JPH0418022B2 - - Google Patents

Info

Publication number
JPH0418022B2
JPH0418022B2 JP61056679A JP5667986A JPH0418022B2 JP H0418022 B2 JPH0418022 B2 JP H0418022B2 JP 61056679 A JP61056679 A JP 61056679A JP 5667986 A JP5667986 A JP 5667986A JP H0418022 B2 JPH0418022 B2 JP H0418022B2
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
amorphous
hydrogen absorption
absorption reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61056679A
Other languages
Japanese (ja)
Other versions
JPS6324042A (en
Inventor
Takeshi Masumoto
Akihiko Yanagya
Kyoshi Aoki
Tosha Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Tokushu Seiko KK
Original Assignee
Sanyo Tokushu Seiko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Tokushu Seiko KK filed Critical Sanyo Tokushu Seiko KK
Priority to JP61056679A priority Critical patent/JPS6324042A/en
Publication of JPS6324042A publication Critical patent/JPS6324042A/en
Publication of JPH0418022B2 publication Critical patent/JPH0418022B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は希土類元素を含む非晶質合金およびそ
の製造方法に関するものであり、特に結晶質合金
あるいは金属間化合物に水素吸収反応を施し非晶
質化させることを特徴とする。 従来の非晶質合金の製造方法としては、液体急
冷法、スパツタ法などそれぞれ液体あるいは気体
からの製造方法が知られている。(たとえば、ア
モルフアス金属の基礎:増本 健編著、オーム
社)。一方、最近になつて結晶質合金に水素を吸
収させると水素吸収に伴い逐次非晶質化すること
が報告されている。しかし、本発明の出願前の研
究報告によれば、SmNi2,GdNi2など希土類元素
−ニツケル系に限られており、磁気的性質などの
応用において有利なFe,Coを含有する合金系は
知られていなかつた。これに対して、本発明者ら
は磁気的性質などの応用において有利なFe,Co
を含有する希土類元素の合金あるいは化合物が水
素吸収反応に伴つて非晶質化することを新たに見
出し、本発明を完成した。この合金はまた水素を
含有するため酸化しがたい特徴がある。また、本
発明の非晶質合金の製造方法は、結晶固体から直
接非晶質固体を得ることを可能にするもので、非
晶質合金を容易に大量かつ均一に製造でき、コス
トの低減にも役立つという有利な方法である。従
来の液体急冷法、スパツタ法では薄帯あるいは薄
膜という形状的な制約があつたが、本発明の製造
方法によれば非晶質合金塊を直接に製造しうると
いう点で従来の形状的制約を取り除いたという利
点がある。さらに非晶質合金塊を粉砕することに
より非晶質粉末を容易に作製することができ、こ
の非晶質合金粉末に温間で加圧成型などの処理を
施すことにより強度の高い非晶質合金塊を製造す
ることもできる。また粉砕により得られた非晶質
超微粉末はテープなどに塗布して使用できるし、
蒸着あるいはスパツタ法などにより作製した結晶
質薄膜に水素を吸収させて非晶質合金薄膜を作る
こともできる。さらに水素吸収反応の前処理とし
て特許請求の範囲第3項および第4項に示す条件
の下で均一化焼鈍あるいは液体急冷を施すことに
より、続く水素吸収反応による非晶質化の時間を
大幅に短縮できる。 なお、R(FexCoyNiz)nにおいてn<0.2あ
るいはn>5の場合には、本発明の方法により好
ましい非晶質合金は得られなかつた。また、製造
条件として水素の圧力が150気圧以上でも非晶質
合金を得ることができるが、圧力上昇による危険
性などのデメリツトにみあうメリツトがないので
150気圧以下で行うことが好ましい。さらに、均
一化焼鈍の温度としては273K以下では効果がな
く1273K以上では酸化などによる試料の汚染が問
題になるので273〜1273Kの温度範囲に限定した。
水素吸収反応の温度としては273K以下では長時
間の処理を必要とし773K以上では酸化などによ
る試料の汚染が問題になるので273〜773Kの温度
範囲に限定した。水素吸収反応において水素量が
0.1原子%以下では非晶質化せず、また、0.8原子
%以上の水素は吸収されなかつたので0.1〜0.8%
に限定した。以上の本発明における非晶質合金
は、たとえば高記録密度の光磁気デイスク装置の
記録媒体、センサーおよび触媒などに応用され
る。 実施例 1 希土類元素としてLa,Ce,Pr、Nd,Pm,
Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,
Lu,Sc,Yを含有した特許請求の範囲第1項に
おける合金に水素吸収反応を施した結果、非晶質
であることが確認できた。これを第1表にまとめ
て示す。
The present invention relates to an amorphous alloy containing a rare earth element and a method for producing the same, and is particularly characterized in that a crystalline alloy or an intermetallic compound is subjected to a hydrogen absorption reaction to become amorphous. As conventional methods for manufacturing amorphous alloys, methods for manufacturing from liquid or gas, such as liquid quenching method and sputtering method, are known. (For example, Basics of Amorphous Metals: Edited by Ken Masumoto, Ohmsha). On the other hand, it has recently been reported that when a crystalline alloy absorbs hydrogen, it gradually becomes amorphous as the hydrogen is absorbed. However, according to research reports prior to the filing of the present invention, alloy systems containing rare earth elements such as SmNi 2 and GdNi 2 are limited to nickel, and alloy systems containing Fe and Co, which are advantageous in applications such as magnetic properties, are unknown. It wasn't. On the other hand, the present inventors have proposed Fe, Co, which is advantageous in applications such as magnetic properties.
