JPS63240019A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPS63240019A
JPS63240019A JP62074616A JP7461687A JPS63240019A JP S63240019 A JPS63240019 A JP S63240019A JP 62074616 A JP62074616 A JP 62074616A JP 7461687 A JP7461687 A JP 7461687A JP S63240019 A JPS63240019 A JP S63240019A
Authority
JP
Japan
Prior art keywords
alignment
light
excimer
beam splitter
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62074616A
Other languages
Japanese (ja)
Other versions
JPH0340496B2 (en
Inventor
Kazufumi Ogawa
一文 小川
Masataka Endo
政孝 遠藤
Masaru Sasako
勝 笹子
Takeshi Ishihara
健 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62074616A priority Critical patent/JPS63240019A/en
Priority to US07/104,041 priority patent/US4805000A/en
Publication of JPS63240019A publication Critical patent/JPS63240019A/en
Publication of JPH0340496B2 publication Critical patent/JPH0340496B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Abstract

PURPOSE:To make it possible to adopt a highly precise TTL alignment system by a method wherein synthetic quartz is used as the base material of a beam splitter, and the resin which is not absorbed into the wavelength region of an excimer light and alignment light respectively is used as a bonding agent. CONSTITUTION:The title exposure device is composed of an excimer light source 1, a reduction projection lens 7, a wafer stage 8, a mask holder 5, a beam splitter 6 and an alignment optical system, and thermoplastic resin which transmits at least both excimer light and alignment light is used as the bonding agent of the beam splitter 6. Then, after a mask and a wafer have been aligned using the alignment light, the exposure by the excimer light is made possible. As a result, the TTL alignment system can be used in the excimer exposure device wherein the exposure wavelength of a far ultraviolet region is used, and the degree of resolution and alignment accuracy necessary for manufacture of a supersuper LSI can be accomplished.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体素子製造に用いる露光装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an exposure apparatus used for manufacturing semiconductor devices.

さらに詳しくは、半導体素子製造におけるホトリソグラ
フィ一工程の超微細加工を実現するために考案された縮
小投影型エキシマ−露光装置に関するものである。
More specifically, the present invention relates to a reduction projection type excimer exposure apparatus devised to realize ultra-fine processing in one step of photolithography in the manufacture of semiconductor devices.

従来の技術 従来より半導体素子特にLSI、VLSI等の微細加工
用として超高圧水銀灯を光源として用いた縮小投影型露
光装置(ステッパー)が市販されている。しかしながら
、従来のステッパーは、超高圧水銀灯のg線(43sn
m)や1線(se6nm)を用いているため、解像度は
g線で1.2μm、i線で0.8μm程度が限界であっ
た。これらの波長では、今後、4 MbitRAMや1
e MbitRAM製造に必要とされる0、6μmの解
像度を得ることは不可能に近い。
2. Description of the Related Art Conventionally, reduction projection type exposure apparatuses (steppers) using an ultra-high pressure mercury lamp as a light source have been commercially available for microfabrication of semiconductor devices, particularly LSIs, VLSIs, and the like. However, the conventional stepper uses the G-line (43sn) of an ultra-high pressure mercury lamp.
m) and 1 line (se 6 nm), the resolution was limited to about 1.2 μm for the g-line and 0.8 μm for the i-line. At these wavelengths, 4 Mbit RAM and 1 Mbit RAM will be used in the future.
It is nearly impossible to obtain the 0.6 μm resolution required for eMbitRAM manufacturing.

そこで、近年g線や1線に比べより波長の短いX6(J
(3081m)やKrF(249nm)やムrF (1
93nm)等のエキシマ−レーザー光源を用いた露光装
置の開発が検討されるようになってきた。
Therefore, in recent years, X6 (J
(3081m), KrF (249nm), MurF (1
Development of an exposure apparatus using an excimer laser light source such as 93 nm) has been considered.

