JPS6324058A - Continuous vacuum deposition plating device - Google Patents

Continuous vacuum deposition plating device

Info

Publication number
JPS6324058A
JPS6324058A JP16743786A JP16743786A JPS6324058A JP S6324058 A JPS6324058 A JP S6324058A JP 16743786 A JP16743786 A JP 16743786A JP 16743786 A JP16743786 A JP 16743786A JP S6324058 A JPS6324058 A JP S6324058A
Authority
JP
Japan
Prior art keywords
steel sheet
vacuum deposition
plated
deposited
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16743786A
Other languages
Japanese (ja)
Inventor
Yasuo Tokunaga
徳永 康夫
Fumio Sakagami
坂上 二三雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP16743786A priority Critical patent/JPS6324058A/en
Publication of JPS6324058A publication Critical patent/JPS6324058A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a dense plated film without any pinholes and having high adhesive strength by providing a thermoelectron source in the vicinity of the surface of a steel sheet to be plated, and impressing a positive bias voltage on the steel sheet to be plated when vacuum deposition metal plating is continuously applied to the long-sized steel sheet. CONSTITUTION:The steel sheet 7 is continuously traveled in the direction as shown by the arrow along a guide roller 14 in a vacuum deposition vessel 1, a metal such as Zn melted in an external melting furnace 6 is sucked up into a duct 2 in the vacuum deposition vessel 1, and the vaporized Zn particles 3 are deposited on the surface of the steel sheet 7. In this case, a filament 9 made of W, etc., and being heated to 2,000 deg.C by an electric power source 12 is arranged in the vicinity of the vapor deposition surface of the steel sheet 7, and thermoelectrons 8 are emitted. A positive voltage is simultaneously impressed on the steel sheet 7 from a DC bias power source 11 through the guide roller 14, hence the thermoelectrons 8 of the negative charge are accelerated and collided with the steel sheet 7 to generate heat, and the Zn plated film deposited on the steel sheet surface is microscopically melted and recombined. As a result, a dense Zn plated layer without any pinholes is formed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は連続真空蒸着亜鉛メッキ等のメッキ装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a plating apparatus for continuous vacuum evaporation galvanizing, etc.

〔従来技術〕[Prior art]

連続真空蒸着亜鉛メッキ等のメッキ装置では、蒸発時に
おいて蒸発亜鉛粒子に熱エネルギーの形態で与えられた
運動エネルギーで蒸発亜鉛粒子が鋼板に衝突し付着堆積
する。
In plating equipment such as continuous vacuum evaporation galvanizing, the kinetic energy given to the evaporated zinc particles in the form of thermal energy during evaporation causes the evaporated zinc particles to collide with the steel plate and deposit thereon.

〔この発明が解決すべき問題点〕[Problems to be solved by this invention]

こうした、従来の連続真空蒸着亜鉛メッキの蒸着部につ
いて詳述すると、牙4図(a)に示したように500℃
程度の亜鉛浴蒸発源5から出た亜鉛粒子は、その噴出エ
ネルギーのみで約1O−2Torrの真空中を移動し、
鋼板7の亜鉛蒸着面10に付着堆積し膜を形成している
が、粒子の衝突エネルギーが小さいため、牙4図(b)
に示したように粒子の堆積状態は粗くピンホール13の
発生も多い。このように、従来の手法では蒸発亜鉛粒子
の運動エネルギーが伝いため亜鉛膜の膜質に問題があっ
た。
To explain in detail the deposition part of conventional continuous vacuum evaporation galvanizing, as shown in Figure 4 (a), the temperature is 500°C.
Zinc particles emitted from the zinc bath evaporation source 5 move in a vacuum of about 1 O-2 Torr only by the ejection energy,
Zinc is deposited and deposited on the surface 10 of the steel plate 7 to form a film, but since the collision energy of the particles is small, the zinc evaporation surface 10 of the steel plate 7 is deposited, so that the particles are deposited on the surface 10 of the steel plate 7.
As shown in FIG. 2, the particles are deposited coarsely and pinholes 13 occur frequently. As described above, in the conventional method, the kinetic energy of the evaporated zinc particles is transferred, resulting in a problem with the film quality of the zinc film.

そこで、この発明は前記のような従来の連続真空蒸着メ
ッキにおける不都合な点ヤ改善して膜質の向上を図るこ
とのできるメッキ装置を提供するものである。
SUMMARY OF THE INVENTION Therefore, the present invention provides a plating apparatus capable of improving film quality by overcoming the disadvantages of conventional continuous vacuum evaporation plating as described above.

