JPS6324042A - Rare earth metal-base amorphous alloy and its production - Google Patents

Rare earth metal-base amorphous alloy and its production

Info

Publication number
JPS6324042A
JPS6324042A JP61056679A JP5667986A JPS6324042A JP S6324042 A JPS6324042 A JP S6324042A JP 61056679 A JP61056679 A JP 61056679A JP 5667986 A JP5667986 A JP 5667986A JP S6324042 A JPS6324042 A JP S6324042A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
hydrogen
absorption reaction
hydrogen absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61056679A
Other languages
Japanese (ja)
Other versions
JPH0418022B2 (en
Inventor
Takeshi Masumoto
健 増本
Akihiko Yanagiya
彰彦 柳谷
Kiyoshi Aoki
清 青木
Toshiya Yamamoto
俊哉 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Sanyo Tokushu Seiko KK
Original Assignee
Sanyo Special Steel Co Ltd
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd, Sanyo Tokushu Seiko KK filed Critical Sanyo Special Steel Co Ltd
Priority to JP61056679A priority Critical patent/JPS6324042A/en
Publication of JPS6324042A publication Critical patent/JPS6324042A/en
Publication of JPH0418022B2 publication Critical patent/JPH0418022B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To easily produce a rare earth metal-base amorphous alloy having high magnetization by bringing an alloy or an intermetallic compound having a specified composition consisting of a rare earth metal, Fe, Co and Ni into a hydrogen absorption reaction at a specified temp. so as to make the alloy or compound amorphous. CONSTITUTION:An alloy or an intermetallic compound having a composition represented by a formula R(FexCoyNiz)n (where R is at least one kind of rare earth metal selected among lanthanoids ranging from La having atomic No.57 to Lu having No.71, Sc having No.21 and Y having No.39, x:y:z is the atomic ratio of Fe:Co:Ni, x+y+z=1, znot equal to 1 and 0.2<=n<=5) is brought into a hydrogen absorption reaction at 273-773K preferably under <=150atm pressure of gaseous hydrogen to allow 0.1-0.8atom% hydrogen to be absorbed in the alloy or compound. Thus, an amorphous alloy is uniformly produced from a crystalline solid of the alloy or compound in large quantities at a low cost in a direct and easy way.

Description

【発明の詳細な説明】 本発明は希土類元素全含む非晶質合金およびその製造方
法に関するものであり、特に結晶質合金あるいは金属間
化合物に水素吸収反応を施し非晶質化させることを特徴
とする。
[Detailed Description of the Invention] The present invention relates to an amorphous alloy containing all rare earth elements and a method for producing the same, and is particularly characterized by subjecting a crystalline alloy or an intermetallic compound to a hydrogen absorption reaction to make it amorphous. do.

従来の非晶質合金の製造方法としては、液体急冷法、ス
パッタ法な゛どそれぞれ液体あるいは気体からの製造方
法が知られている。(たとえば、アモルファス金属の基
礎:増重 健編著、オーム社)。一方、最近になって結
晶質合金に水素全吸収させると非晶質化することが報告
されている。しかし、本発明の出願前の研究報告によれ
ば、SmN i z、 GdN i 2など希土類元素
−ニッケル系に限られており、磁気的性質などの応用に
おいて有利なFe、COヲ含有する合金系は知られてい
なかった。
Conventional methods for manufacturing amorphous alloys include liquid quenching, sputtering, and other methods using liquids or gases, respectively. (For example, Basics of Amorphous Metals: edited by Ken Masashige, Ohmsha). On the other hand, it has recently been reported that when a crystalline alloy is made to completely absorb hydrogen, it becomes amorphous. However, according to research reports prior to the filing of the present invention, it is limited to rare earth element-nickel systems such as SmN i z and GdN i 2, and alloy systems containing Fe and CO, which are advantageous in applications such as magnetic properties, are was unknown.

