JPS63241139A - High strength high ductility toughness semi-hard magnetic material - Google Patents

High strength high ductility toughness semi-hard magnetic material

Info

Publication number
JPS63241139A
JPS63241139A JP62074000A JP7400087A JPS63241139A JP S63241139 A JPS63241139 A JP S63241139A JP 62074000 A JP62074000 A JP 62074000A JP 7400087 A JP7400087 A JP 7400087A JP S63241139 A JPS63241139 A JP S63241139A
Authority
JP
Japan
Prior art keywords
semi
toughness
hard magnetic
austempering
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074000A
Other languages
Japanese (ja)
Inventor
Kazunori Tokoro
所 一典
Katsuyuki Uchibori
勝之 内堀
Yasuhiro Nonaka
保宏 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP62074000A priority Critical patent/JPS63241139A/en
Publication of JPS63241139A publication Critical patent/JPS63241139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide magnetic characteristics, high strength, high ductility and toughness with the titled material by subjecting the alloy contg. specific ratios of C, Si and the balance consisting substantially of Fe to an austempering treatment. CONSTITUTION:The alloy contg., by weight, 0.30-0.80% C, 1.70-3.70% Si and the balance Fe with inevitable impurities is subjected to the austempering treatment. The working such as rolling and forging is preferably executed as well to the alloy at the temp. lower than the A3 transformation point during the austempering treatment or after the austempering treatment. One or more kinds among 0.15-1.10% Mn, 0.20-2.30% Cu, 0.15-1.10% Mo and 0.30-5.50% Ni are furthermore incorporated into the above-mentioned compsn. at need. The semi-hard magnetic material unites the magnetic characteristics, tensile strength and impact toughness and these characteristics can be furthermore changed at need, by the above-mentioned constitution.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高価な希少元素の含有最を極力少くした合金を
オーステンパー処理してなる高強度で優れた延゛性及び
靭性を備えた半硬質磁性材料に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a semi-finished material with high strength, excellent ductility and toughness, which is made by austempering an alloy containing as few expensive rare elements as possible. It relates to hard magnetic materials.

[従来の技術] 半硬質磁性材料に高強度でしかも優れた延性および靭性
をもたせることは材料の特性からして困難であるので、
従来は半硬質磁性材料に高強度で優れた延性および靭性
を持たせることは殆どなかった。最近になって高応力を
負荷した条件下で使用できる半硬質磁性材料が要求され
るようになってきて、代表的にはP−6、パイカロイ、
強靭鋼が用いられている。
[Prior Art] It is difficult to impart high strength and excellent ductility and toughness to a semi-hard magnetic material due to the characteristics of the material.
Conventionally, semi-hard magnetic materials have rarely been made to have high strength and excellent ductility and toughness. Recently, there has been a demand for semi-hard magnetic materials that can be used under high stress conditions, and typical examples include P-6, Picaloy,
Strong steel is used.

[発明が解決しようとする問題点コ 従来のP−6、パイカロイの室温における磁気6勺性質
は飽和磁束密度14〜18K G、保磁力3G〜800
6種度である。引張強ざは100〜150kgf/n5
m2程度得られるが、50k(if/m1l12以下の
極端す低応力で破壊することがしばしばある。伸びおよ
び絞りはいずれも1%以下程度であり、切欠感受性が大
であり、延性および靭性に欠けているため、応力が負荷
する条件下で使用するのは破壊の恐れが大でおり、信頼
性に欠ける。
[Problems to be solved by the invention] The magnetic properties of conventional P-6 and Picaloy at room temperature are saturation magnetic flux density of 14 to 18 KG, coercive force of 3G to 800
There are 6 kinds of degrees. Tensile strength is 100-150kgf/n5
m2, but it often breaks at extremely low stress of less than 50k (if/ml12).Elongation and reduction of area are both about 1% or less, high notch sensitivity, and lack of ductility and toughness. Therefore, there is a high risk of breakage when used under stress-loaded conditions, making it unreliable.