〔発明の構成〕[Structure of the invention]

この発明による連続真空蒸着メッキ装置は鋼板の金属蒸
着面近傍に熱電子発生源を設けると共に、鋼板に正のバ
イアス電圧を印加する点に特徴がある。
The continuous vacuum evaporation plating apparatus according to the present invention is characterized in that a thermionic generation source is provided near the metal evaporation surface of the steel plate, and a positive bias voltage is applied to the steel plate.

〔実 施 例〕〔Example〕

以下、図示するこの発明の実施例により説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below with reference to illustrated embodiments.

牙1図に亜鉛メッキを行なう実施例装置の全体図を示し
たが、ここで、外部溶解炉6、真空蒸着槽1及びダクト
2等で構成されるメッキ装置の亜鉛蒸着面10近傍には
熱電子発生源としてフィラメント9が設けられている。
Fig. 1 shows an overall diagram of an embodiment of the apparatus for galvanizing.Here, heat is applied to the vicinity of the zinc evaporation surface 10 of the plating apparatus, which is composed of an external melting furnace 6, a vacuum evaporation tank 1, a duct 2, etc. A filament 9 is provided as an electron source.

このフィラメント9にはフィラメント用電源12が接続
されており、適切な交流電流によりフィラメント9が加
熱される。
A filament power source 12 is connected to the filament 9, and the filament 9 is heated by an appropriate alternating current.

このフィラメント9は、熱電子を大面積より放出できる
よう牙3図に示すタングステン等のメツシュ形状とし、
長さは鋼板7の幅と同程度にすることにより、鋼板面の
幅方向全域にわたり、均一に電子衝撃が加えられる。ま
た、フィラメントの寿命も単線形状のもの罠比ベエネル
ギー密度が小さいので長くなる。
The filament 9 has a mesh shape made of tungsten or the like as shown in Fig. 3 so that thermoelectrons can be emitted from a large area.
By making the length approximately the same as the width of the steel plate 7, the electron impact can be uniformly applied to the entire width of the steel plate surface. In addition, the life of the filament is longer than that of a single wire filament because the energy density is lower than that of a filament.

さらに、鋼板7をガイドするローラ14にはバイアス用
直流電源11からの正のバイアス電圧が印加されており
、電子は加速されて鋼板70表面に衝突する。
Further, a positive bias voltage from the bias DC power source 11 is applied to the roller 14 that guides the steel plate 7, and the electrons are accelerated and collide with the surface of the steel plate 70.

こうした構成において、フィラメント9をフィラメント
用電源により約2000°Cに加熱すると、多量の熱電
子8が放出される。これが、ローラ14に接触して正の
バイアス電圧の印加された鋼板7上の亜鉛蒸淘面10に
向って加速して衝突するので電子衝撃を与える。この衝
撃面では電子衝撃による発熱を起こし、牙2図(a) 
、 (blに示したようにミクロ的には蒸着亜鉛粒子3
′が溶解し粒子の再結合によりピンホール部が埋められ
る。
In such a configuration, when the filament 9 is heated to about 2000° C. by the filament power supply, a large amount of thermionic electrons 8 are emitted. This contacts the roller 14 and accelerates and collides with the zinc evaporated surface 10 on the steel plate 7 to which a positive bias voltage is applied, giving an electron impact. This impact surface generates heat due to electron impact, and Fang 2 (a)
(As shown in bl, microscopically, the deposited zinc particles 3
' dissolves and the pinhole is filled by recombination of the particles.

この作用は蒸着亜鉛粒子3の状態で一層ごとに行なわれ
るので堆積膜は緻密となり、鋼板7と蒸着亜鉛膜との間
に熱作用も発生するので付着力も向上する。
Since this action is performed layer by layer in the state of the vapor-deposited zinc particles 3, the deposited film becomes dense, and since a thermal action is also generated between the steel plate 7 and the vapor-deposited zinc film, the adhesion is improved.

この実施例ではフィラメント用電源12として交流電源
を用いたが直流電源でも可能であり、亜銘以外のAt、
Ti等の金属及びAl2O3等の無機材料及び有機材料
の連続真空蒸着にも適用できる。
In this embodiment, an AC power source was used as the filament power source 12, but a DC power source is also possible.
It can also be applied to continuous vacuum deposition of metals such as Ti and inorganic and organic materials such as Al2O3.

〔発明の効果〕〔Effect of the invention〕

この発明による連続真空蒸着メッキ装置の実施例は以上
の通りであり、次に述べる効果を挙げることができる。
The embodiments of the continuous vacuum evaporation plating apparatus according to the present invention are as described above, and the following effects can be achieved.

鋼板上に付滑した蒸着金属膜は、熱電子衝突による電子
衝撃効果でミクロ的な溶解及び再結合を起こすのでピン
ホールは除去され緻密で付着力の強いものとなる。
The vapor-deposited metal film smoothed onto the steel plate undergoes microscopic dissolution and recombination due to the electron impact effect caused by thermionic collision, so pinholes are removed and the film becomes dense and has strong adhesion.