これに対して、本発明者らは磁気的性質などの応用にお
いて有利なFe、Co’i含有する希土類元素の合金あ
るいは化合物が水素吸収反応によって非晶質化すること
を新た見出し、本発明を完成した。この合金はまた水素
全含有するため酸化しがたい特徴がある。また、不発明
の非晶質合金の製造方法は、結晶固体から直接非晶質固
体を得ること全可能にするもので、非晶質合金を容易に
大量かつ均一に製造でき、コストの低減にも役立つとい
う有利な方法である。従来の液体急冷法、スパッタ法で
は薄帯あるいは薄膜という形状的な制約があったが、本
発明の製造方法によれば非晶質合金塊を直線に製造しう
るという点で従来の形状的制約を取り除いたという利点
がある。さらに非晶質合金塊を粉砕することによシ非晶
質粉末?容易に作製することができ、この非晶質合金粉
末に温間で加圧成型などの処理を施すことにより強度の
高い非晶質合金塊を製造することもできる。また粉砕に
よシ得られた非晶質超微粉末はテープなどに塗布して使
用できるし、蒸着あるいはスパッタ法などにより作製し
た結晶質薄膜に水素を吸収させて非晶質合金薄膜を作る
こともできる。さらに水素吸収反応の前処理として特許
請求の範囲第3項および第4項に示す条件の下で均一化
焼鈍あるいは液体急冷を施すことにより、続く水素吸収
反応による非晶質化の時間を大幅に短縮できる。
In contrast, the present inventors have newly discovered that alloys or compounds of rare earth elements containing Fe and Co'i, which are advantageous in applications such as magnetic properties, become amorphous through a hydrogen absorption reaction, and have developed the present invention. completed. This alloy also has the characteristic of being resistant to oxidation since it contains all hydrogen. In addition, the uninvented method for producing amorphous alloys makes it possible to obtain amorphous solids directly from crystalline solids, making it possible to easily produce amorphous alloys in large quantities and uniformly, reducing costs. This is an advantageous method that also helps. Conventional liquid quenching methods and sputtering methods had shape constraints such as thin strips or thin films, but the production method of the present invention overcomes the traditional shape limitations in that an amorphous alloy lump can be produced in a straight line. It has the advantage of removing . By further grinding the amorphous alloy lump into amorphous powder? It can be easily produced, and a high-strength amorphous alloy ingot can also be produced by subjecting this amorphous alloy powder to a treatment such as warm pressure molding. In addition, the amorphous ultrafine powder obtained by pulverization can be used by coating it on a tape, etc., or an amorphous alloy thin film can be made by absorbing hydrogen into a crystalline thin film made by vapor deposition or sputtering. You can also do it. Furthermore, by performing homogenization annealing or liquid quenching under the conditions shown in claims 3 and 4 as a pretreatment for the hydrogen absorption reaction, the time required for amorphization by the subsequent hydrogen absorption reaction can be significantly reduced. Can be shortened.

なお、R(F ex Coy Niz )nにおいてn
<Q、2あるいはn>5の場合には、本発明の方法によ
シ好ましい非晶質合金は得られなかった。また、製造条
件として水素の圧力が150気圧以上でも非晶質合金を
得ることができるが、圧力上昇による危険性などのデメ
リットにみあうメリットがないので150気圧以下で行
うことが好まなるので273〜1273にの温度範囲に
限定した。
Note that in R(F ex Coy Niz )n, n
In the case of <Q, 2 or n>5, a preferred amorphous alloy could not be obtained by the method of the present invention. In addition, although it is possible to obtain an amorphous alloy even if the hydrogen pressure is 150 atm or more as a manufacturing condition, it is preferable to carry out the process at 150 atm or less because there is no advantage to outweigh the disadvantages such as the risk of increased pressure. The temperature range was limited to 1273°C.

水素吸収反応の偏置としては273に以下では長時間の
処理を必要とし773に以上では酸化などによる試料の
汚染が問題になるので273〜773にの温度範囲に限
定した。水素吸収反応において水素量が0.1原子チ以
下では非晶質化せず、また、0.8原子チ以上の水素は
吸収されなかったので0.1〜0,8チに限定した。以
上の本発明における非晶質合金は、たとえば高記録密度
の光磁気ディスク装置の記録媒体、センサーおよび触媒
などに応用される。
The temperature range for the hydrogen absorption reaction was limited to a temperature range of 273 to 773, since temperatures below 273 would require a long treatment time, and temperatures above 773 would cause problems with sample contamination due to oxidation. In the hydrogen absorption reaction, if the amount of hydrogen was less than 0.1 atoms, it did not become amorphous, and hydrogen in amounts of more than 0.8 atoms was not absorbed, so it was limited to 0.1 to 0.8 atoms. The amorphous alloy of the present invention described above is applied, for example, to recording media, sensors, catalysts, etc. of high-density magneto-optical disk drives.