さらにこれらの合金の代表的化学組成はP−6が45C
o−6N i −4V−Fe、パイカロイが52Co−
10V−Feであり、いずれも高価な元素を多量に含有
しており高価である。
Furthermore, the typical chemical composition of these alloys is that P-6 is 45C.
o-6N i -4V-Fe, Picaloy is 52Co-
10V-Fe, and both contain large amounts of expensive elements and are expensive.

一方、高強度とそれに見合った延性および靭性の得られ
る強靭鋼であるA I S I 434011゜Al5
I H−11鋼、マルエージ鋼の室温における強度は0
.2%耐力130〜240 k(Jf/朋2程度である
が、磁気的性質は保磁力20〜300e程度であり、半
硬質材料としては保磁力が不足している。応力が負荷す
る条件下では破壊を避(プるため、やむを得ず強靭鋼を
使用しているのが現状である。
On the other hand, AIS I 434011゜Al5 is a strong steel that has high strength and commensurate ductility and toughness.
The strength of I H-11 steel and maraging steel at room temperature is 0.
.. The 2% yield strength is about 130 to 240 k (Jf/2), but the magnetic properties are about 20 to 300 e, and the coercive force is insufficient for a semi-hard material. Under conditions where stress is applied. Currently, strong steel is unavoidably used to avoid destruction.

この強靭鋼も高価な元素を多量に含有しており、全体と
して高価なものになる。
This strong steel also contains large amounts of expensive elements, making it expensive as a whole.

本発明はこのような従来の半硬質磁性材料の各種問題点
を解決して磁気特性と高強度、高延性、靭性を兼ね備え
させようとするものである。
The present invention aims to solve various problems of such conventional semi-hard magnetic materials and to provide a material with magnetic properties, high strength, high ductility, and toughness.

[問題点を解決するための手段] 本発明は、半硬質磁性材料としての磁気的性質を損うこ
となく、強度が高く、延性および靭性を兼ね備えた廉価
な半硬質磁性材料を1qるために倹討を重ねた結果、F
e−c−s i合金をオーステンパー処理することでそ
の目的を達成することを見出した。
[Means for Solving the Problems] The present invention is aimed at producing an inexpensive semi-hard magnetic material that has high strength, ductility, and toughness without impairing its magnetic properties as a semi-hard magnetic material. As a result of repeated consideration, F.
It has been found that this objective can be achieved by austempering the e-c-si alloy.

すなわち第1発明は、重量基準でC:0.30〜0.8
0%、Si:1.70〜3.70%を含み、残部は不可
避不純物とFeからなる合金をオーステンパー処理して
なることを特徴とする高強度、高延性、靭性半硬質磁性
材料である。
That is, in the first invention, C: 0.30 to 0.8 on a weight basis
It is a high-strength, high-ductility, and tough semi-hard magnetic material made by austempering an alloy containing 0% Si, 1.70 to 3.70% Si, and the remainder consisting of unavoidable impurities and Fe. .

また、第2発明は、さらに磁気的性質、強度、延性およ
び靭性を改善するために、上記第1発明にさらにM n
 : 0.15〜1.10%、Cu:0.20〜2.3
0%、Mo:0.15〜1.10%、Ni:0,30〜
5.50%のいずれか1種または2種以上を添加するも
のである。
In addition, the second invention further includes M n
: 0.15-1.10%, Cu: 0.20-2.3
0%, Mo: 0.15~1.10%, Ni: 0.30~
5.50% of any one type or two or more types are added.

本発明におけるオーステンパー処理は、材料のAI変態
点より高温のオーステナイト温度領域から、塩浴、ミス
トまたはこれに類する冷却媒体を用いて、Ms点より高
温の200〜400℃の温度に急冷して、その温度で所
定鍔間保持するものである。
The austempering treatment in the present invention involves rapid cooling from the austenitic temperature range, which is higher than the AI transformation point of the material, to a temperature of 200 to 400°C, which is higher than the Ms point, using a salt bath, mist, or a similar cooling medium. , and is maintained at that temperature for a predetermined distance between the brim.