The present invention has been completed based on the new discovery that alloys or compounds of rare earth elements containing This alloy also contains hydrogen, making it difficult to oxidize. In addition, the method for producing an amorphous alloy of the present invention makes it possible to obtain an amorphous solid directly from a crystalline solid, which allows the amorphous alloy to be easily produced in large quantities and uniformly, leading to cost reduction. This is an advantageous method that also helps. While the conventional liquid quenching method and sputtering method had shape limitations such as thin strips or thin films, the production method of the present invention overcomes the traditional shape limitations in that it can directly produce amorphous alloy ingots. It has the advantage of removing . Furthermore, amorphous powder can be easily produced by crushing an amorphous alloy lump, and by subjecting this amorphous alloy powder to a process such as warm pressure molding, a high-strength amorphous powder can be produced. It is also possible to produce alloy ingots. In addition, the amorphous ultrafine powder obtained by pulverization can be used by applying it to tape, etc.
An amorphous alloy thin film can also be produced by absorbing hydrogen into a crystalline thin film produced by vapor deposition or sputtering. Furthermore, by performing homogenization annealing or liquid quenching under the conditions shown in claims 3 and 4 as a pretreatment for the hydrogen absorption reaction, the time required for amorphization by the subsequent hydrogen absorption reaction can be significantly reduced. Can be shortened. Note that when R(FexCoyNiz)n was n<0.2 or n>5, a preferable amorphous alloy could not be obtained by the method of the present invention. In addition, although it is possible to obtain an amorphous alloy under the production conditions where the hydrogen pressure is 150 atmospheres or higher, the advantages do not outweigh the disadvantages such as the danger of increased pressure.
It is preferable to carry out the reaction at a pressure of 150 atmospheres or less. Furthermore, the homogenization annealing temperature was limited to a temperature range of 273 to 1273K because it is ineffective at temperatures below 273K and contamination of the sample due to oxidation and the like becomes a problem at temperatures above 1273K.
The temperature for the hydrogen absorption reaction was limited to a temperature range of 273 to 773 K, as temperatures below 273 K would require a long treatment time, and temperatures above 773 K would cause contamination of the sample due to oxidation. In the hydrogen absorption reaction, the amount of hydrogen is
At 0.1 at % or less, it did not become amorphous, and hydrogen at 0.8 at % or more was not absorbed, so 0.1 to 0.8%.
limited to. The amorphous alloy according to the present invention described above is applied to, for example, recording media of high recording density magneto-optical disk devices, sensors, catalysts, and the like. Example 1 Rare earth elements include La, Ce, Pr, Nd, Pm,
Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
As a result of subjecting the alloy in claim 1 containing Lu, Sc, and Y to a hydrogen absorption reaction, it was confirmed that the alloy was amorphous. This is summarized in Table 1.