実施例1 希土類元素としてLa、  Ce、 Pr、 Nd、P
m、  Sm。
Example 1 La, Ce, Pr, Nd, P as rare earth elements
m, Sm.

Eu、 Gd、 Tb、 D7、Ho、Er、Trn、
  Yb、 Lu、 Sc、Yを含有した特許請求の範
囲第1項における合金に水素吸収反応音節した結果、非
晶質であることが確認できた。これを第1表にまとめて
示す。
Eu, Gd, Tb, D7, Ho, Er, Trn,
As a result of conducting a hydrogen absorption reaction on the alloy in claim 1 containing Yb, Lu, Sc, and Y, it was confirmed that the alloy was amorphous. This is summarized in Table 1.

第1表 実施例2 DyFe2fアルゴン雰囲気下のアーク溶解によって3
0g溶製した。ここで原料金属の純度は、Dy:99.
9チ、Fe:99.99チであった。得られた合金塊i
 723K、5日間アルゴン雰囲気中(純度99.99
9%)で均一化焼鈍した後、100メツシユ以下の粉末
にし水素吸収反応全行う試料にした。試料粉末10g’
e水素吸収反応装置に入れて473にで1時間脱ガスし
た後、323Kまで冷却し、50気圧の水素ガス(純度
99.99999%)を導入し2時間水素を吸収させた
。水素吸収反応後の試料の構造をX線回折装置(Cu対
陰極)で固定し、水素吸収反応後の試料の構造は非晶質
であること全確認した。また不活性ガス中溶融熱伝導法
により分析した結果、水素含有量は原子パーセントで0
.4 %であった。
Table 1 Example 2 DyFe2f 3 by arc melting under argon atmosphere
0g was melted. Here, the purity of the raw material metal is Dy:99.
9chi, Fe: 99.99chi. Obtained alloy ingot i
723K, 5 days in argon atmosphere (purity 99.99
After uniform annealing at 9%), the sample was made into a powder of 100 mesh or less and subjected to all hydrogen absorption reactions. Sample powder 10g'
e It was placed in a hydrogen absorption reactor and degassed for 1 hour at 473 degrees centigrade, then cooled to 323K, hydrogen gas (purity 99.99999%) at 50 atm was introduced, and hydrogen was absorbed for 2 hours. The structure of the sample after the hydrogen absorption reaction was fixed with an X-ray diffraction device (Cu anticathode), and it was completely confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. Furthermore, as a result of analysis using the melt heat conduction method in an inert gas, the hydrogen content was found to be 0 in atomic percent.
.. It was 4%.

実施例3 HoFe21アルゴン雰囲気下のアーク溶解によって3
0g溶製した。ここでj料金属の純度は、Ha : 9
9.9%、F’e:99.99%であった。得うレタ合
金塊f 773K、5日間アルゴン雰囲気中(純度99
.999%)で均一化焼鈍した後、100メツシユ以下
の粉末にし水素吸収反応を行う試料にした。試料粉末1
0gを水素吸収反応装置に入れて473にで1時間脱ガ
スした後、323Kまで冷却し、50気圧の水素ガス(
純度99.99999%)を導入し2時間水素を吸収さ
せた。水素吸収反応後の試料の構造をX線回折装置(C
u対陰極)で固定し、水素吸収反応後の試料の構造は非
晶質であることを確認した。また不活性ガス中溶融熱伝
導法によ)分析した結果、水素含有量は原子パーセント
で0.3壬であった。
Example 3 HoFe21 3 by arc melting under argon atmosphere
0g was melted. Here, the purity of the raw metal is Ha: 9
9.9%, F'e: 99.99%. Obtained Reta alloy ingot f 773K, 5 days in argon atmosphere (purity 99
.. After uniform annealing at 999%), the sample was made into a powder of 100 mesh or less and subjected to a hydrogen absorption reaction. Sample powder 1
0g was placed in a hydrogen absorption reactor and degassed for 1 hour at 473°C, cooled to 323K, and heated to 50 atmospheres of hydrogen gas (
(purity 99.99999%) was introduced and hydrogen was absorbed for 2 hours. The structure of the sample after the hydrogen absorption reaction was analyzed using an X-ray diffraction device (C
It was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. Further, as a result of analysis (by the melt heat conduction method in an inert gas), the hydrogen content was 0.3 壬 in atomic percent.