本合金の主たる基地組織はベイナイトおよびオーステナ
イトである。パーライトおよびフェライトは必ずしも好
ましくない。そのため、第1図に示すとおり、オーステ
ナイト温度領域からの冷却時にパーライト変態のノーズ
の部分を横切らずにペイの部分を通過させることで、ベ
イナイト変態させて室温まで冷却して、ベイナイトおよ
び残留オーステナイトのそれぞれの組織形態などを調整
して、所要の磁気的性質、引張性質および衝撃靭性とを
付与する。
The main base structures of this alloy are bainite and austenite. Pearlite and ferrite are not necessarily preferred. Therefore, as shown in Figure 1, when cooling from the austenite temperature range, by passing through the pay part without crossing the nose part of the pearlite transformation, the bainite transformation is carried out and the temperature is cooled to room temperature, resulting in bainite and residual austenite. The desired magnetic properties, tensile properties, and impact toughness are imparted by adjusting the respective structure forms.

パーライト変態のノーズの部分を横切らぬようにするた
めには、冷却速度を速くする必要がある。冷却速度は処
理物の大きさ、特に厚さの影響を受ける。厚くなると冷
却速度は遅くなり、パーライト変態のノーズの部分を横
切ってパーライト変態をおこすようになる。
In order to avoid crossing the nose of pearlite transformation, it is necessary to increase the cooling rate. The cooling rate is affected by the size, especially the thickness, of the workpiece. As the thickness increases, the cooling rate slows down and pearlite transformation occurs across the nose of pearlite transformation.

化学組成を調整してパーライト変態のノーズの部分を右
方に移動させて、冷却速度が遅くなってもパーライト変
態のノーズの部分を横切らぬようにする必要がある。こ
のように化学組成を調整することで、処理物が厚くなっ
てもベイナイトとオーステナイトの共存組織とすること
ができるし、必要に応じて冷却媒体を液体から冷却速度
の更に遅い気体に換えることも可能となり、併せて冷却
時の変形量を小さくしうる。
It is necessary to adjust the chemical composition to move the nose of pearlite transformation to the right so that it does not cross the nose of pearlite transformation even if the cooling rate becomes slower. By adjusting the chemical composition in this way, it is possible to create a coexisting structure of bainite and austenite even if the processed material becomes thick, and if necessary, the cooling medium can be changed from a liquid to a gas with a slower cooling rate. This makes it possible to reduce the amount of deformation during cooling.

更にベイナイト変態は恒温変態的に進行するので、ベイ
ナイト変態温度領域に保持する時間とともに変態は進行
し、ベイナイト変態温度領域より低い温度に冷却すれば
、変態の進行を阻止し得る。変態速度はマルテンサイト
変態のようにせん断的に急激ではなく、緩やかである。
Furthermore, since the bainite transformation proceeds in a isothermal manner, the transformation progresses with the time the material is kept in the bainite transformation temperature range, and the progress of the transformation can be stopped by cooling to a temperature lower than the bainite transformation temperature range. The rate of transformation is not rapid in terms of shear as in martensitic transformation, but is gradual.

ベイティトの組織、形態などは変態温度および時間に依
存するので、所要な性状のベイナイトおよびオーステナ
イトがコストを加味して、工業的に可能な時間内で得ら
れるように化学組成を調整する必要がある。
Since the structure, morphology, etc. of baitiite depend on the transformation temperature and time, it is necessary to adjust the chemical composition so that bainite and austenite with the desired properties can be obtained within an industrially possible time, taking into account cost. .