【図面の簡単な説明】[Brief explanation of drawings]

牙1図は実施例の構成図、牙2図(a) 、 (blは
熱電子の作用を示す概念図、牙6図はフィラメントの構
成図、牙4図(a)は従来例の構成図、牙4図(b)は
従来の亜鉛蒸着面を示す拡大図である。 1・・・・・・真空蒸着槽、2・・・・・・ダクト、3
・・・・・・蒸発亜鉛粒子、3′・・・・・・蒸着亜鉛
粒子、4・・・・・・シャッター、5・・・・・・蒸発
源、6・・・・・・外部溶解炉、7・・・・・・鋼板、
8・・・・・・熱電子、9・・・・・・フィラメント、
10・・・・・・亜鉛蒸着面、11・・・・・・バイア
ス用直流電源、12・・・・・・フィラメント用電源、
13・・・・・・ピンホール、14・・・・・・ローラ
Fang 1 is a configuration diagram of the embodiment, Fang 2 (a) and (bl are conceptual diagrams showing the action of thermoelectrons, Fang 6 is a filament configuration diagram, Fang 4 (a) is a configuration diagram of a conventional example) , Fang 4 (b) is an enlarged view showing a conventional zinc evaporation surface. 1... Vacuum deposition tank, 2... Duct, 3
... Evaporated zinc particles, 3'... Vapor deposited zinc particles, 4... Shutter, 5... Evaporation source, 6... External melting Furnace, 7... steel plate,
8... Thermal electron, 9... Filament,
10... Zinc vapor deposition surface, 11... DC power supply for bias, 12... Power supply for filament,
13...Pinhole, 14...Roller.

Claims (1)

【特許請求の範囲】 金属浴蒸発源から出た金属粒子で鋼板に真空蒸着を行な
うメッキ装置において、 鋼板近傍に熱電子発生源を設けると共に、鋼板に正のバ
イアス電圧を印加することを特徴とする連続真空蒸着メ
ッキ装置。
[Claims] A plating apparatus that performs vacuum evaporation on a steel plate with metal particles emitted from a metal bath evaporation source, characterized in that a thermionic generation source is provided near the steel plate and a positive bias voltage is applied to the steel plate. Continuous vacuum evaporation plating equipment.
JP16743786A 1986-07-16 1986-07-16 Continuous vacuum deposition plating device Pending JPS6324058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16743786A JPS6324058A (en) 1986-07-16 1986-07-16 Continuous vacuum deposition plating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16743786A JPS6324058A (en) 1986-07-16 1986-07-16 Continuous vacuum deposition plating device

Publications (1)

Publication Number Publication Date
JPS6324058A true JPS6324058A (en) 1988-02-01

Family

ID=15849690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16743786A Pending JPS6324058A (en) 1986-07-16 1986-07-16 Continuous vacuum deposition plating device

Country Status (1)

Country Link
JP (1) JPS6324058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429148B1 (en) * 1999-11-09 2004-04-28 주식회사 포스코 Apparatus for coating Zn onto the surface of the steel sheet by using Zn vapor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429148B1 (en) * 1999-11-09 2004-04-28 주식회사 포스코 Apparatus for coating Zn onto the surface of the steel sheet by using Zn vapor

Similar Documents

Publication Publication Date Title
US4393091A (en) Method of vacuum depositing a layer on a plastic film substrate
JP2018517843A (en) Method and coating equipment
JPH0456761A (en) Thin film forming device
JPS6324058A (en) Continuous vacuum deposition plating device
US5885357A (en) Process and device for coating a substrate surface with vaporized inorganic material
JPS6324068A (en) Continuous vacuum deposition plating device
JP4019457B2 (en) Arc type evaporation source
JP3073711B2 (en) Ion plating equipment
JPH0770741A (en) Evaporation source
JPH04191364A (en) Method and device for ion plating
JPS6320465A (en) Vacuum deposition device
JPH09263933A (en) Mechanism of crucible part in vapor deposition device
JPH09511792A (en) Device for coating a substrate with a material vapor in a negative pressure or vacuum
JP3078602B2 (en) HCD type ion plating equipment
JPS6342371A (en) Continuous vacuum deposition plating device
JPH03287761A (en) Thin film forming device
JP2000017429A (en) Vacuum deposition apparatus
JPS63255366A (en) Method for coating conductive film on insulating substrate
JPH04346664A (en) Electron beam heating type vapor deposition device
JPH0196372A (en) Ion plating apparatus
JPS5681671A (en) Ion plating apparatus
JPS6254076A (en) Ion plating device
JPH04346665A (en) Electron beam heating type vapor deposition device
JPH04191363A (en) Method and device for ion plating
JPH0633955U (en) Ion plating device