実施例4 GdCoz fアルゴン雰囲気下のアーク溶解によって
15g溶製した。ここで原料金属の純度は、Gd:99
.9宏 CO:99.9係であった。得られた合金塊を
100メツシユ以下の粉末にし水素吸収反応を行う試料
にした。試料粉末2gk水素吸収反応装置に入れて70
0にで0.5時間脱ガスし、100気圧の水素(純度9
9.99999%)を導入し2.5時間水素を吸収させ
た。水素吸収反応後の試料の構造をX線回折装置(Cu
対陰甑)で固定した。
Example 4 15 g of GdCoz f was produced by arc melting in an argon atmosphere. Here, the purity of the raw metal is Gd: 99
.. 9 Hiroshi CO: He was in charge of 99.9. The obtained alloy ingot was made into a powder of 100 mesh or less and used as a sample for hydrogen absorption reaction. Put 2gk of sample powder into hydrogen absorption reactor and add 70
Degas for 0.5 hours at
9.99999%) was introduced and hydrogen was absorbed for 2.5 hours. The structure of the sample after the hydrogen absorption reaction was analyzed using an X-ray diffraction device (Cu
It was fixed with a countershade.

その結果を第1図に示す。この図から水素吸収反応後の
試料の構造は非晶質であることが確認できた。また不活
性ガス中溶融熱伝導法てより分析した結果、水素含有量
は原子パーセントで0.5チであった。
The results are shown in FIG. From this figure, it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. Further, as a result of analysis using the melt heat conduction method in an inert gas, the hydrogen content was found to be 0.5 atomic percent.

実施例5 Gd(Co O,2N i O,8)2ζアルゴン雰囲
気下のアーク溶製した。ここで原料金属の純度は、Gd
:99.9%、Co:99.9係、Nt:99.97チ
であった。得られた合金塊を=1073K 、3時間真
空中10−2Torrで均一化焼鈍した後、100メツ
シユ以下の粉末にし水素吸収反応を行う試料にした。試
料粉末3gを水素吸収反応装置に入れて423にで1時
間脱ガスした後、323Kまで冷却し、50気圧の・水
素ガス(純度99.99999矛)を導入し2時間水素
を吸収させた。水素吸収反応後の試料の構造をX、線回
折装置(Cu対陰極)で同定した。その結果を第2図シ
て示す。この図から水素吸収反応後の試料の構造は非晶
質であることが確認でさた。また不活性ガス中溶融熱伝
導法により分析した結果、水素含有量は原子パーセント
で0.4%であった。
Example 5 Gd(CoO,2N i O,8)2ζ was produced by arc melting in an argon atmosphere. Here, the purity of the raw material metal is Gd
: 99.9%, Co: 99.9%, Nt: 99.97%. The obtained alloy ingot was uniformly annealed at 1073 K in vacuum at 10 -2 Torr for 3 hours, and then made into powder of 100 mesh or less to prepare a sample for hydrogen absorption reaction. 3 g of the sample powder was placed in a hydrogen absorption reactor and degassed for 1 hour at 423 degrees Celsius, then cooled to 323K, hydrogen gas (purity 99.99999) at 50 atmospheres was introduced, and hydrogen was absorbed for 2 hours. The structure of the sample after the hydrogen absorption reaction was identified using an X-ray diffractometer (Cu anticathode). The results are shown in Figure 2. This figure confirms that the structure of the sample after the hydrogen absorption reaction is amorphous. Further, as a result of analysis by the melt heat conduction method in an inert gas, the hydrogen content was 0.4% in atomic percent.

実施例6 Gd(Fe O,6Ni O,4) 2 kアルゴン雰
囲気下のアーク溶解によって25g溶製した。ここで原
料金属の純度は、Gd:99.9%、 F’e:99.
99%、N1H99,97%であった。得られた合金塊
の一部4gをアルゴン雰囲気中単ロール法(200m直
径Cuロール、3000rpm  )により超急冷した
Example 6 25 g of Gd(Fe O, 6Ni O, 4) 2k was melted by arc melting in an argon atmosphere. Here, the purity of the raw metals is Gd: 99.9%, F'e: 99.
99%, N1H 99.97%. A portion of 4 g of the obtained alloy ingot was ultra-quenched in an argon atmosphere by a single roll method (200 m diameter Cu roll, 3000 rpm).