このようにオーステナイト温度領域からパーライト変態
のノーズの部分を横切らずにベイナイト変態させ、室温
まで冷却することで、ベイナイトおよび残留オーステナ
イトを生成させて、半硬質磁性材料として必要な磁気的
性質が得られるとともに、高強度、高延性、靭性とが得
られる。
In this way, bainite transformation occurs from the austenite temperature range without crossing the nose of pearlite transformation, and by cooling to room temperature, bainite and retained austenite are generated, and the magnetic properties necessary for a semi-hard magnetic material are obtained. At the same time, high strength, high ductility, and toughness can be obtained.

本発明による高強度、高延性、靭性半硬質材料の化学組
成は、上述の理由により範囲が制限されるが、化学組成
範囲の限定理由を具体的に詳述する。
Although the range of the chemical composition of the high strength, high ductility, and toughness semi-hard material according to the present invention is limited for the above-mentioned reasons, the reason for limiting the chemical composition range will be specifically explained in detail.

オーステンパー処理によって主たる基地組織がベイナイ
トおよびオーステナイトの共存組織となるためには、C
:0.30〜0.80%、Si:1.70〜3.70%
、残部不可避不純物とFeからなる合金を基本とする。
In order for the main base structure to become a coexistence structure of bainite and austenite through austempering treatment, C
:0.30~0.80%, Si:1.70~3.70%
, the balance is basically an alloy consisting of unavoidable impurities and Fe.

又、第2発明にあけるMnの添加は焼入性の改善のため
に極めて有効である。Mn含有量は0.15%から有効
であって、添加量を増加すると焼入性はそれだけ改善さ
れるが、O,aO%を越えると衝撃靭性を低下させるの
で1.10%以下が望ましい。
Further, the addition of Mn in the second invention is extremely effective for improving hardenability. The Mn content is effective from 0.15%, and as the amount added increases, the hardenability is improved accordingly, but if it exceeds O or aO%, the impact toughness decreases, so it is preferably 1.10% or less.

CUの添加は強度の改善に有効であるばかりでなく、焼
入性の改善にも有効である。Cu含有量は0.20%か
ら有効であって、添加量を増加すると強度は増加し、焼
入性は改善されるが、2.00%付近から延性および靭
性を低下させるので2.30%以下が望ましい。
Addition of CU is effective not only for improving strength but also for improving hardenability. The Cu content is effective from 0.20%, and increasing the amount increases strength and improves hardenability, but from around 2.00% the ductility and toughness decrease, so 2.30% The following are desirable.

MoおよびNiの添加は焼入性の改善に極めて有効であ
る。パーライト変態のノーズの部分を右方に移動させ、
パーライト変態の開始を遅らせるので、厚いものでもパ
ーライト変態を抑止してベイナイト変態をさせ得るよう
になる。
Addition of Mo and Ni is extremely effective in improving hardenability. Move the nose part of the pearlite metamorphosis to the right,
Since the start of pearlite transformation is delayed, even thick materials can suppress pearlite transformation and allow bainite transformation.

特にNiの添加は強度を高くしたときにみられる延性お
よび靭性の低下を抑止する効果もある。
In particular, the addition of Ni has the effect of suppressing the decrease in ductility and toughness that occurs when the strength is increased.

同一°強度レベルでNiを添加した合金と添加しない合
金の延性および衝撃靭性とを比較すると、前者の方が優
れていることを見出した。Mo含有量は0.15%から
効果が顕著になる。添加量を増加すると焼入性の改善は
それだけ大となるが、多くを添加すると工業的に可能な
@理時間内では所要の性状のベイナイトおよびオーステ
ナイトが得られなくなり、残留するオーステナイトが多
くなりすぎて強度が低下するとともに飽和磁束密度も低
下して、必要とする特性が得られなくなるので、1.1
0%以下が望ましい。Ni含有量は0.30%から効果
が現われ、上限値はMoと同様の理由で5.50%が望
ましい。
When comparing the ductility and impact toughness of an alloy with and without Ni added at the same strength level, it was found that the former is superior. The effect becomes noticeable from Mo content of 0.15%. If the amount added is increased, the improvement in hardenability will be greater, but if too much is added, bainite and austenite with the required properties will not be obtained within the industrially possible @processing time, and too much austenite will remain. As the strength decreases, the saturation magnetic flux density also decreases, making it impossible to obtain the required characteristics.
Desirably 0% or less. The effect appears from the Ni content of 0.30%, and the upper limit is preferably 5.50% for the same reason as Mo.