【表】【table】

【表】 実施例 2 DyFe2をアルゴン雰囲気下のアーク溶解によつ
て30g溶製した。ここで原料金属の純度は、Dr:
99.9%、Fe:99.99%であつた。得られた合金塊
を723K、5日間アルゴン雰囲気中(純度99.999
%)で均一化焼鈍した後、100メツシユ以下の粉
末にし水素吸収反応を行う試料にした。試料粉末
10gを水素吸収反応装置に入れて473Kで1時間脱
ガスした後、323Kまで冷却し、50気圧の水素ガ
ス(純度99.99999%)を導入し2時間水素を吸収
させた。水素吸収反応後の試料の構造をX線回折
装置(Cu対陰極)で同定し、水素吸収反応後の
試料の構造は非晶質であることを確認した。また
不活性ガス中溶融熱伝導法により分析した結果、
水素含有量は原子パーセントで0.4%であつた。 実施例 3 HoFe2をアルゴン雰囲気下のアーク溶解によつ
て30g溶製した。ここで原料金属の純度は、Ho:
99.9%、Fe:99.99%であつた。得られた合金塊
を773K、5日間アルゴン雰囲気中(純度99.999
%)で均一化焼鈍した後、100メツシユ以下の粉
末にし水素吸収反応を行う試料にした。試料粉末
10gを水素吸収反応装置に入れて473Kで1時間脱
ガスした後、323Kまで冷却し、50気圧の水素ガ
ス(純度99.99999%)を導入し2時間水素を吸収
させた。水素吸収反応後の試料の構造をX線回折
装置(Cu対陰極)で同定し、水素吸収反応後の
試料の構造は非晶質であることを確認した。また
不活性ガス中溶融熱伝導法により分析した結果、
水素含有量は原子パーセントで0.3%であつた。 実施例 4 GdCo2をアルゴン雰囲気下のアーク溶解によつ
て15g溶製した。ここで原料金属の純度は、Gd:
99.9%、Co:99.9%であつた。得られた合金塊を
100メツシユ以下の粉末にし水素吸収反応を行う
試料にした。試料粉末2gを水素吸収反応装置に
入れて700Kで0.5時間脱ガスし473Kまで冷却した
後、100気圧の水素(純度99.99999%)を導入し
2.5時間水素を吸収させた。水素吸収反応後の試
料の構造をX線回折装置(Cu対陰極)で同定し
た。その結果を第1図に示す。この図から水素吸
収反応後の試料の構造は非晶質であることが確認
できた。また不活性ガス中溶融熱伝導法により分
析した結果、水素含有量は原子パーセントで0.5
%であつた。 実施例 5 Gd(Co0.2Ni0.8)2をアルゴン雰囲気下のアーク
溶製した。ここで原料金属の純度は、Gd:99.9
%、Co:99.9%、Ni:99.97%であつた。得られ
た合金塊を1073K、3時間真空中10-2Torrで均一
化焼鈍した後、100メツシユ以下の粉末にし水素
吸収反応を行う試料にした。試料粉末3gを水素
吸収反応装置に入れて423Kで1時間脱ガスした
後、323Kまで冷却し、50気圧の水素ガス(純度
99.99999%)を導入し2時間水素を吸収させた。
水素吸収反応後の試料の構造をX線回折装置
(Cu対陰極)で同定した。その結果を第2図に示
す。この図から水素吸収反応後の試料の構造は非
晶質であることが確認できた。また不活性ガス中
溶融熱伝導法により分析した結果、水素含有量は
原子パーセントで0.4%であつた。 実施例 6 Gd(Fe0.6Ni0.4)2をアルゴン雰囲気下のアーク
溶解によつて25g溶製した。ここで原料金属の純
度は、Gd:99.9%、Fe:99.99%、Ni:99.97%で
あつた。得られた合金塊の一部4gをアルゴン雰
囲気中単ロール法(200mm直径Cuロール、
3000rpm)により超急冷した。このものは全く非
晶質化はしていない。この試料3gを水素吸収反
応装置に入れて523Kで2時間脱ガスした後、
323Kまで冷却し、150気圧の水素ガス(純度
99.99%)を導入し1時間水素を吸収させた。水
素吸収反応後の試料の構造をX線回折装置(Cu
対陰極)で同定した。その結果を第3図に示す。
この図から水素吸収反応後の試料の構造は非晶質
であることが確認できた。また不活性ガス中溶融
熱伝導法により分析した結果、水素含有量は原子
パーセントで0.10%であつた。 実施例 7 CeFe2をアルゴン雰囲気下のアーク溶解によつ
て30g溶製した。ここで原料金属の純度は、Ce:
99.9%、Fe:99.99%であつた。得られた合金塊
を1023K、5日間アルゴン雰囲気中(純度99.999
%)で均一化焼鈍した後、100メツシユ以下の粉
末にし水素吸収反応を行う試料にした。試料粉末
10gを水素吸収反応装置に入れて473Kで1時間脱
ガスした後、323Kまで冷却し、50気圧の水素ガ
ス(純度99.99999%)を導入し2時間水素を吸収
させた。水素吸収反応後の試料の構造をX線回折
装置(Cu対陰極)で同定した。その結果を第4
図に示す。この図から水素吸収反応後の試料の構
造は非晶質であることが確認できた。また不活性
ガス中溶融熱伝導法により分析した結果、水素含
有量は原子パーセントで0.25%であつた。この方
法により作製した非晶質合金および水素吸収前の
合金の磁化を振動型磁化測定装置(VSM)によ
り測定した。その結果を第5図および第6図に示
す。第5図および第6図からわかるように水素吸
収により非晶質化した試料の磁化はそれぞれ80
(emu/g)、3(emu/g)であつた。このよう
に水素吸収による非晶質化により磁化は27倍に増
大した。したがつて、水素吸収反応により磁化の
高い非晶質磁性合金を製造することができる。
[Table] Example 2 30g of DyFe 2 was melted by arc melting in an argon atmosphere. Here the purity of the raw metal is Dr:
99.9%, Fe: 99.99%. The obtained alloy ingot was heated at 723K for 5 days in an argon atmosphere (purity 99.999).
After uniform annealing at 10%), the sample was made into a powder of 100 mesh or less and subjected to a hydrogen absorption reaction. sample powder
After putting 10 g into a hydrogen absorption reactor and degassing at 473K for 1 hour, it was cooled to 323K, hydrogen gas (purity 99.99999%) at 50 atmospheres was introduced, and hydrogen was absorbed for 2 hours. The structure of the sample after the hydrogen absorption reaction was identified using an X-ray diffraction device (Cu anticathode), and it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. In addition, as a result of analysis using the melt heat conduction method in inert gas,
The hydrogen content was 0.4% in atomic percent. Example 3 30g of HoFe 2 was melted by arc melting in an argon atmosphere. Here, the purity of the raw metal is Ho:
99.9%, Fe: 99.99%. The obtained alloy ingot was heated at 773K for 5 days in an argon atmosphere (purity 99.999
After uniform annealing at 10%), the sample was made into a powder of 100 mesh or less and subjected to a hydrogen absorption reaction. sample powder
After putting 10 g into a hydrogen absorption reactor and degassing at 473K for 1 hour, it was cooled to 323K, hydrogen gas (purity 99.99999%) at 50 atmospheres was introduced, and hydrogen was absorbed for 2 hours. The structure of the sample after the hydrogen absorption reaction was identified using an X-ray diffraction device (Cu anticathode), and it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. In addition, as a result of analysis using the melt heat conduction method in inert gas,
The hydrogen content was 0.3% in atomic percent. Example 4 15g of GdCo 2 was melted by arc melting under an argon atmosphere. Here, the purity of the raw metal is Gd:
99.9%, Co: 99.9%. The obtained alloy ingot
It was made into a powder of less than 100 mesh and used as a sample for hydrogen absorption reaction. 2g of sample powder was placed in a hydrogen absorption reactor, degassed at 700K for 0.5 hours, cooled to 473K, and then 100 atmospheres of hydrogen (purity 99.99999%) was introduced.
Hydrogen was absorbed for 2.5 hours. The structure of the sample after the hydrogen absorption reaction was identified using an X-ray diffraction device (Cu anticathode). The results are shown in FIG. From this figure, it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. In addition, as a result of analysis using the melt heat conduction method in inert gas, the hydrogen content was 0.5 atomic percent.
It was %. Example 5 Gd(Co0.2Ni0.8) 2 was produced by arc melting in an argon atmosphere. Here, the purity of the raw metal is Gd: 99.9
%, Co: 99.9%, Ni: 99.97%. The obtained alloy ingot was homogenized by annealing at 1073 K and 10 -2 Torr in vacuum for 3 hours, and then powdered to a size of 100 mesh or less and used as a sample for hydrogen absorption reaction. 3g of sample powder was placed in a hydrogen absorption reactor and degassed at 423K for 1 hour, then cooled to 323K and heated to 50 atmospheres of hydrogen gas (purity
99.99999%) was introduced and hydrogen was absorbed for 2 hours.
The structure of the sample after the hydrogen absorption reaction was identified using an X-ray diffraction device (Cu anticathode). The results are shown in FIG. From this figure, it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. Further, as a result of analysis by the melt heat conduction method in an inert gas, the hydrogen content was 0.4% in atomic percent. Example 6 25g of Gd(Fe0.6Ni0.4) 2 was produced by arc melting in an argon atmosphere. The purity of the raw metals here was Gd: 99.9%, Fe: 99.99%, and Ni: 99.97%. A portion of 4 g of the obtained alloy ingot was processed in an argon atmosphere using a single roll method (200 mm diameter Cu roll,