発明が解決しようとする問題点 しかしながら、超高圧水銀灯に比べ、エキシマ−レーザ
ー光源は、出力が大きく取れる反面、波長分布が非常に
狭く連続光を取り出せないため、アライメント光として
使用するのは不適光である。
Problems to be Solved by the Invention However, although excimer laser light sources can provide higher output than ultra-high pressure mercury lamps, their wavelength distribution is extremely narrow and continuous light cannot be extracted, making them unsuitable for use as alignment light. It is.

すなわちマスクとウェハーのアライメントを行う際、ア
ライメント光として露光波長とは別の領域の波長を取り
出すことができない。アライメントと露光の波長に同一
の波長の光を用いた場合、アライメントキ一部がアライ
メント不良のまま露光される欠点がある。また、パルス
光に同期させてアライメントを行う必要があり制御系が
複雑になる欠点がある。従って、アライメント光源とし
て、超高圧水銀灯のような連続光源を別に用いる必要が
ある。
That is, when aligning a mask and a wafer, it is not possible to extract a wavelength in a region different from the exposure wavelength as alignment light. If light of the same wavelength is used for alignment and exposure, there is a drawback that a portion of the alignment key may be exposed with poor alignment. In addition, it is necessary to perform alignment in synchronization with pulsed light, which has the disadvantage that the control system becomes complicated. Therefore, it is necessary to use a separate continuous light source such as an ultra-high pressure mercury lamp as an alignment light source.

一方、アライメント方式としては、種々の方式が提案さ
れているが、原理的にはビームスプリッタ−を用いたT
TLアライメント方式が最も良い。
On the other hand, various alignment methods have been proposed, but in principle T
The TL alignment method is the best.

ところが、アライメント光と露光にそれぞれ別領域の波
長の光を用いると、少くとも、2波長領域の光を透す光
学系が必要となる。一般にエキシマ−光に用いる遠紫外
領域のレンズ系は、CaF2や石英レンズを用い接着剤
を利用することなく組立が可能であるが、TTLアライ
メントを行うためのビームスプリッタ−には必らず接着
剤が必要となる。ところが、遠紫外領域の波長まで全て
透過する接着剤が無かった為に、エキシマ−光用のビー
ムスプリッタ−は、今だ開発されていなかった0 そこで、本発明ではTTLアライメント方式を採用した
エキシマ−露光装置に必要欠くべからざるビームスプリ
ッタ−1すなわち、使用するエキシマ−光の波長とアラ
イメント光の波長の2領域に使用可能なビームスプリッ
タ−を製作することによシ超々LSI製造用縮小投影型
エキシマ−露光装置を提供することを目的とする。
However, if lights with wavelengths in different regions are used for alignment light and exposure, an optical system that transmits light in at least two wavelength regions is required. Generally, lens systems in the deep ultraviolet region used for excimer light can be assembled without using adhesives using CaF2 or quartz lenses, but beam splitters for TTL alignment do not necessarily require adhesives. Is required. However, a beam splitter for excimer light had not yet been developed because there was no adhesive that could transmit all wavelengths in the deep ultraviolet region. Therefore, in the present invention, an excimer beam splitter that uses the TTL alignment method has not been developed. By manufacturing a beam splitter that is indispensable for exposure equipment, that is, a beam splitter that can be used in two regions: the wavelength of the excimer light used and the wavelength of the alignment light. - The purpose is to provide an exposure device.

問題点を解決するための手段 すなわち、ビームスプリッタ−の基材として可視光域か
ら200nllまで透明な合成石英を用い、接着剤とし
ては、少くともエキシマ−光の波長とアライメント光の
波長の2領域に吸収のない樹脂を開発し接着剤として用
いることによシ2波長領域に使用可能なビームスプリッ
タ−を製作する。
The means to solve the problem was to use synthetic quartz that is transparent from the visible light range to 200nll as the base material of the beam splitter, and to use an adhesive that has at least two wavelength ranges: the wavelength of excimer light and the wavelength of alignment light. By developing a resin that does not absorb light and using it as an adhesive, we will manufacture a beam splitter that can be used in two wavelength regions.