なお、前記のMn53iとA1には脱酸剤としての作用
がある。Mnは前述の作用のほかに硫黄と化合物をつく
り、加工性向上の作用もある。A1の量は0.2%以下
で十分である。
Note that the above-mentioned Mn53i and A1 have an action as a deoxidizing agent. In addition to the above-mentioned effects, Mn forms a compound with sulfur and has the effect of improving processability. It is sufficient that the amount of A1 is 0.2% or less.

不純物中P、Sについては高強度材料の延性および靭性
を低下させるので、できるだけ少量であることが望まし
い。0.05%以下にすると、強度レベルが高くなって
も、延性および靭性の低下はわずかになる。
Since P and S among the impurities reduce the ductility and toughness of the high-strength material, it is desirable that they be as small as possible. When the content is 0.05% or less, even if the strength level is increased, the decrease in ductility and toughness is small.

[実施例] 本発明を実施例について説明する。[Example] The present invention will be described with reference to examples.

表1のNO,’l〜13に示す化学組成の合金材料を誘
導溶解炉によって溶解し鋳造し、均質化処理後熱間鍛造
した。必要に応じて熱間圧延した材料から試験材を作成
した。
Alloy materials having chemical compositions shown in No. 1 to 13 in Table 1 were melted and cast in an induction melting furnace, and hot forged after homogenization treatment. Test materials were prepared from hot-rolled materials as required.

試験材はオーステナイト相になる900〜950℃に加
熱保持した後、200〜450℃で0.5〜24時間の
オーステンパー処理を施した。
The test material was heated and maintained at a temperature of 900 to 950°C, where it becomes an austenite phase, and then subjected to austempering treatment at 200 to 450°C for 0.5 to 24 hours.

N o、 12の試験材はNo、11の試験材をオース
テンパー処理後空温で圧延したもので、N o、 13
はNo、11の試験材をオーステンパー処理途中の50
0℃で圧延開始したものでめる。
The test material No. 12 was obtained by rolling the test material No. 11 at air temperature after austempering treatment, and No. 13.
50 in the middle of austempering treatment of No. 11 test material
The rolling process was started at 0°C.

半硬質磁性材料として保磁力は望ましくは3000程度
以上必要である。応力が負荷する条件下で使用する場合
には負荷応力に耐えられる強度が必要であるとともに、
それに見合った延性および靭性も必要でおる。
As a semi-hard magnetic material, the coercive force is preferably about 3000 or more. When used under conditions where stress is applied, it is necessary to have the strength to withstand the applied stress, and
Appropriate ductility and toughness are also required.

表1には磁気的性質、引張性質、衝撃靭性についての試
験結果を併せて示す。
Table 1 also shows test results regarding magnetic properties, tensile properties, and impact toughness.

表1から明らかなとおり、引張強ざは強靭鋼と同等以上
でおり、伸びおよび絞りはそれぞれ15%以上および3
0%以上であり延性が高い。
As is clear from Table 1, the tensile strength is equal to or higher than that of high-strength steel, and the elongation and reduction of area are 15% or more and 3%, respectively.
It is 0% or more and has high ductility.

2mm Vノツチシャルピーは3.5kgfm/cm2
以上であり衝撃靭性も高い。保磁力は300 e以上で
ある。
2mm V-notch Charpy is 3.5kgfm/cm2
The impact toughness is also high. The coercive force is 300 e or more.

Niを添加した合金は、Ni無添加合金に比べて伸びお
よび絞りが向上し、衝撃靭性が向上していることが判る
It can be seen that the Ni-added alloy has improved elongation and reduction of area, and improved impact toughness, compared to the Ni-free alloy.

オーステンパー処理後あるいはオーステンパー処理途中
で圧延加工を加えた場合、残留磁束密度が約2KG向上
し、引張性質および衝撃靭性が向上していることが判る
It can be seen that when rolling is applied after austempering or during austempering, the residual magnetic flux density is improved by about 2 KG, and the tensile properties and impact toughness are improved.

本発明による高強度、高延性、靭性半硬質磁性材料は化
学組成とオーステンパー処理条件、必要窓じて加工条件
を変化させ、組合せることで磁気的性質、引張性質およ
び衝撃靭性を比較的容易に調整することができるので用
途が広い。
The high strength, high ductility, and toughness semi-hard magnetic material of the present invention can be relatively easily modified in magnetic properties, tensile properties, and impact toughness by changing and combining the chemical composition, austempering treatment conditions, and processing conditions as necessary. It is versatile as it can be adjusted.

[発明の効果] 本発明の半硬質磁性材料は磁気的性質、引張性質、衝撃
靭性を兼ね備えており、これらの特性を適宜に変化させ
ることができる。しがも高価な希少元素を極力少くして
いるので廉価である。高応力が負荷する条件下でも破壊
の恐れがないので、高信頼性を要求される分野での使用
が可能である。
[Effects of the Invention] The semi-hard magnetic material of the present invention has magnetic properties, tensile properties, and impact toughness, and these properties can be changed as appropriate. However, it is inexpensive because it contains as few expensive rare elements as possible. Since there is no risk of breakage even under conditions of high stress, it can be used in fields that require high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のオーステンパー処理を示すグラフであ
る。
FIG. 1 is a graph showing the austempering process of the present invention.

Claims (4)

【特許請求の範囲】[Claims] (1)重量基準でC:0.30〜0.80%、Si:1
.70〜3.70%を含み、残部は不可避不純物とFe
からなる合金をオーステンパー処理してなることを特徴
とする高強度、高延性、靭性半硬質磁性材料。
(1) C: 0.30-0.80%, Si: 1 by weight
.. Contains 70-3.70%, the remainder being unavoidable impurities and Fe
A semi-hard magnetic material with high strength, high ductility, and toughness, which is made by austempering an alloy consisting of:
(2)オーステンパー処理の途中のA_3変態点より低
い温度あるいはオーステンパー処理後に加工が施されて
いる特許請求の範囲第(1)項記載の高強度、高延性、
靭性半硬質磁性材料。
(2) High strength and high ductility according to claim (1), which is processed at a temperature lower than the A_3 transformation point during austempering or after austempering;
Tough semi-hard magnetic material.
(3)重量基準でC:0.30〜0.80%、Si:1
.70〜3.70%を含み、さらにMn:0.15〜1
.10%、Cu:0.20〜2.30%、Mo:0.1
5〜1.10%、Ni:0.30〜5.50%のいずれ
か1種または2種以上を含み、残部は不可避不純物とF
eからなる合金をオーステンパー処理してなることを特
徴とする高強度、高延性、靭性半硬質磁性材料。
(3) C: 0.30-0.80%, Si: 1 by weight
.. Contains 70 to 3.70%, and further includes Mn: 0.15 to 1
.. 10%, Cu: 0.20-2.30%, Mo: 0.1
5 to 1.10%, Ni: 0.30 to 5.50%, and the remainder is unavoidable impurities and F.
A semi-hard magnetic material with high strength, high ductility, and toughness, characterized by being made by austempering an alloy consisting of E.
(4)オーステンパー処理の途中のA_3変態点より低
い温度あるいはオーステンパー処理後に加工が施されて
いる特許請求の範囲第(3)項記載の高強度、高延性、
磁性半硬質磁性材料。
(4) High strength and high ductility according to claim (3), which is processed at a temperature lower than the A_3 transformation point during austempering or after austempering;
Magnetic semi-hard magnetic material.
JP62074000A 1987-03-30 1987-03-30 High strength high ductility toughness semi-hard magnetic material Pending JPS63241139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074000A JPS63241139A (en) 1987-03-30 1987-03-30 High strength high ductility toughness semi-hard magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074000A JPS63241139A (en) 1987-03-30 1987-03-30 High strength high ductility toughness semi-hard magnetic material