3000 rpm). This material has not become amorphous at all. After putting 3g of this sample into a hydrogen absorption reactor and degassing it at 523K for 2 hours,
Cooled to 323K, hydrogen gas (purity
99.99%) was introduced and allowed to absorb hydrogen for 1 hour. The structure of the sample after the hydrogen absorption reaction was analyzed using an X-ray diffraction device (Cu
It was identified by the anticathode). The results are shown in FIG.
From this figure, it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. Further, as a result of analysis by the melt heat conduction method in an inert gas, the hydrogen content was 0.10% in atomic percent. Example 7 30g of CeFe 2 was melted by arc melting in an argon atmosphere. Here, the purity of the raw metal is Ce:
99.9%, Fe: 99.99%. The obtained alloy ingot was heated at 1023K for 5 days in an argon atmosphere (purity 99.999).
After uniform annealing at 10%), the sample was made into a powder of 100 mesh or less and subjected to a hydrogen absorption reaction. sample powder
After putting 10 g into a hydrogen absorption reactor and degassing at 473K for 1 hour, it was cooled to 323K, hydrogen gas (purity 99.99999%) at 50 atmospheres was introduced, and hydrogen was absorbed for 2 hours. The structure of the sample after the hydrogen absorption reaction was identified using an X-ray diffraction device (Cu anticathode). The result is the fourth
As shown in the figure. From this figure, it was confirmed that the structure of the sample after the hydrogen absorption reaction was amorphous. Further, as a result of analysis by the melt heat conduction method in an inert gas, the hydrogen content was 0.25% in atomic percent. The magnetization of the amorphous alloy prepared by this method and the alloy before hydrogen absorption was measured using a vibrating magnetization measuring device (VSM). The results are shown in FIGS. 5 and 6. As can be seen from Figures 5 and 6, the magnetization of the sample made amorphous by hydrogen absorption is 80
(emu/g) and 3 (emu/g). In this way, magnetization increased 27 times due to amorphization due to hydrogen absorption. Therefore, an amorphous magnetic alloy with high magnetization can be produced by hydrogen absorption reaction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の非晶質磁性合金のX
線回折装置(Cu対陰極)による同定した結果の
グラフである。第5図は本発明の非晶質合金の磁
化を表わすグラフである。第6図は同一組成の結
晶試料の磁化を表わすグラフである。
Figures 1 to 4 show X of the amorphous magnetic alloy of the present invention.
This is a graph showing the results of identification using a line diffraction device (Cu anticathode). FIG. 5 is a graph showing the magnetization of the amorphous alloy of the present invention. FIG. 6 is a graph showing the magnetization of crystal samples of the same composition.

Claims (1)

【特許請求の範囲】 1 R(FexCoyNiz)n Rは原子番号57番Laから71番Luまでのランタ
ノイド元素と21番Sc、39番Yの17種の希土類金
属元素の中から少なくとも1種、x,y,zは
Fe、Co、Niの原子比で、Fe、Co、Niの少なく
とも1種、(ただし、x+y+z=1、z≠1、
1≦n≦5)の組成からなる合金あるいは金属間
化合物で、水素を原子パーセントで0.1%〜0.8%
含有することを特徴とする非晶質磁性合金。 2 R(FexCoyNiz)n Rは原子番号57番Laから71番Luまでのランタ
ノイド元素と21番Sc、39番Yの17種の希土類金
属元素の中から少なくとも1種、x,y,zは
Fe、Co、Niの原子比で、Fe、Co、Niの少なく
とも1種、(ただし、x+y+z=1、z≠1、
1≦n≦5)の組成からなる合金あるいは金属間
化合物を273K以上773K以下、で水素吸収反応を
施すことにより非晶質化させることを特徴とする
非晶質磁性合金の製造方法。 3 R(FexCoyNiz)n Rは原子番号57番Laから71番Luまでのランタ
ノイド元素と21番Sc、39番Yの17種の希土類金
属元素の中から少なくとも1種、x,y,zは
Fe、Co、Niの原子比で、Fe、Co、Niの少なく
とも1種、(ただし、x+y+z=1、z≠1、
1≦n≦5)の組成からなる合金あるいは金属間
化合物を不活性ガス雰囲気中あるいは真空度10-2
Torr以上の真空中で、単ロール法あるいは双ロ
ール法などにより液体急冷を施した後、273K以
上773K以下、水素ガス圧力150気圧以下の条件で
水素吸収反応を施すことにより非晶質化させるこ
とを特徴とする非晶質磁性合金の製造方法。 4 R(FexCoyNiz)n Rは原子番号57番Laから71番Luまでのランタ
ノイド元素と21番Sc、39番Yの17種の希土類金
属元素の中から少なくとも1種、x,y,zは
Fe、Co、Niの原子比で、Fe、Co、Niの少なく
とも1種、(ただし、x+y+z=1、z≠1、
1≦n≦5)の組成からなる合金あるいは金属間
化合物を不活性ガス雰囲気中あるいは真空度10-2
Torr以上の真空中で、323K−1273Kの温度範囲
で均一化焼鈍した後、273K以上773K以下、水素
ガス圧力150気圧以下の条件で水素吸収反応を施
すことを特徴とする非晶質磁性合金の製造方法。 5 R(FexCoyNiz)n Rは原子番号57番Laから71番Luまでのランタ
ノイド元素と21番Sc、39番Yの17種の希土類金
属元素の中から少なくとも1種、x,y,zは
Fe、Co、Niの原子比で、Fe、Co、Niの少なく
とも1種、(ただし、x+y+z=1、z≠1、
1≦n≦5)の組成からなる合金あるいは金属間
化合物を蒸着あるいはスパツタ法などにより薄膜
化した後、273K以上773K以下、水素ガス圧力
150気圧以下の条件で水素吸収反応を施すことを
特徴とする非晶質磁性合金の製造方法。
[Claims] 1 R (FexCoyNiz)n R is at least one element selected from 17 rare earth metal elements of lanthanoid elements with atomic numbers 57 La to 71 Lu, 21 Sc and 39 Y, x ,y,z are
The atomic ratio of Fe, Co, and Ni, at least one of Fe, Co, and Ni (where x+y+z=1, z≠1,
An alloy or intermetallic compound with a composition of 1≦n≦5), containing 0.1% to 0.8% hydrogen in atomic percent.
An amorphous magnetic alloy characterized by containing. 2 R (FexCoyNiz)n R is at least one of the 17 rare earth metal elements of lanthanoid elements with atomic numbers from La 57 to Lu 71, Sc 21, and Y 39, x, y, z are
The atomic ratio of Fe, Co, and Ni, at least one of Fe, Co, and Ni (where x+y+z=1, z≠1,
1≦n≦5) A method for producing an amorphous magnetic alloy, which comprises amorphizing an alloy or intermetallic compound having a composition of 1≦n≦5 by subjecting it to a hydrogen absorption reaction at 273K or more and 773K or less. 3 R (FexCoyNiz)n R is at least one of the lanthanoid elements with atomic numbers 57 La to 71 Lu, 21 Sc, and 17 rare earth metal elements 39 Y, x, y, z are
The atomic ratio of Fe, Co, and Ni, at least one of Fe, Co, and Ni (where x+y+z=1, z≠1,
An alloy or intermetallic compound having a composition of 1≦n≦5) in an inert gas atmosphere or at a degree of vacuum of 10 -2
After rapidly cooling the liquid using a single roll method or twin roll method in a vacuum of Torr or higher, the process is made amorphous by performing a hydrogen absorption reaction under conditions of 273 K or higher and 773 K or lower and a hydrogen gas pressure of 150 atmospheres or lower. A method for producing an amorphous magnetic alloy characterized by: 4 R (FexCoyNiz)n R is at least one of the 17 rare earth metal elements of lanthanoid elements with atomic numbers 57 La to 71 Lu, 21 Sc, and 39 Y, x, y, z are
The atomic ratio of Fe, Co, and Ni, at least one of Fe, Co, and Ni (where x+y+z=1, z≠1,
An alloy or intermetallic compound having a composition of 1≦n≦5) in an inert gas atmosphere or at a degree of vacuum of 10 -2
An amorphous magnetic alloy characterized by homogenizing annealing at a temperature range of 323K to 1273K in a vacuum of Torr or higher, and then subjecting it to a hydrogen absorption reaction under conditions of 273K or higher and 773K or lower and a hydrogen gas pressure of 150 atmospheres or lower. Production method. 5 R (FexCoyNiz)n R is at least one of the lanthanoid elements with atomic numbers 57 La to 71 Lu, 21 Sc, and 17 rare earth metal elements 39 Y, x, y, z are
The atomic ratio of Fe, Co, and Ni, at least one of Fe, Co, and Ni (where x+y+z=1, z≠1,
After forming an alloy or intermetallic compound having a composition of 1≦n≦5 into a thin film by vapor deposition or sputtering, the temperature is 273K or more and 773K or less and hydrogen gas pressure.
A method for producing an amorphous magnetic alloy characterized by carrying out a hydrogen absorption reaction under conditions of 150 atmospheres or less.
JP61056679A 1986-03-14 1986-03-14 Rare earth metal-base amorphous alloy and its production Granted JPS6324042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61056679A JPS6324042A (en) 1986-03-14 1986-03-14 Rare earth metal-base amorphous alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61056679A JPS6324042A (en) 1986-03-14 1986-03-14 Rare earth metal-base amorphous alloy and its production

Publications (2)

Publication Number Publication Date
JPS6324042A JPS6324042A (en) 1988-02-01
JPH0418022B2 true JPH0418022B2 (en) 1992-03-26

Family

ID=13034112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61056679A Granted JPS6324042A (en) 1986-03-14 1986-03-14 Rare earth metal-base amorphous alloy and its production

Country Status (1)

Country Link
JP (1) JPS6324042A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4957824A (en) * 1987-03-24 1990-09-18 Kabushiki Kaisha Toshiba Information storage medium and method of manufacturing the same
DE69402792T2 (en) * 1993-09-14 1997-12-04 Hitachi Chemical Co Ltd Scandium-containing hydrogen absorption alloy and hydrogen absorption electrode

Also Published As

Publication number Publication date
JPS6324042A (en) 1988-02-01

Similar Documents

Publication Publication Date Title
EP1554411B1 (en) Production method of an alloy containing rare earth element
EP0556751B1 (en) Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US5362339A (en) Magnetic refrigerant and process for producing the same
JP3311907B2 (en) Permanent magnet material, permanent magnet, and method of manufacturing permanent magnet
KR20000058055A (en) Quenched thin ribbon of rare earth/iron/boron-based magnet alloy
JP2703281B2 (en) Magnetic anisotropic material and method of manufacturing the same
JPH0418022B2 (en)
US4473400A (en) Magnetic metallic glass alloy
JPH02107762A (en) Alloy target for magneto-optical recording
Showak The solid solubility of zirconium in copper
JPH01100242A (en) Permanent magnetic material
US20040244876A1 (en) Alloy for sm-co based magnet, method for production thereof, sintered magnet and bonded magnet
JP2005200749A (en) Magnetic flake and its production method
JP3469496B2 (en) Manufacturing method of magnet material
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3534218B2 (en) Method for producing Fe-based soft magnetic metallic glass sintered body
Harada et al. Crystallization of amorphous melt-spun Nd15Fe77Bx (x= 6–14) alloys
CN1514035A (en) Iron base large block non crystalline alloy
JPS63227714A (en) Production of amorphous magnetic alloy
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JP4043613B2 (en) Fe-based hard magnetic alloy with supercooled liquid region
EP4317498A1 (en) Method for manufacturing a tbco2 magnetocaloric alloy in ribbon form for use in magnetic refrigeration
JPH0119449B2 (en)
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
JP2642442B2 (en) Manufacturing method of rare earth-iron based magnetic alloy ribbon