の範囲】[Claims] (1)るつぼ基材の内面にセラミックス材からなる下地
コーティング層を介して耐食コーティング層を設けた金
属溶解用るつぼにおいて、前記下地コーティング層を前
記基材の内、外面に設け、かつ外面下地コーティング層
の外面に断熱コーティング層を設けてなることを特徴と
する金属溶解用るつぼ。
(1) In a metal melting crucible in which a corrosion-resistant coating layer is provided on the inner surface of a crucible base material via a base coating layer made of a ceramic material, the base coating layer is provided on the inner and outer surfaces of the base material, and the outer base coating is applied. A metal melting crucible characterized by having a heat insulating coating layer provided on the outer surface of the layer.
(2)前記基材はW、Ta、Mo、Nbおよびこれらを
主成分とする合金、またはグラファイトから選択された
少なくとも1種からなるものであることを特徴とする特
許請求の範囲第1項記載の金属溶解用るつぼ。
(2) The base material is made of at least one selected from W, Ta, Mo, Nb, alloys containing these as main components, or graphite. Crucible for metal melting.
(3)前記耐食コーティング層はY_2O_3、ThO
_2、UO_2、HfO_2、BeO、TaC、HfC
、Ho_2O_3、Tm_2O_3、Er_2O_3、
Nd_2O_3から選択された少なくとも1種からなる
ものであることを特徴とする特許請求の範囲第1項記載
の金属溶解用るつぼ。
(3) The corrosion-resistant coating layer is Y_2O_3, ThO
_2, UO_2, HfO_2, BeO, TaC, HfC
, Ho_2O_3, Tm_2O_3, Er_2O_3,
The metal melting crucible according to claim 1, characterized in that it is made of at least one selected from Nd_2O_3.
(4)前記断熱コーティング層は安定化ZrO_2、T
hO_2、MgO、TiO_2、Y_2O_3、ZrS
iO_4から選択された少なくとも1種からなるもので
あることを特徴とする特許請求の範囲第1項記載の金属
溶解用るつぼ。
(4) The thermal insulation coating layer is stabilized ZrO_2, T
hO_2, MgO, TiO_2, Y_2O_3, ZrS
The crucible for metal melting according to claim 1, characterized in that it is made of at least one selected from iO_4.
(5)前記基材耐食コーティング層および基材と断熱コ
ーティング層の下地コーティング層としては、Ta、N
b、Ti、V、Rhおよび Al_2O_3から選択された少なくとも1種からなる
ものであることを特徴とする特許請求の範囲第1項記載
の金属溶解用るつぼ。
(5) The base coating layer of the base material corrosion-resistant coating layer and the base material and heat-insulating coating layer includes Ta, N
The crucible for metal melting according to claim 1, characterized in that the crucible is made of at least one selected from B, Ti, V, Rh, and Al_2O_3.
(6)前記基材にコーティング層を施した後、加熱、加
圧処理が施されたことを特徴とする特許請求の範囲第1
項記載の金属溶解用るつぼ。
(6) After applying the coating layer to the base material, heating and pressure treatment are performed.
A crucible for melting metals as described in .
(7)前記加熱、加圧処理手段として熱間静水圧加圧法
、冷間静水圧加圧法、ホットプレス法のいずれかを用い
られることを特徴とする特許請求の範囲第6項記載の金
属溶解用るつぼ。
(7) The metal melting according to claim 6, wherein any one of a hot isostatic pressing method, a cold isostatic pressing method, and a hot pressing method is used as the heating and pressurizing treatment means. Crucible used.
JP29867087A 1987-11-26 1987-11-26 Crucible for melting metal Granted JPH01139988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29867087A JPH01139988A (en) 1987-11-26 1987-11-26 Crucible for melting metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29867087A JPH01139988A (en) 1987-11-26 1987-11-26 Crucible for melting metal

Publications (2)

Publication Number Publication Date
JPH01139988A true JPH01139988A (en) 1989-06-01
JPH0544596B2 JPH0544596B2 (en) 1993-07-06

Family

ID=17862748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29867087A Granted JPH01139988A (en) 1987-11-26 1987-11-26 Crucible for melting metal

Country Status (1)

Country Link
JP (1) JPH01139988A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990593A1 (en) * 2007-04-30 2008-11-12 General Electric Company Crucibles For Melting Titanium Alloys
JP2010043776A (en) * 2008-08-11 2010-02-25 Ulvac Japan Ltd Water cooling crucible and electron beam melting furnace
US8236232B2 (en) 2007-04-30 2012-08-07 General Electric Company Methods for making reinforced refractory crucibles for melting titanium alloys
CN103459650A (en) * 2011-02-04 2013-12-18 索里布罗有限公司 Separating device and method for producing a crucible for said separating device
US8858697B2 (en) 2011-10-28 2014-10-14 General Electric Company Mold compositions
US8906292B2 (en) 2012-07-27 2014-12-09 General Electric Company Crucible and facecoat compositions
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
US8992824B2 (en) 2012-12-04 2015-03-31 General Electric Company Crucible and extrinsic facecoat compositions
CN104487618A (en) * 2012-04-17 2015-04-01 普兰西欧洲股份公司 Crucible for producing oxide ceramic monocrystals
US9011205B2 (en) 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
US9192983B2 (en) 2013-11-26 2015-11-24 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
CN105732061A (en) * 2016-03-11 2016-07-06 江苏航泰新材料有限公司 Lithium fluoride-doped zirconia crucible and method for producing lithium fluoride-doped zirconia crucible by hot-pressing sintering
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9592548B2 (en) 2013-01-29 2017-03-14 General Electric Company Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US10391547B2 (en) 2014-06-04 2019-08-27 General Electric Company Casting mold of grading with silicon carbide