Publications (1)

Publication Number Publication Date
JPS63241139A true JPS63241139A (en) 1988-10-06

Family

ID=13534370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074000A Pending JPS63241139A (en) 1987-03-30 1987-03-30 High strength high ductility toughness semi-hard magnetic material

Country Status (1)

Country Link
JP (1) JPS63241139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124818A (en) * 1992-10-01 1994-05-06 Sensormatic Electron Corp Semihard magnetic element and manufacture
JP2017526823A (en) * 2014-08-06 2017-09-14 アウスフェリティク・アーベー Materials, methods and components
US11708624B2 (en) 2018-09-14 2023-07-25 Ausferritic Ab Method for producing an ausferritic steel, austempered during continuous cooling followed by annealing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06124818A (en) * 1992-10-01 1994-05-06 Sensormatic Electron Corp Semihard magnetic element and manufacture
JP2017526823A (en) * 2014-08-06 2017-09-14 アウスフェリティク・アーベー Materials, methods and components
JP2020002467A (en) * 2014-08-06 2020-01-09 アウスフェリティク・アーベー Material, method and member
US10787718B2 (en) 2014-08-06 2020-09-29 Ausferritic Ab Material, method and component
US11708624B2 (en) 2018-09-14 2023-07-25 Ausferritic Ab Method for producing an ausferritic steel, austempered during continuous cooling followed by annealing

Similar Documents

Publication Publication Date Title
US5252153A (en) Process for producing steel bar wire rod for cold working
US5743972A (en) Heavy-wall structural steel and method
JPH07278656A (en) Production of low yield ratio high tensile strength steel
JPH10265846A (en) Production of thermally refined high tensile strength steel plate by continuous casting excellent in toughness
JPS61238917A (en) Manufacture of low alloy tempered high tensile seamless steel pipe
JP3383148B2 (en) Manufacturing method of high strength steel with excellent toughness
JPH01242761A (en) Ultra high strength steel having low yield ratio and its manufacture
JPS63241139A (en) High strength high ductility toughness semi-hard magnetic material
JPH064889B2 (en) Method for manufacturing thick ultra high strength steel
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3228986B2 (en) Manufacturing method of high strength steel sheet
JPH02285053A (en) Maraging steel and its production
JPH01219121A (en) Production of extra-thick tempered high tension steel plate having excellent low-temperature toughness
JPS5845360A (en) Low alloy steel with temper embrittlement resistance
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH0696742B2 (en) High strength / high toughness non-heat treated steel manufacturing method
JP2706159B2 (en) Method for producing low yield ratio high strength steel with good weldability
JPH04180521A (en) Production of high tensile thick steel plate having high yield strength and high toughness
JPH10287957A (en) High strength pc steel bar and its manufacture
JPH04272130A (en) Production of high mn nonmagnetic steel having superior drillability
JPS63199821A (en) Manufacture of accelerated cooling-type high-tensile steel plate
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JPH02213411A (en) Production of high tensile steel with low yield radio
KR20030055540A (en) A Method of Manufacturing the Fine-Grained Ferrite High-Strength Steel
JPH03260010A (en) Production of non-heattreated steel bar for hot forging and production of hot forged non-heattreated parts