このものは全く非晶質化はしていないにの試料3g’に
水素吸収反応装置に入れて523にで2時間脱ガスした
後、323Kまで冷却し、150気圧の水素ガス(純度
99.99%)全導入し1時間水素を吸収させた。水素
吸収反応後の試料の構造iXX線回折装置 Cu対陰極
)で固定した。その結果全第3図に示す。この図から水
素吸収反応後の試料の構造は非晶質であることが確認で
きた。また不活性ガス中溶融熱伝導法により分析した結
果、水素含有量は原子パーセントで0.10チであった
This material was placed in a hydrogen absorption reactor with 3g' of sample, which had not become amorphous at all, and degassed at 523 degrees Celsius for 2 hours, cooled to 323K, and heated to 150 atmospheres of hydrogen gas (purity 99.99). %) was completely introduced and hydrogen was absorbed for 1 hour. Structure of sample after hydrogen absorption reaction iXX-ray diffractometer (Cu anticathode) was fixed. The results are shown in Figure 3. From this figure, it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. Further, as a result of analysis by the melt heat conduction method in an inert gas, the hydrogen content was 0.10 atomic percent.

実施例7 CeFe2iアルゴン雰囲気下のアーク溶解によって3
0g溶製した。ここで原料金属の純度は、Ce : 9
9.9%、F’e:99.99%であった。得られた合
金塊’k 1023 K、5日間アルゴン雰囲気中(純
度99.999%)で均一化焼鈍した後、100メツシ
ユ以下の粉末にし水素吸収反応全行う試料にした。試料
粉末10gを水素吸収反応装置に入れて473にで1時
間脱ガスした後、323Kまで冷却し、50気圧の水素
ガス(純度99.99999%)全導入し2時間水素全
吸収させた。水素吸収反応後の試料の構造をX線回折装
置(Cu対陰極)で固定した。その結果全第4図に示す
。この図から水素吸収反応後の試料の構造は非晶質であ
ることが確認できた。また不活性ガス中溶融熱伝導法に
より分析した結果、水素含有量は原子パーセントで0.
25%であった。この方法により作製した非晶質合金お
よび水素吸収前の合金の磁化を振動型磁化測定装置(V
SM)により測定した。その結果を第5図および第6図
に示す。
Example 7 CeFe2i 3 by arc melting under argon atmosphere
0g was melted. Here, the purity of the raw material metal is Ce: 9
9.9%, F'e: 99.99%. The obtained alloy ingot was homogenized by annealing at 1023 K for 5 days in an argon atmosphere (purity 99.999%), and then made into a powder of 100 meshes or less to prepare a sample that underwent a complete hydrogen absorption reaction. 10 g of sample powder was placed in a hydrogen absorption reactor and degassed at 473 for 1 hour, then cooled to 323 K, hydrogen gas (purity 99.99999%) at 50 atm was completely introduced, and hydrogen was completely absorbed for 2 hours. The structure of the sample after the hydrogen absorption reaction was fixed using an X-ray diffraction device (Cu anticathode). The results are shown in Figure 4. From this figure, it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. Furthermore, as a result of analysis using the melt heat conduction method in an inert gas, the hydrogen content was found to be 0.0% in atomic percent.
It was 25%. The magnetization of the amorphous alloy prepared by this method and the alloy before hydrogen absorption was measured using a vibrating magnetization measuring device (V
SM). The results are shown in FIGS. 5 and 6.