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1990593A1 (en) * 2007-04-30 2008-11-12 General Electric Company Crucibles For Melting Titanium Alloys
JP2008275307A (en) * 2007-04-30 2008-11-13 General Electric Co <Ge> Crucible for melting titanium alloy
US8236232B2 (en) 2007-04-30 2012-08-07 General Electric Company Methods for making reinforced refractory crucibles for melting titanium alloys
TWI404901B (en) * 2007-04-30 2013-08-11 Gen Electric Crucibles for melting titanium alloys
JP2010043776A (en) * 2008-08-11 2010-02-25 Ulvac Japan Ltd Water cooling crucible and electron beam melting furnace
CN103459650A (en) * 2011-02-04 2013-12-18 索里布罗有限公司 Separating device and method for producing a crucible for said separating device
US8858697B2 (en) 2011-10-28 2014-10-14 General Electric Company Mold compositions
US9011205B2 (en) 2012-02-15 2015-04-21 General Electric Company Titanium aluminide article with improved surface finish
US9802243B2 (en) 2012-02-29 2017-10-31 General Electric Company Methods for casting titanium and titanium aluminide alloys
US8932518B2 (en) 2012-02-29 2015-01-13 General Electric Company Mold and facecoat compositions
CN104487618A (en) * 2012-04-17 2015-04-01 普兰西欧洲股份公司 Crucible for producing oxide ceramic monocrystals
CN104487618B (en) * 2012-04-17 2017-08-25 普兰西欧洲股份公司 Crucible for producing oxide ceramic monocrystalline
US8906292B2 (en) 2012-07-27 2014-12-09 General Electric Company Crucible and facecoat compositions
US8992824B2 (en) 2012-12-04 2015-03-31 General Electric Company Crucible and extrinsic facecoat compositions
US9803923B2 (en) 2012-12-04 2017-10-31 General Electric Company Crucible and extrinsic facecoat compositions and methods for melting titanium and titanium aluminide alloys
US9592548B2 (en) 2013-01-29 2017-03-14 General Electric Company Calcium hexaluminate-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9192983B2 (en) 2013-11-26 2015-11-24 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US9511417B2 (en) 2013-11-26 2016-12-06 General Electric Company Silicon carbide-containing mold and facecoat compositions and methods for casting titanium and titanium aluminide alloys
US10391547B2 (en) 2014-06-04 2019-08-27 General Electric Company Casting mold of grading with silicon carbide
CN105732061A (en) * 2016-03-11 2016-07-06 江苏航泰新材料有限公司 Lithium fluoride-doped zirconia crucible and method for producing lithium fluoride-doped zirconia crucible by hot-pressing sintering

Also Published As

Publication number Publication date
JPH0544596B2 (en) 1993-07-06

Similar Documents

Publication Publication Date Title
JPH01139988A (en) Crucible for melting metal
JP2002513081A (en) Product with corrosion protection layer and method of manufacturing corrosion protection layer
US6214474B1 (en) Oxidation protective coating for refractory metals
JPS5887273A (en) Parts having ceramic coated layer and their production
JP3040203B2 (en) High temperature stable composite and method for producing the same
CN109604802A (en) The connection method of tungsten or tungsten alloy and steel, the connection method of profile and sectional material joint
Kim et al. Application of high-temperature ceramic plasma-spray coatings for a reusable melting crucible
Ch et al. A review of ceramic coatings for high temperature uranium melting applications
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
Nikolopoulos et al. Interfacial phenomena in Al2O3—liquid metal and Al2O3—liquid alloy systems
Lee et al. Chemical reactivity of oxide materials with uranium and uranium trichloride
Santella et al. Brazing titanium-vapor-coated zirconia
JPH02146496A (en) Crucible for melting metal
JPS63233289A (en) Crucible for melting uranium
KR102412911B1 (en) Manufacturing Method of Cylindrical Target
Guo et al. The influence of surface orientation on the wetting and reaction at the Al/MgAl2O4 interfaces
JPH0275887A (en) Metal melting crucible
Weirauch Jr A Reappraisal of Wetting in the System A1-A12O3from 750–1000° C
US4715902A (en) Process for applying thermal barrier coatings to metals and resulting product
JPH0379749A (en) Formation of corrosion resisting coating layer
JPH0275889A (en) Metal melting crucible
Nan et al. Oxidation behaviour of a MoSiBTiC alloy coated by a (Si+ B) co-deposition pack cementation method
JPH02143089A (en) Crucible for melting metal
US20230191517A1 (en) Method for assembling a zirconia part to a titanium element
JPS63223156A (en) Heat-resisting member and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees