JPH11124662A - Self-repairing heat-insulating film and its production - Google Patents

Self-repairing heat-insulating film and its production

Info

Publication number
JPH11124662A
JPH11124662A JP9303532A JP30353297A JPH11124662A JP H11124662 A JPH11124662 A JP H11124662A JP 9303532 A JP9303532 A JP 9303532A JP 30353297 A JP30353297 A JP 30353297A JP H11124662 A JPH11124662 A JP H11124662A
Authority
JP
Japan
Prior art keywords
coating layer
self
heat
insulating film
healing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9303532A
Other languages
Japanese (ja)
Inventor
Keiji Sonoya
啓嗣 園家
Shogo Tobe
省吾 戸部
Shigeru Kitahara
繁 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9303532A priority Critical patent/JPH11124662A/en
Publication of JPH11124662A publication Critical patent/JPH11124662A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer

Abstract

PROBLEM TO BE SOLVED: To provide a heat-insulating film capable of prolonging thermal fatigue life by self-repairing micro cracks due to repeated heating and cooling, and its production. SOLUTION: As to this self-repairing heat-insulating film, a ZrO2 type ceramic film is formed as a top coating layer 13 and a bond coating layer 12 to be a ground coat is formed into a gradient layer composed of NiCrAlY alloy and ZrO2 Y2 O3 , and further, the component concentration of Zr is decreased on the base material 11 side and is made gradient so that it is increased with the approach to the top coating layer 13 side. By this method, the heat-insulating film having self-repairing property can be obtained and thermal fatigue life can be prolonged.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、自己修復性断熱
皮膜およびその製造方法に関し、繰り返しの加熱冷却に
よるミクロ亀裂を自己修復することができる断熱皮膜と
その製造方法を提供するようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a self-healing heat-insulating film and a method for manufacturing the same, and more particularly to a heat-insulating film capable of self-healing micro cracks caused by repeated heating and cooling, and a method for manufacturing the same. is there.

【0002】[0002]

【従来の技術】航空機エンジン、ボイラ、ごみ処理装置
などの高温環境下で使用される機器では、基材表面に断
熱皮膜を設けることで、基材を高温から保護することが
行われている。
2. Description of the Related Art In equipment used in a high-temperature environment such as an aircraft engine, a boiler, and a refuse disposal apparatus, a base material is protected from high temperatures by providing a heat insulating film on the base material surface.

【0003】このような断熱皮膜としては、例えば航空
機用ジェットエンジンの燃焼室内壁にプラズマ溶射によ
るZr O2 系セラミックス皮膜を形成することが行われ
ている。
As such a heat insulating film, for example, a ZrO2 ceramic film is formed on the inner wall of a combustion chamber of an aircraft jet engine by plasma spraying.

【0004】このZr O2 系セラミックス皮膜をプラズ
マ溶射する場合には、基材金属の被溶射表面をブラスト
処理した後に、例えばず5に示すように、基材金属とし
てのステンレス鋼1の表面に下地皮膜としてNi Cr A
l Y合金2をプラズマ溶射し、この下地皮膜2の上に断
熱皮膜であるZr O2 系セラミックス3をプラズマ溶射
している。
When the ZrO2 ceramic coating is subjected to plasma spraying, after the surface to be sprayed of the base metal is blast-treated, as shown in FIG. NiCrA as film
The Y alloy 2 is plasma-sprayed, and a ZrO2-based ceramic 3 which is a heat insulating film is plasma-sprayed on the undercoat 2.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
Zr O2 系セラミックス3をプラズマ溶射によって成膜
した二層皮膜で構成した断熱皮膜4では、加熱と冷却が
繰り返される航空機用ジェットエンジンの燃焼室内壁な
どに用いた場合には、熱歪によって皮膜4内にミクロ亀
裂が発生し、この亀裂が次第に成長し、熱疲労寿命が短
くなるという問題がある。
However, in the heat insulating coating 4 composed of such a two-layer coating of the ZrO2 ceramics 3 formed by plasma spraying, the combustion chamber of an aircraft jet engine in which heating and cooling are repeatedly performed. When used for a wall or the like, there is a problem that micro-cracks are generated in the coating film 4 due to thermal strain, and the cracks gradually grow, thereby shortening the thermal fatigue life.

【0006】この発明はかかる従来技術の課題に鑑みて
なされたもので、加熱冷却が繰り返される場合に生じる
ミクロ亀裂を自己修復することで熱疲労寿命を長くする
ことができる断熱皮膜とその製造方法を提供するしよう
とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in the prior art, and a heat insulating film capable of extending a thermal fatigue life by self-repairing micro cracks generated when heating and cooling are repeated, and a method of manufacturing the same. Is to provide.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
この発明の請求項1記載の自己修復性断熱皮膜は、基材
表面に設けられて下地となるボンドコーティング層と、
このボンドコーティング層を介して設けられる断熱用の
トップコーティング層とからなる断熱皮膜であって、前
記ボンドコーティング層を前記基材側から前記トップコ
ーティング層に向かって成分濃度を変えた傾斜層で構成
したことを特徴とするものである。
According to a first aspect of the present invention, there is provided a self-healing heat-insulating coating comprising: a bond coating layer provided on a surface of a base material and serving as a base;
A heat-insulating coating comprising a heat-insulating top coating layer provided through the bond coating layer, wherein the bond coating layer is constituted by a gradient layer in which the component concentration is changed from the substrate side toward the top coating layer. It is characterized by having done.

【0008】ここで、自己修復性とは、初期疲労亀裂を
消滅させる機能をいう。この自己修復性断熱皮膜によれ
ば、基材表面と断熱皮膜であるトップコーティング層と
の間に設ける下地となるボンドコーティング層を成分濃
度を順次変えた傾斜層としており、この傾斜層を設けた
断熱皮膜では、温度上昇時に見られる亀裂の拡大現象
を、温度の下降とともに縮小消滅する傾向が見られ、ミ
クロ亀裂に対する自己修復性があることを実験によって
確認している。
[0008] Here, the self-healing property means a function of eliminating an initial fatigue crack. According to this self-healing heat insulating film, the bond coating layer serving as a base provided between the substrate surface and the top coating layer as the heat insulating film is a gradient layer in which the component concentrations are sequentially changed, and this gradient layer is provided. In the thermal barrier coating, the crack propagation phenomenon observed when the temperature rises tends to shrink and disappear as the temperature decreases, and it has been confirmed by an experiment that it has self-healing properties against microcracks.

【0009】また、この発明の請求項2記載の自己修復
性断熱皮膜は、請求項1記載の構成に加え、前記トップ
コーティング層をZr O2 系セラミック皮膜とし、前記
ボンドコーティング層をNi Cr Al Y合金とZr O2
Y2 O3 とからなる傾斜層とするとともに、前記基材側
ではNi Cr Al Y合金の成分濃度が高く、前記トップ
コーティング層側では、Zr O2 Y2 O3 の成分濃度を
高めたことを特徴とするものである。
According to a second aspect of the present invention, there is provided a self-healing heat insulating film according to the first aspect, wherein the top coating layer is a ZrO2 ceramic film, and the bond coating layer is NiCrAlY. Alloy and ZrO2
A gradient layer composed of Y2 O3, wherein the component concentration of NiCrAlY alloy is high on the base material side, and the component concentration of ZrO2Y2O3 is high on the top coating layer side. It is.

【0010】この自己修復性断熱皮膜によれば、具体的
な断熱皮膜としては、トップコーティング層としてZr
O2 系セラミック皮膜を形成し、下地となるボンドコー
ティング層をNi Cr Al Y合金とZr O2 Y2 O3 と
からなる傾斜層とし、基材側ではZr の成分濃度を低く
し、これをトップコーティング層側では次第に高めるよ
うに傾斜させており、これによって自己修復性のある断
熱皮膜を得て熱疲労寿命を長くするようにしている。
According to this self-healing heat insulating film, a specific heat insulating film is Zr as a top coating layer.
An O2-based ceramic film is formed, and a bond coating layer serving as an underlayer is a gradient layer composed of NiCrAlY alloy and ZrO2Y2O3. On the base material side, the component concentration of Zr is reduced, and this is changed to a top coating layer side. In order to obtain a heat-insulating film having a self-healing property, the thermal fatigue life is prolonged.

【0011】さらに、この発明の請求項3記載の自己修
復性断熱皮膜の製造方法は、基材表面に設けられて下地
となるボンドコーティング層と、このボンドコーティン
グ層を介して設けられる断熱用のトップコーティング層
とからなる断熱皮膜を形成するに際し、前記ボンドコー
ティング層をプラズマ溶射により前記基材側から前記ト
ップコーティング層に向かって成分濃度を傾斜させて形
成した後、前記トップコーティング層をプラズマ溶射で
形成したことを特徴とするものである。
Further, according to a third aspect of the present invention, there is provided a method for producing a self-healing heat insulating film, comprising: a bond coating layer provided on the surface of the base material and serving as a base; and a heat insulating film provided via the bond coating layer. When forming a heat insulating film composed of a top coating layer, the bond coating layer is formed by inclining the component concentration from the substrate side toward the top coating layer by plasma spraying, and then the top coating layer is plasma sprayed. It is characterized by being formed by.

【0012】この自己修復性断熱皮膜の製造方法によれ
ば、下地となるボンドコーティング層をプラズマ溶射に
より基材側からトップコーティング層に向かって成分濃
度を傾斜させて形成した後、断熱性のトップコーティン
グ層をプラズマ溶射で形成するようにしており、成分濃
度を傾斜させたボンドコーティング層を設けた断熱皮膜
によって、温度上昇時に見られる亀裂の拡大現象が、温
度の下降とともに縮小消滅する傾向が見られ、ミクロ亀
裂に対する自己修復性があることを実験によって確認し
ている。
According to the method for producing a self-healing heat insulating film, the bond coating layer serving as the base is formed by plasma spraying with the component concentration being inclined from the substrate side toward the top coating layer, and then the heat insulating top layer is formed. The coating layer is formed by plasma spraying, and the thermal insulation coating provided with the bond coating layer with the gradient of component concentration shows that the crack expansion phenomenon seen when the temperature rises tends to shrink and disappear as the temperature decreases. It has been confirmed through experiments that it has self-healing properties against microcracks.

【0013】また、この発明の請求項4記載の自己修復
性断熱皮膜の製造方法は、前記請求項3記載の構成に加
え、前記ボンドコーティング層を前記基材側ではNi C
r Al Y合金の成分濃度が高く、前記トップコーティン
グ層側では、Zr O2 Y2 O3 の成分濃度を高めてプラ
ズマ溶射した後、Zr O2 系セラミックをプラズマ溶射
して前記トップコーティング層としたことを特徴とする
ものである。
According to a fourth aspect of the present invention, there is provided a method for manufacturing a self-healing heat-insulating coating according to the third aspect, wherein the bond coating layer is formed of NiC on the substrate side.
r Al Y alloy has a high component concentration, and on the top coating layer side, ZrO2Y2O3 component concentration is increased and plasma sprayed, and then ZrO2 ceramic is plasma sprayed to form the top coating layer. It is assumed that.

【0014】この自己修復性断熱皮膜の製造方法によれ
ば、具体的な断熱皮膜として、ボンドコーティング層を
基材側ではNi Cr Al Y合金の成分濃度を高め、トッ
プコーティング層側では、Zr O2 Y2 O3 の成分濃度
を高めてプラズマ溶射して形成した後、Zr O2 系セラ
ミックをプラズマ溶射してトップコーティング層とする
ようにしており、これによって自己修復性のある断熱皮
膜を得て熱疲労寿命を長くするようにしている。
According to this method for producing a self-healing heat-insulating coating, as a specific heat-insulating coating, the bond concentration of the NiCrAlY alloy is increased on the substrate side, and ZrO2 on the top coating layer side. After increasing the component concentration of Y2 O3 and forming by plasma spraying, a ZrO2 based ceramic is plasma sprayed to form a top coating layer, thereby obtaining a self-healing heat insulating film and a thermal fatigue life. I try to make it longer.

【0015】[0015]

【発明の実施の形態】以下、この発明の自己修復性断熱
皮膜およびその製造方法の一実施の形態を図面に基づき
詳細に説明する。図1は、この発明の自己修復性断熱皮
膜の一実施の形態にかかる横断面図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of a self-healing heat-insulating coating of the present invention and a method for manufacturing the same will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view according to one embodiment of the self-healing heat insulating film of the present invention.

【0016】この自己修復性断熱皮膜10は、基材11
の表面に下地となるボンドコーティン層12と断熱性を
有するトップコーティング層13とで構成されるが、ボ
ンドコーティング層12が単一層で無く、成分濃度を順
次変えた傾斜層で構成されている。
The self-healing heat-insulating coating 10 comprises a substrate 11
Is formed of a bond coating layer 12 serving as an underlayer and a top coating layer 13 having heat insulating properties, but the bond coating layer 12 is not a single layer but is formed of a gradient layer in which the component concentrations are sequentially changed.

【0017】このような自己修復性断熱皮膜10の基材
11としては、例えばスレンレス鋼や炭素鋼、あるいは
耐熱金属などの金属材料が用いられ、トップコーテイン
グ層13としては断熱性のセラミックス材料が用いられ
る。また。下地となるボンドコーティング層12として
は、金属基の合金やセラミックス材料、あるいはこれら
を混合したもの等が用いられ、基材に近い性状からその
成分の濃度を順次変えてトップコーティング層に近い性
状となる傾斜層とされる。
The base material 11 of the self-healing heat-insulating coating 10 is made of a metal material such as stainless steel, carbon steel, or a heat-resistant metal, and the top coating layer 13 is made of a heat-insulating ceramic material. Can be Also. As the bond coating layer 12 serving as a base, a metal-based alloy, a ceramic material, or a mixture thereof is used. From the properties close to the base material, the concentrations of the components are sequentially changed to change the properties close to the top coating layer. It becomes a graded layer.

【0018】そして、ボンドコーティング層12やトッ
プコーティング層13はプラズマ溶射法で形成され、ボ
ンドコーティング層12は、その成分の一部を基材11
側では100%とし、これをボンドコーティング層12
の表面では0%として複数層に形成したり、連続した成
分濃度となるようにして傾斜層に形成する。
The bond coating layer 12 and the top coating layer 13 are formed by a plasma spraying method.
100% on the side, and this is the bond coating layer 12
Is formed in a plurality of layers at 0% on the surface, or is formed in a gradient layer so as to have a continuous component concentration.

【0019】このようなプラズマ溶射を用いることで、
容易に傾斜層を形成でき、自己修復性断熱皮膜10を得
ることができる。
By using such plasma spraying,
The inclined layer can be easily formed, and the self-healing heat insulating film 10 can be obtained.

【0020】このような傾斜層で構成されるボンドコー
テイング層12の存在によって断熱性セラミックスで構
成されるトップコーティング層13を備えた断熱皮膜1
0では、加熱冷却を繰り返した実験によって温度上昇と
ともに、ミクロ亀裂の亀裂幅が拡大する傾向にあるもの
の、冷却による温度下降時には、亀裂幅が縮小する傾向
にあることが確認されており、自己修復性があることが
分かった。
The heat-insulating coating 1 having the top coating layer 13 made of a heat-insulating ceramic due to the presence of the bond coating layer 12 made of such a gradient layer.
In the case of 0, the crack width of the micro-crack tends to increase as the temperature rises by experiments with repeated heating and cooling, but it has been confirmed that the crack width tends to shrink when the temperature decreases due to cooling. I found that there is.

【0021】この自己修復性のメカニズムについては必
ずしも明らかではないが、ボンドコーティング層12が
傾斜層として形成してあることから、基材11の金属と
断熱性セラミックスのトップコーティング層13との間
に熱膨張率の差があるものの、隣接する粒子間では、こ
の熱膨張率の差が小さくなって連続するように変化する
ことが要因の一つとなっているのではないかというこ
と、さらに、基材11側からトップコーティング層13
に向かって成分濃度が変えてある合金成分の一部が温度
上昇時に溶融して亀裂に沿って溶け出すことも要因の一
つではないかとうこと等が考えられる。
Although the mechanism of this self-healing property is not always clear, since the bond coating layer 12 is formed as a gradient layer, the bond between the metal of the base material 11 and the top coating layer 13 of the heat insulating ceramic is provided. Although there is a difference in the coefficient of thermal expansion, it may be one of the factors that the difference in the coefficient of thermal expansion between adjacent particles is small and changes continuously. Top coating layer 13 from material 11 side
It is conceivable that one of the factors may be that a part of the alloy component whose component concentration is changed toward the temperature is melted when the temperature rises and melts out along the crack.

【0022】このような自己修復性断熱皮膜10によれ
ば、断熱皮膜自体の自己修復性によってミクロ亀裂が発
生しても修復され、従来のミクロ亀裂の拡大によって熱
疲労寿命が短くなることがなく、熱疲労寿命を長くする
ことができる。
According to such a self-healing heat-insulating coating 10, even if a micro-crack is generated due to the self-healing property of the heat-insulating coating itself, it is repaired, and the thermal fatigue life is not shortened by the expansion of the conventional micro-cracks. , Can extend the thermal fatigue life.

【0023】[0023]

【実施例】次に、この自己修復性断熱皮膜10の具体例
とともに、その製造方法について具体的に説明する。
Next, a specific example of the self-healing heat insulating film 10 and a method of manufacturing the same will be described.

【0024】1) 供試材料 自己修復性断熱皮膜の基材として、ステンレス鋼と炭素
鋼を用意した(いずれも100×50×30)。ボンド
コーティング層用の溶射材料として、粒度44〜10μ
mのNi Cr Al Y合金粉末(Ni :76.24 、Cr :1
7.06 、Al :5.84、Y:0.27%)と、8vol%Y2 O3
で部分安定化した粒度44〜1μmのZr O2 粉末(Z
r O2 ・8% Y2 O3 、以下単に8YSZと表示す
る。)とを用意し、混合して用いた。
1) Test Material Stainless steel and carbon steel were prepared as base materials for the self-healing heat-insulating coating (both 100 × 50 × 30). Particle size of 44 to 10 μm as a thermal spray material for the bond coating layer
m of NiCrAlY alloy powder (Ni: 76.24, Cr: 1
7.06, Al: 5.84, Y: 0.27%) and 8 vol% Y2O3
Zr O2 powder (Z
rO2.8% Y2O3, hereinafter simply referred to as 8YSZ. ) Were prepared and mixed for use.

【0025】そして、ボンドコーティング層を傾斜層と
するために、基材側をNi Cr AlY合金粉末100%濃度
とし、この上にNi Cr Al Y合金粉末と8YSZを混
合したものを、それぞれNi Cr Al Y合金粉末を90%
から10% ずつ低める一方、8YSZを10% から10% ずつ
高め、最表面側をNi Cr Al Y合金粉末が10% で8Y
SZが90% となるようにした。
Then, in order to make the bond coating layer an inclined layer, the base material side is made of 100% concentration of NiCrAlY alloy powder, and a mixture of NiCrAlY alloy powder and 8YSZ is mixed with NiCrAlY powder. 90% Al Y alloy powder
8YSZ is increased by 10% from 10% while the outermost surface is made of NiCrAlY alloy powder with 10% and 8Y.
SZ was adjusted to 90%.

【0026】また、トップコーティング層用の溶射材料
としては、ボンドコーティング層の傾斜層用として用意
した8YSZを用いた。
As the thermal spray material for the top coating layer, 8YSZ prepared for the gradient layer of the bond coating layer was used.

【0027】2) 皮膜の形成 プラズマ溶射法による溶射皮膜の形成は、予め基材11
の被溶射面をブラスト処理(#36アルミナグリット、
空気圧5kg/cm2 )した後、ボンドコーティング層12の
初層としてNi Cr Al Y合金粉末のみ(100%)をプラ
ズマ溶射した。この場合のプラズマ溶射は、表1に示す
溶射条件によって行った。
2) Formation of Coating The formation of the thermal spray coating by the plasma spraying method is performed in advance by using the base material 11
Blast treatment (# 36 alumina grit,
After air pressure of 5 kg / cm 2), only NiCrAlY alloy powder (100%) was plasma sprayed as the first layer of the bond coating layer 12. The plasma spraying in this case was performed under the spraying conditions shown in Table 1.

【0028】この100%濃度のNi Cr Al Y合金粉末の
プラズマ溶射皮膜の上に2つの成分のNi Cr Al Y合
金粉末と8YSZとを混合したものをそれぞれの成分濃
度を変えながらプラズマ溶射し、このボンドコーティン
グ層12全体の厚さを約0.3mmとした。
A mixture of two components, NiCrAlY alloy powder and 8YSZ, was sprayed onto the plasma sprayed coating of 100% concentration NiCrAlY alloy powder while changing the respective component concentrations. The thickness of the entire bond coating layer 12 was about 0.3 mm.

【0029】こうして傾斜層としたボンッドコーティン
グ層12をプラズマ溶射で成膜した後、トップコーティ
ング層13として8YSZのみ(100%)をプラズマ溶射
し、その厚さを約0.2mmとした。この場合のプラズマ
溶射は、表1に示す溶射条件によって行った。
After the bond coating layer 12 thus formed as the inclined layer was formed by plasma spraying, only 8YSZ (100%) was plasma sprayed as the top coating layer 13 to a thickness of about 0.2 mm. The plasma spraying in this case was performed under the spraying conditions shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】3) 断熱皮膜の評価 この8YSZ−Ni Cr Al Y合金皮膜の評価を行うた
め、高温顕微鏡を用い、アルゴンガス雰囲気中で加熱冷
却を繰り返すことで皮膜断面に生じる亀裂の進展、縮小
及び消滅の状況を観察した。この場合の温度範囲は常温
から950℃に設定し、加熱及び冷却時間をそれぞれ1
0分、950℃での保持時間を1分とした。 この結
果、ステンレス鋼基材と炭素鋼基材のいずれの場合も温
度上昇に伴ってミクロ亀裂の発生が認められたが、冷却
過程では逆にミクロ亀裂は縮小し、常温付近ではほぼ溶
射時の状態に戻っており、自己修復性を示すことを確認
した。
3) Evaluation of thermal insulation film In order to evaluate the 8YSZ-NiCrAlY alloy film, the heating, cooling and repetition in an argon gas atmosphere using a high-temperature microscope are used to evolve and reduce cracks generated in the cross section of the film. The annihilation situation was observed. In this case, the temperature range is set from room temperature to 950 ° C., and the heating and cooling times are each set to one.
The retention time at 950 ° C. was 0 minute and 1 minute. As a result, microcracks were found to occur with increasing temperature in both the stainless steel base and the carbon steel base, but the microcracks conversely shrank during the cooling process, and almost normal temperature It was confirmed that it had returned to its original state and exhibited self-healing properties.

【0032】さらに、この断熱皮膜の自己修復性を明確
にするため、皮膜内に生じるミクロ亀裂の一つに注目
し、ミクロ亀裂の幅の変化を計測し、亀裂幅と温度との
関係を調べ、その結果を図2、図3に示した。
Further, in order to clarify the self-healing property of the heat insulating film, attention is paid to one of the micro cracks generated in the film, the change in the width of the micro crack is measured, and the relationship between the crack width and the temperature is examined. The results are shown in FIGS.

【0033】同図から明らかなように、基材をステンレ
ス鋼とした場合を示す図2と基材を炭素鋼とした場合を
示す図3のいずれの断熱皮膜でも、温度上昇に伴って亀
裂の幅が拡大するものの、冷却過程で縮小しており、こ
の断熱皮膜に自己修復性のあることが分かる。
As is clear from the figure, in any of the thermal insulation coatings shown in FIG. 2 showing the case where the base material is made of stainless steel and FIG. 3 showing the case where the base material is made of carbon steel, cracks are generated with increasing temperature. Although the width was increased, it was reduced during the cooling process, indicating that this heat insulating film has self-healing properties.

【0034】また、熱疲労寿命についても評価したとこ
ろ、図4に示すように、この発明の自己修復性断熱皮膜
が、従来のボンドコーティング層として100%のNi Cr
AlY合金皮膜で構成したものに比べ、大巾に寿命増大
を図ることができることが分かった。
The thermal fatigue life was also evaluated. As shown in FIG. 4, the self-healing heat-insulating coating of the present invention was 100% NiCr as a conventional bond coating layer.
It has been found that the life can be greatly increased as compared with the one made of the AlY alloy film.

【0035】[0035]

【発明の効果】以上、一実施の形態とともに具体的に説
明したようにこの発明の請求項1記載の自己修復性断熱
皮膜によれば、基材表面と断熱皮膜であるトップコーテ
ィング層との間に設ける下地となるボンドコーティング
層を成分濃度を順次変えた傾斜層としたので、この傾斜
層を設けた断熱皮膜では、温度上昇時に見られる亀裂の
拡大現象が、温度の下降とともに縮小消滅する傾向が見
られ、ミクロ亀裂に対する自己修復性があることを実験
によって確認することができた。
According to the self-healing heat-insulating coating according to the first aspect of the present invention, as described above in detail with reference to one embodiment, the distance between the surface of the base material and the top coating layer as the heat-insulating coating is improved. In the thermal insulation coating with this graded layer, the crack expansion phenomena observed when the temperature rises tend to shrink and disappear as the temperature decreases, because the bond coating layer, which is the base layer to be provided, is a graded layer in which the component concentrations are changed sequentially. Was observed, and it was confirmed by an experiment that it had self-healing properties against microcracks.

【0036】また、この発明の請求項2記載の自己修復
性断熱皮膜によれば、具体的な断熱皮膜としては、トッ
プコーティング層としてZr O2 系セラミック皮膜を形
成し、下地となるボンドコーティング層をNi Cr Al
Y合金とZr O2 Y2 O3 とからなる傾斜層とし、基材
側ではZr の成分濃度を低くし、これをトップコーティ
ング層側では次第に高めるように傾斜させたので、これ
によって自己修復性のある断熱皮膜を得ることができる
とともに、熱疲労寿命を長くすることができる。
According to the self-healing heat-insulating film of the second aspect of the present invention, as a specific heat-insulating film, a ZrO2-based ceramic film is formed as a top coating layer, and a bond coating layer serving as a base is formed. Ni Cr Al
A gradient layer composed of a Y alloy and ZrO2Y2O3 is formed. The component concentration of Zr is lowered on the base material side, and is gradually increased on the top coating layer side. A film can be obtained and the thermal fatigue life can be extended.

【0037】さらに、この発明の請求項3記載の自己修
復性断熱皮膜の製造方法によれば、下地となるボンドコ
ーティング層をプラズマ溶射により基材側からトップコ
ーティング層に向かって成分濃度を傾斜させて形成した
後、断熱性のトップコーティング層をプラズマ溶射で形
成するようにしたので、成分濃度を傾斜させたボンドコ
ーティング層を設けた断熱皮膜によって、温度上昇時に
見られる亀裂の拡大現象が、温度の下降とともに縮小消
滅する傾向が見られ、ミクロ亀裂に対する自己修復性が
あることを実験によって確認することができた。
Further, according to the method for producing a self-healing heat-insulating coating according to the third aspect of the present invention, the component concentration of the bond coating layer as a base is inclined from the substrate side toward the top coating layer by plasma spraying. After forming, the thermal insulation top coating layer was formed by plasma spraying, so the thermal insulation coating provided with the bond coating layer with the gradient of the component concentration caused the crack expansion phenomenon seen at the time of temperature rise to increase. The tendency to shrink and disappear with the decrease of the temperature was observed, and it was confirmed by an experiment that there was a self-healing property against micro cracks.

【0038】また、この発明の請求項4記載の自己修復
性断熱皮膜の製造方法によれば、具体的な断熱皮膜とし
て、ボンドコーティング層を基材側ではNi Cr Al Y
合金の成分濃度を高め、トップコーティング層側では、
Zr O2 Y2 O3 の成分濃度を高めてプラズマ溶射して
形成した後、Zr O2 系セラミックをプラズマ溶射して
トップコーティング層とするようにしたので、これによ
って自己修復性のある断熱皮膜を得ることができるとと
もに、熱疲労寿命を長くすることができる。
According to the method for producing a self-healing heat-insulating film according to the fourth aspect of the present invention, as a specific heat-insulating film, a bond coating layer is formed of NiCrAlY on the substrate side.
Increase the alloy component concentration, and on the top coating layer side,
After the ZrO2Y2O3 component concentration is increased and formed by plasma spraying, the ZrO2 based ceramic is plasma sprayed to form a top coating layer, thereby obtaining a self-healing heat insulating film. As well as prolonging the thermal fatigue life.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の自己修復性断熱皮膜の一実施の形態
にかかる横断面図である。
FIG. 1 is a cross-sectional view according to an embodiment of a self-healing heat insulating film of the present invention.

【図2】この発明の自己修復性断熱皮膜の一実施の形態
にかかる加熱冷却過程における亀裂幅と温度の関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between a crack width and a temperature in a heating and cooling process according to an embodiment of the self-healing heat insulating film of the present invention.

【図3】この発明の自己修復性断熱皮膜の他の一実施の
形態にかかる加熱冷却過程における亀裂幅と温度の関係
を示すグラフである。
FIG. 3 is a graph showing a relationship between a crack width and a temperature in a heating and cooling process according to another embodiment of the self-healing heat insulating film of the present invention.

【図4】この発明の自己修復性断熱皮膜の一実施の形態
にかかる熱疲労寿命を示すグラフである。
FIG. 4 is a graph showing a thermal fatigue life according to an embodiment of the self-healing heat insulating film of the present invention.

【図5】従来の二層の断熱皮膜の構造を示す断面図であ
る。
FIG. 5 is a cross-sectional view showing the structure of a conventional two-layer heat insulating film.

【符号の説明】[Explanation of symbols]

10 自己修復性断熱皮膜 11 基材 12 ボンドコーティング層 13 トップコーティング層 DESCRIPTION OF SYMBOLS 10 Self-healing thermal insulation film 11 Substrate 12 Bond coating layer 13 Top coating layer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に設けられて下地となるボンド
コーティング層と、このボンドコーティング層を介して
設けられる断熱用のトップコーティング層とからなる断
熱皮膜であって、前記ボンドコーティング層を前記基材
側から前記トップコーティング層に向かって成分濃度を
変えた傾斜層で構成したことを特徴とする自己修復性断
熱皮膜。
1. A heat insulating film comprising a bond coating layer provided on a base material surface and serving as a base, and a heat insulating top coating layer provided via the bond coating layer, wherein the bond coating layer is A self-healing heat-insulating coating, comprising a gradient layer in which the component concentration is changed from the substrate side toward the top coating layer.
【請求項2】 前記トップコーティング層をZr O2 系
セラミック皮膜とし、前記ボンドコーティング層をNi
Cr Al Y合金とZr O2 Y2 O3 とからなる傾斜層と
するとともに、前記基材側ではNi Cr Al Y合金の成
分濃度が高く、前記トップコーティング層側では、Zr
O2 Y2 O3 の成分濃度を高めたことを特徴とする請求
項1記載の自己修復性断熱皮膜。
2. The method according to claim 1, wherein the top coating layer is a ZrO2 ceramic coating, and the bond coating layer is Ni.
The gradient layer is composed of a CrAlY alloy and ZrO2Y2O3, and the NiCrAlY alloy has a high component concentration on the base material side, and the ZrO2Y2O3
2. The self-healing heat-insulating coating according to claim 1, wherein the component concentration of O2 Y2 O3 is increased.
【請求項3】 基材表面に設けられて下地となるボンド
コーティング層と、このボンドコーティング層を介して
設けられる断熱用のトップコーティング層とからなる断
熱皮膜を形成するに際し、前記ボンドコーティング層を
プラズマ溶射により前記基材側から前記トップコーティ
ング層に向かって成分濃度を傾斜させて形成した後、前
記トップコーティング層をプラズマ溶射で形成したこと
を特徴とする自己修復性断熱皮膜の製造方法。
3. When forming a heat insulating film composed of a bond coating layer provided on a base material surface and serving as a base, and a heat insulating top coating layer provided through the bond coating layer, the bond coating layer A method for producing a self-healing heat-insulating coating, characterized in that a component concentration is inclined from the substrate side to the top coating layer by plasma spraying, and then the top coating layer is formed by plasma spraying.
【請求項4】 前記ボンドコーティング層を前記基材側
ではNi Cr Al Y合金の成分濃度が高く、前記トップ
コーティング層側では、Zr O2 Y2 O3 の成分濃度を
高めてプラズマ溶射した後、Zr O2 系セラミックをプ
ラズマ溶射して前記トップコーティング層としたことを
特徴とする請求項3記載の自己修復性断熱皮膜の製造方
法。
4. The bond coating layer is plasma-sprayed by increasing the component concentration of NiCrAlY alloy on the base material side and increasing the component concentration of ZrO2Y2O3 on the top coating layer side. The method for producing a self-healing heat-insulating coating according to claim 3, wherein the top coating layer is formed by plasma spraying a system ceramic.
JP9303532A 1997-10-17 1997-10-17 Self-repairing heat-insulating film and its production Pending JPH11124662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9303532A JPH11124662A (en) 1997-10-17 1997-10-17 Self-repairing heat-insulating film and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9303532A JPH11124662A (en) 1997-10-17 1997-10-17 Self-repairing heat-insulating film and its production

Publications (1)

Publication Number Publication Date
JPH11124662A true JPH11124662A (en) 1999-05-11

Family

ID=17922130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9303532A Pending JPH11124662A (en) 1997-10-17 1997-10-17 Self-repairing heat-insulating film and its production

Country Status (1)

Country Link
JP (1) JPH11124662A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140481A2 (en) * 2006-12-01 2008-11-20 Siemens Energy, Inc. Bond coat compositions and arrangements of same capable of self healing
WO2008154107A1 (en) * 2007-06-11 2008-12-18 Elc Management Llc Self-healing polymer compositions
KR20180085735A (en) * 2015-11-20 2018-07-27 페더럴-모걸 엘엘씨 Heat-isolated steel piston crowns, and methods of making them using ceramic coatings
US10876475B2 (en) 2015-11-20 2020-12-29 Tenneco Inc. Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10995661B2 (en) 2015-11-20 2021-05-04 Tenneco Inc. Thermally insulated engine components using a ceramic coating
US11111851B2 (en) 2015-11-20 2021-09-07 Tenneco Inc. Combustion engine components with dynamic thermal insulation coating and method of making and using such a coating

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008140481A2 (en) * 2006-12-01 2008-11-20 Siemens Energy, Inc. Bond coat compositions and arrangements of same capable of self healing
WO2008140481A3 (en) * 2006-12-01 2010-03-25 Siemens Energy, Inc. Bond coat compositions and coating systems thereof
KR101339083B1 (en) * 2006-12-01 2013-12-09 지멘스 에너지, 인코포레이티드 Bond coat compositions and arrangements of same capable of self healing
WO2008154107A1 (en) * 2007-06-11 2008-12-18 Elc Management Llc Self-healing polymer compositions
KR20180085735A (en) * 2015-11-20 2018-07-27 페더럴-모걸 엘엘씨 Heat-isolated steel piston crowns, and methods of making them using ceramic coatings
US10876475B2 (en) 2015-11-20 2020-12-29 Tenneco Inc. Steel piston crown and/or combustion engine components with dynamic thermal insulation coating and method of making and using such a coating
US10995661B2 (en) 2015-11-20 2021-05-04 Tenneco Inc. Thermally insulated engine components using a ceramic coating
US11111851B2 (en) 2015-11-20 2021-09-07 Tenneco Inc. Combustion engine components with dynamic thermal insulation coating and method of making and using such a coating

Similar Documents

Publication Publication Date Title
US5681616A (en) Thick thermal barrier coating having grooves for enhanced strain tolerance
JP3434504B2 (en) Insulation method for metal substrate
JP4658273B2 (en) Strain-tolerant ceramic coating
Jordan et al. Superior thermal barrier coatings using solution precursor plasma spray
US6106959A (en) Multilayer thermal barrier coating systems
Guo et al. Microstructures and properties of plasma‐sprayed segmented thermal barrier coatings
JP4250083B2 (en) Multilayer thermal barrier coating
KR100598230B1 (en) Process for depositing a bond coat for a thermal barrier coating system
Ahmadi-Pidani et al. Laser surface modification of plasma sprayed CYSZ thermal barrier coatings
EP1373598B1 (en) Thermal barrier coating having subsurface inclusions for improved thermal shock resistance
EP2514850B1 (en) Method for producing a heat-shielding coating, turbine member provided with said heat-shielding coating, and gas turbine
JPS641552B2 (en)
JPH0791660B2 (en) Ground equipment with heat-resistant walls for environmental protection
JPH0967662A (en) Ceramic-coated member
JP5300851B2 (en) CERAMIC LAYER COMPOSITE AND METHOD FOR PRODUCING THE CERAMIC LAYER COMPOSITE
JPS5887273A (en) Parts having ceramic coated layer and their production
KR101681195B1 (en) Thermal Barrier Coating System with Self-Healing Ability
JP2008064089A (en) Turbine engine component and manufacturing method
EP2322686B1 (en) Thermal spray method for producing vertically segmented thermal barrier coatings
Kumar Comparison of thermal fatigue of superNi 718 SGTBCs and APSTBCs
JPH11124662A (en) Self-repairing heat-insulating film and its production
JPH0978258A (en) High-temperature member having thermal insulation coating film and its production
US7144602B2 (en) Process for obtaining a flexible/adaptive thermal barrier
JP2005163185A (en) Gas turbine, thermal barrier coating material, its production method, and turbine member
RU2260071C1 (en) Method of application of heat-insulating erosion-resistant coat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071227