第5図および第6図かられかるように水素吸収により非
晶質化した試料の磁化はそれぞれ80(emu/g)、
3(emu/g)であった。このように水素吸収による
非晶質化により磁化は27倍に増大した。したがって、
水素吸収反応により磁化の高い非晶質磁性合金全製造す
ることができる。
As can be seen from Figures 5 and 6, the magnetization of the sample made amorphous by hydrogen absorption is 80 (emu/g), respectively.
3 (emu/g). As described above, magnetization increased 27 times due to amorphization due to hydrogen absorption. therefore,
All amorphous magnetic alloys with high magnetization can be produced by hydrogen absorption reactions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の非晶質磁性合金のX線回折装
置(Cu対陰極)による固定した結果のグラフである。 第5図は本発明の非晶質合金の磁化を表わすグラフであ
る。 第6図は同一組成の結晶試料の磁化を表わすグラフであ
る。 第1図 第2図 第3図 Iクー 第4図
1 to 4 are graphs showing the results of fixing the amorphous magnetic alloy of the present invention using an X-ray diffraction apparatus (Cu anticathode). FIG. 5 is a graph showing the magnetization of the amorphous alloy of the present invention. FIG. 6 is a graph showing the magnetization of crystal samples of the same composition. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1R(FexCoyNiz)n Rは原子番号57番Laから71番Luまでのランタノ
イド元素と21番Sc、39番Yの17種の希土類金属
元素の中から少くとも1種、x、y、zはFe、Co、
Niの原子比で、Fe、Co、Niの少くとも1種、(
ただし、x+y+z=1、z≠1、0.2≦n≦5)の
組成からなる合金あるいは金属間化合物に水素吸収反応
を施し、水素を原子パーセントで0.1%〜0.8%吸
収させたことを特徴とする非晶質合金。 2R(FexCoyNiz)n Rは原子番号57番Laから71番Luまでのランタノ
イド元素21番Sc、39番Yの17種の希土類金属元
素の中から少くとも1種x、y、zはFe、Co、Ni
の原子比で、Fe、Co、Niの少くとも1種、(ただ
し、X+y+Z=1、z≠1、0.2≦n≦5)の組成
からなる合金あるいは金属間化合物を273K以上77
3K以下、で水素吸収反応を施すことにより非晶質化さ
せることを特徴とする非晶質合金の製造方。 3特許請求の範囲第1項における合金あるいは金属間化
合物を不活性ガス雰囲気中あるいは真空度10^−^2
Torr以上の真空中で、単ロール法あるいは双ロール
法などにより液体急冷を施した後、273K以上773
K以下、水素ガス圧力150気圧以下の条件で水素吸収
反応を施すことにより非晶質化させることを特徴とする
非晶質合金の製造方法。 4特許請求の範囲第1項における合金あるいは金属間化
合物を不活性ガス雰囲気中あるいは真空度10^−^2
Torr以上の真空中で、273K−1273Kの温度
範囲で均一化焼鈍した後、273K以上773K以下、
水素ガス圧力 150気圧以下の条件で水素吸収反応を施すことにより
非晶質化させることを特徴とする非晶質合金の製造方法
。 5特許請求の範囲第1項における合金あるいは金属間化
合物を蒸着あるいはスパッタ法などにより薄膜化した後
、273K以上773K以下、水素ガス圧力150気圧
以下の条件で水素吸収反応を施すことにより非晶質化さ
せることを特徴とする非晶質合金の製造方法。
[Scope of Claims] 1R(FexCoyNiz)n R is at least one element selected from 17 kinds of rare earth metal elements of lanthanide elements with atomic numbers 57 La to 71 Lu, 21 Sc, 39 Y, x , y, z are Fe, Co,
The atomic ratio of Ni is at least one of Fe, Co, and Ni, (
However, if an alloy or intermetallic compound having the composition x+y+z=1, z≠1, 0.2≦n≦5 is subjected to a hydrogen absorption reaction, 0.1% to 0.8% of hydrogen is absorbed in atomic percent. An amorphous alloy characterized by: 2R (FexCoyNiz)n R is a lanthanide element with atomic number No. 57 La to No. 71 Lu. At least one element from among the 17 rare earth metal elements No. 21 Sc and No. 39 Y. x, y, and z are Fe, Co. ,Ni
An alloy or intermetallic compound consisting of at least one of Fe, Co, and Ni (X+y+Z=1, z≠1, 0.2≦n≦5) with an atomic ratio of 273K or more, 77
A method for producing an amorphous alloy, characterized in that it is made amorphous by subjecting it to a hydrogen absorption reaction at 3K or less. 3. The alloy or intermetallic compound in claim 1 is prepared in an inert gas atmosphere or at a vacuum degree of 10^-^2.
After rapidly cooling the liquid by a single roll method or a twin roll method in a vacuum of Torr or more, the temperature is 773K or more.
A method for producing an amorphous alloy, characterized in that the alloy is made amorphous by performing a hydrogen absorption reaction under conditions of K or less and a hydrogen gas pressure of 150 atmospheres or less. 4. The alloy or intermetallic compound in claim 1 is prepared in an inert gas atmosphere or at a vacuum degree of 10^-^2.
After homogenizing annealing in a temperature range of 273K-1273K in a vacuum of Torr or more, 273K or more and 773K or less,
1. A method for producing an amorphous alloy, characterized in that the alloy is made amorphous by performing a hydrogen absorption reaction at a hydrogen gas pressure of 150 atmospheres or less. 5 The alloy or intermetallic compound in claim 1 is made into a thin film by vapor deposition or sputtering, and then amorphous is formed by subjecting it to a hydrogen absorption reaction under conditions of 273 K or more and 773 K or less and a hydrogen gas pressure of 150 atmospheres or less. 1. A method for producing an amorphous alloy, the method comprising:
JP61056679A 1986-03-14 1986-03-14 Rare earth metal-base amorphous alloy and its production Granted JPS6324042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61056679A JPS6324042A (en) 1986-03-14 1986-03-14 Rare earth metal-base amorphous alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056679A JPS6324042A (en) 1986-03-14 1986-03-14 Rare earth metal-base amorphous alloy and its production