作用 つまり、上述のビームスプリッタ−を用いることによシ
、エキシマ−光源を用いた露光装置において、高精度な
TTLアライメント方式の採用が可能となる。
In other words, by using the above-mentioned beam splitter, it becomes possible to employ a highly accurate TTL alignment method in an exposure apparatus using an excimer light source.

実施例 例えば、第1図に示すように、エキシマ−光源1、光学
ミラー21インチグレーター3.コンデンサーレンズ4
.マスクホルダー6、ビームスプリッタ−6、縮小投影
レンズ7、ウェハーステージ8よシなる本体部9と、ア
ライメントレンズ11゜アライメント用ビームスプリッ
タ−12,アライメント光源131画像読取りカメラ1
4よりなるアライメント光学系16、およびアライメン
ト光学系より得た画像信号を処理し、ウェハーステージ
の移動を制御するコンピューター16よりなるエキシマ
−露光装置において、使用する露光用エキシマ−光の波
長とアライメント光の波長の2領域に使用可能なビーム
スプリッタ−6を製作する。
For example, as shown in FIG. 1, an excimer light source 1, an optical mirror 21 inch grater 3. condenser lens 4
.. A main body 9 consisting of a mask holder 6, a beam splitter 6, a reduction projection lens 7, a wafer stage 8, an alignment lens 11, a beam splitter 12 for alignment, an alignment light source 131, an image reading camera 1
The wavelength of the excimer light used for exposure and the alignment light are determined in the excimer exposure apparatus, which includes an alignment optical system 16 consisting of 4, and a computer 16 that processes image signals obtained from the alignment optical system and controls the movement of the wafer stage. A beam splitter 6 that can be used in two wavelength regions is manufactured.

例えば、XeC7(30a nm )エキシマ−光を用
い、アライメント光に超高圧水銀灯のg線(436T1
111)を用いる場合には、ビームスプリッタ−の基材
6ムとじて合成石英を用い接着剤6Bとしてポリビニル
ブチラール(ニスレックスB;積水化学製等)を用いて
接着したビームスプIJ ツタ−を用意する。このとき
ポリビニルブチラールを用いた接着の分光透過率は第2
図に示すように300nmから可視光域までほぼ98チ
透明であり、アライメント光(43enm)と露光(3
0anm)に同時に使用可能である。なお、このとき、
使用するレジストは、当然、436nl11の波長に不
感応性であり308n!11の波長に感応するものを用
いる必要がある。
For example, XeC7 (30 nm) excimer light is used, and the alignment light is the g-line (436T1) of an ultra-high pressure mercury lamp.
111), prepare a beam splitter using synthetic quartz as the base material of the beam splitter and adhesive using polyvinyl butyral (Nislex B; manufactured by Sekisui Chemical, etc.) as the adhesive 6B. . At this time, the spectral transmittance of adhesive using polyvinyl butyral is the second
As shown in the figure, it is transparent for almost 98 wavelengths from 300 nm to visible light, and is transparent for alignment light (43 enm) and exposure (3 enm).
0 nm) can be used at the same time. Furthermore, at this time,
The resist used is naturally insensitive to wavelengths of 436nl11 and 308n! It is necessary to use one that is sensitive to 11 wavelengths.

また、同様にしてKrF(249nm)エキシマ−光を
用い、アライメント光に超高圧水銀灯のi線(3ssn
m)を用いる場合には、ビームスプリッタ−の基材はや
はり合成石英を用い、接着剤として、ポリビニルブチラ
ール系の樹脂を用いて接着したビームスプリッタ−を製
作する。このとき、接着剤の分光透過率の一例を第2図
に示しであるが、この場合、アライメント光365nm
と露光249nmO間に2751mの吸収があるが、少
くとも365nmと249nmの波長透過率は両方とも
96%以上であり、十分使用可能なことがわかる。なお
、この場合も、使用レジストは当然、249nHの光に
感応し、36.5nmの光に感応しないものを用いるこ
とは言うまでもない。
Similarly, KrF (249 nm) excimer light was used, and the i-line (3ssn
When m) is used, synthetic quartz is used as the base material of the beam splitter, and the beam splitter is bonded using polyvinyl butyral resin as the adhesive. At this time, an example of the spectral transmittance of the adhesive is shown in FIG.
Although there is absorption at 2751 m between 249 nm and 249 nm of exposure, the wavelength transmittance of at least 365 nm and 249 nm is both 96% or more, indicating that it can be used sufficiently. In this case as well, it goes without saying that the resist used is sensitive to 249 nH light and insensitive to 36.5 nm light.

また、275nmにある吸収は、アライメント光のフィ
ルターとしての効果もあるので都合が良い。
Further, absorption at 275 nm is convenient because it also has the effect of filtering alignment light.

なお、ポリビニルブチラール系の樹脂は、熱可塑性があ
り、レンズ接着にも容易に使用可能であり、さらに接着
後も、再加熱により光軸の調整が可能なのでレンズ接着
には最適である。さらにまた、石英やガラス材料への接
着力も強いので実用性が高い。
Note that polyvinyl butyral resin is thermoplastic and can be easily used for lens bonding, and even after bonding, the optical axis can be adjusted by reheating, making it ideal for lens bonding. Furthermore, it has strong adhesion to quartz and glass materials, making it highly practical.

以上の実施例では、アライメント光源として超高圧水銀
灯を用いた例を示したが、クセノンランプ、重水素ラン
プ、連続発振できるレーザー光源(例えばHeCdレー
ザー)等を用いることが可能なことは言うまでもない。
In the above embodiment, an example was shown in which an ultra-high pressure mercury lamp was used as the alignment light source, but it goes without saying that a xenon lamp, a deuterium lamp, a continuous wave laser light source (for example, a HeCd laser), etc. can also be used.

発明の効果 以上のように本発明によれば、少くとも使用するエキシ
マ−光の波長とアライメント光の波長の2波長領域に吸
収の少ない接着剤を用いてビームスプリッタ−を製作す
ることによシ、遠紫外領域の露光波長(308μIII
、249nm等)を使用するエキシマ−露光装置におい
て、TTLアライメント方式を用いることが可能となり
、超々LSI製造に必要な解像度と、アライメント精度
を実現できる効果がある。例えば、KrFエキシマ−レ
ーザー光と超高圧水銀灯の1線を用いた場合、0.5μ
mの解像度と±0.05μmのアライメント精度が実現
できる。
Effects of the Invention As described above, according to the present invention, a beam splitter can be manufactured using an adhesive that has low absorption in at least two wavelength regions: the wavelength of the excimer light used and the wavelength of the alignment light. , exposure wavelength in the far ultraviolet region (308μIII
, 249 nm, etc.), it becomes possible to use the TTL alignment method, which has the effect of realizing the resolution and alignment accuracy required for ultra-super LSI manufacturing. For example, when using one line of KrF excimer laser light and an ultra-high pressure mercury lamp, 0.5μ
A resolution of m and an alignment accuracy of ±0.05 μm can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるエキシマ−露光装置
の概要を説明するための概略構成図、第2図は同露光装
置に使用されるビームスプリッタ−用接着剤の分光透過
率を示す特性図である。 1・・・・・・エキシマ−光源、6・・・・・・マスク
ホルダー、6・・・・・・ビームスプリッタ−16B・
・・・・・接着剤、7・・・・・・縮小投影レンズ、8
・・・・・・ウェハーステージ、16・・・・・・アラ
イメント光学系。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 波長(nntり
Fig. 1 is a schematic configuration diagram for explaining the outline of an excimer exposure apparatus according to an embodiment of the present invention, and Fig. 2 is a characteristic showing the spectral transmittance of the beam splitter adhesive used in the exposure apparatus. It is a diagram. 1...Excimer light source, 6...Mask holder, 6...Beam splitter-16B.
...Adhesive, 7...Reduction projection lens, 8
...Wafer stage, 16... Alignment optical system. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure wavelength (nntri)

Claims (4)

【特許請求の範囲】[Claims] (1)エキシマー光源、縮小投影レンズ、ウェハーステ
ージ、マスクホルダー、ビームスプリッター、アライメ
ント光学系を含み、前記ビームスプリッターの接着剤と
して少くともエキシマー光とアライメント光の両方の光
を透過する熱可塑性樹脂を用い、アライメント光でマス
クとウェハーの位置合せを作った後、エキシマー光での
露光を可能ならしめた露光装置。
(1) It includes an excimer light source, a reduction projection lens, a wafer stage, a mask holder, a beam splitter, and an alignment optical system, and uses a thermoplastic resin that transmits at least both excimer light and alignment light as an adhesive for the beam splitter. This is an exposure system that uses alignment light to align the mask and wafer, and then exposes the wafer to excimer light.
(2)エキシマー光源にKrFエキシマーレーザーを用
い、接着剤としてポリビニルブチラール系の樹脂を用い
る特許請求の範囲第1項記載の露光装置。
(2) The exposure apparatus according to claim 1, in which a KrF excimer laser is used as an excimer light source and a polyvinyl butyral resin is used as an adhesive.
(3)アライメント光として超高圧水銀灯またはクセノ
ンラプまたは重水素ランプまたは連続発信が可能なレー
ザー光を用いる特許請求の範囲第2項記載の露光装置。
(3) The exposure apparatus according to claim 2, which uses an ultra-high pressure mercury lamp, a xenon lamp, a deuterium lamp, or a laser beam capable of continuous transmission as the alignment light.
(4)接着剤が特定の吸収領域を狭んで露光用エキシマ
ー光とアライメント光を通すものである特許請求の範囲
第1項記載の露光装置。
(4) The exposure apparatus according to claim 1, wherein the adhesive narrows a specific absorption region to allow exposure excimer light and alignment light to pass through.
JP62074616A 1986-01-17 1987-03-27 Exposure device Granted JPS63240019A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62074616A JPS63240019A (en) 1987-03-27 1987-03-27 Exposure device
US07/104,041 US4805000A (en) 1986-01-17 1987-10-02 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074616A JPS63240019A (en) 1987-03-27 1987-03-27 Exposure device

Publications (2)

Publication Number Publication Date
JPS63240019A true JPS63240019A (en) 1988-10-05
JPH0340496B2 JPH0340496B2 (en) 1991-06-19

Family

ID=13552283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074616A Granted JPS63240019A (en) 1986-01-17 1987-03-27 Exposure device

Country Status (1)

Country Link
JP (1) JPS63240019A (en)

Also Published As

Publication number Publication date
JPH0340496B2 (en) 1991-06-19

Similar Documents

Publication Publication Date Title
TW583720B (en) Optical illuminating system, light exposure equipment and manufacturing method of micro-devices
JPS62262426A (en) Exposure device
US4724466A (en) Exposure apparatus
KR940000904B1 (en) Mask alignment system
JP2650895B2 (en) Exposure apparatus and exposure method
EP1298494A2 (en) High numerical aperture projection system for microlithography
JP3067491B2 (en) Projection exposure equipment
JP2000114160A (en) Optical system for circular-arcuate illumination and aligner using the same
JPS63240019A (en) Exposure device
JP3296296B2 (en) Exposure method and exposure apparatus
JPS62165915A (en) Exposure device
JP2685179B2 (en) Exposure equipment
US5003345A (en) Apparatus and method for aligning and focusing an image of a reticle onto a semiconductor wafer
JPH09246179A (en) Projection exposure apparatus and manufacture of device using the aligner
JPH09213618A (en) Projection exposure system and manufacture of device using the same
JP2000021754A (en) Exposure method and apparatus
JPS6319612A (en) Projection lens and exposure device using same
JPS61129828A (en) Projection exposing apparatus
KR100328384B1 (en) Apparatus for forming a pattern and phase shift mask using the same
JPH06325994A (en) Pattern forming method, pattern forming device and mask
JPS6370522A (en) Ultraviolet ray exposure method
JPH07146541A (en) Phase shift mask
JPS6473617A (en) Aligning method of projection system
JP2000021756A (en) Pattern forming method and exposure apparatus
JPH0574677A (en) Exposing device