Publications (2)

Publication Number Publication Date
JPS6324042A true JPS6324042A (en) 1988-02-01
JPH0418022B2 JPH0418022B2 (en) 1992-03-26

Family

ID=13034112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056679A Granted JPS6324042A (en) 1986-03-14 1986-03-14 Rare earth metal-base amorphous alloy and its production

Country Status (1)

Country Link
JP (1) JPS6324042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957824A (en) * 1987-03-24 1990-09-18 Kabushiki Kaisha Toshiba Information storage medium and method of manufacturing the same
EP0643146A1 (en) * 1993-09-14 1995-03-15 Hitachi Chemical Co., Ltd. Scandium containing hydrogen absorption alloy and hydrogen absorption electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957824A (en) * 1987-03-24 1990-09-18 Kabushiki Kaisha Toshiba Information storage medium and method of manufacturing the same
EP0643146A1 (en) * 1993-09-14 1995-03-15 Hitachi Chemical Co., Ltd. Scandium containing hydrogen absorption alloy and hydrogen absorption electrode
US5968450A (en) * 1993-09-14 1999-10-19 Hitachi Chemical Company, Ltd. Scandium containing hydrogen absorption alloy and hydrogen absorption electrode

Also Published As

Publication number Publication date
JPH0418022B2 (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US4564396A (en) Formation of amorphous materials
US4668310A (en) Amorphous alloys
Duwez et al. The structure of intermediate phases in alloys of titanium with iron, cobalt, and nickel
Dong et al. Formation and stability of nickel-zirconium glasses
US4036638A (en) Binary amorphous alloys of iron or cobalt and boron
Verhoeven et al. Directional solidification and heat treatment of Terfenol-D magnetostrictive materials
Schneider et al. The binary system iron-neodymium
JPS6324042A (en) Rare earth metal-base amorphous alloy and its production
CN109355601B (en) Cobalt-based bulk amorphous alloy and preparation method thereof
JPS6270550A (en) Material for target
US4473400A (en) Magnetic metallic glass alloy
Speight Structure and magnetic properties of rapidly quenched samarium-type alloys
US4639363A (en) Process for preparing amorphous phases of intermetallic compounds by a chemical reaction
JPS63274764A (en) Alloy target for magneto-optical recording
US4485080A (en) Process for the production of diamond powder
JPH02107762A (en) Alloy target for magneto-optical recording
Chaudhury et al. Al13X4-type phases in aluminium-group VIII metal systems
JP2985546B2 (en) Manufacturing method of alloy powder
CN1514035A (en) Iron base large block non crystalline alloy
JPH0119448B2 (en)
JP2985545B2 (en) Manufacturing method of alloy powder
Brewer et al. Solute stabilization for hcp-fcc transitions: Co-Mo
JPH01246342A (en) Supermagnetostrictive material and its manufacture
Aronin et al. The structure of nanocrystalline Ni58. 5Mo31. 5B10 and structure evolution at heat treatment
US3759750A (en) Superconductive alloy and method for its production