JPS62165915A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPS62165915A
JPS62165915A JP61008226A JP822686A JPS62165915A JP S62165915 A JPS62165915 A JP S62165915A JP 61008226 A JP61008226 A JP 61008226A JP 822686 A JP822686 A JP 822686A JP S62165915 A JPS62165915 A JP S62165915A
Authority
JP
Japan
Prior art keywords
alignment
light
excimer
beam splitter
beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61008226A
Other languages
Japanese (ja)
Other versions
JPH0365889B2 (en
Inventor
Kazufumi Ogawa
一文 小川
Masaru Sasako
勝 笹子
Masataka Endo
政孝 遠藤
Takeshi Ishihara
健 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61008226A priority Critical patent/JPS62165915A/en
Priority to US07/004,133 priority patent/US4724466A/en
Publication of JPS62165915A publication Critical patent/JPS62165915A/en
Priority to US07/104,041 priority patent/US4805000A/en
Publication of JPH0365889B2 publication Critical patent/JPH0365889B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation

Abstract

PURPOSE:To realize resolution and the precision of alignment required for manufacturing extra-super LSI by producing a beam splitter by using adhesives not absorbed to two wavelength regions of the wavelengths of excimer beams and alignment beams employed. CONSTITUTION:A beam splitter 6 capable of being used in two regions of the wavelength of excimer beams for exposure and the wavelength of alignment beams employed. When (g) beams from a super-high pressure mercury lamp are used as XeCl excimer beams, the beam splitter bonded by using synthetic quartz as a base material 6A for the splitter 6 and employing epoxy resin as adhesives 6b is prepared. The spectral transmittance of the bonding of epoxy resin in this case takes a 100% transparent value up to a visible ray region from 280nm at that time, thus allowing the simultaneous use of alignment beams and exposure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体素子製造に用いる光学露光装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical exposure apparatus used for manufacturing semiconductor devices.

さらに詳しくは、半導体素子製造におけるホトリソグラ
フィ一工程の超微細加工を実現するために考案された縮
小投影型エキシマ−露光装置に関するものである。
More specifically, the present invention relates to a reduction projection type excimer exposure apparatus devised to realize ultra-fine processing in one step of photolithography in the manufacture of semiconductor devices.

従来の技術 従来より半導体素・子特にLSI、VLSI等の微細加
工用として超高圧水銀灯を光源として用いた縮小投影型
露光・装置(ステッパー)が市販されている。しかしな
がら、従来のステッパーは、超高圧水銀灯のg線(a3
snm)やi線(365nm  )を用いているため、
解像度はg線で1.271m。
2. Description of the Related Art Conventionally, reduction projection type exposure apparatuses (steppers) using an ultra-high pressure mercury lamp as a light source have been commercially available for microfabrication of semiconductor devices, particularly LSIs, VLSIs, etc. However, conventional steppers use ultra-high pressure mercury lamp G-line (A3).
snm) and i-line (365nm),
The resolution is 1.271m on the g-line.

1線でO,Sμm程度が限界であった。これらの波長で
は、今後、aMbitRAMや1s Mbi tRAM
製造に必要とされる0、5μmの解像度を得ることは不
可能に近い。
The limit for one line was about O.S.mu.m. At these wavelengths, aMbitRAM and 1s MbitRAM will be used in the future.
It is nearly impossible to obtain the 0.5 μm resolution required for manufacturing.

そこで、近年g線やi線に比べより波長の短いXeCl
(308mm )やKrF(249mm)やArF(1
93nm )等のエキシマ−レーザー光源を用いた露光
装置の開発が検討されるようになってきた。
Therefore, in recent years, XeCl, which has a shorter wavelength than the g-line and i-line,
(308mm), KrF (249mm), ArF (1
Development of an exposure apparatus using an excimer laser light source such as 93 nm) has been considered.

発明が解決しようとした問題点 しかしながら、超高圧水銀灯に比べ、エキシマ−レーザ
ー光源は、出力が犬きく取れる反面、波長分布が非常に
狭く連続光を取り出せないため、アライメント光として
使用するのは不透光である。
Problems the Invention Tried to Solve However, while excimer laser light sources have much higher output than ultra-high-pressure mercury lamps, their wavelength distribution is extremely narrow and continuous light cannot be extracted, making them unsuitable for use as alignment light. It is transparent.

すなわちマスクとウェハーのアライメントを行う際、ア
ライメント光として露光波長とは別の領域の波長を取り
出すことができない。アライメントと露光の波長に同一
の波長の光を用いた場合、アライメントキ一部がアライ
メント不良のまま露光される欠点がある。また、パルス
元に同期させてアライメントを行う必要があり制御系が
複雑になる欠点がある。従って、アライメント光源とし
て、超高圧水銀灯のような連続光源を別に用いる必要が
ある。
That is, when aligning a mask and a wafer, it is not possible to extract a wavelength in a region different from the exposure wavelength as alignment light. If light of the same wavelength is used for alignment and exposure, there is a drawback that a portion of the alignment key may be exposed with poor alignment. In addition, it is necessary to perform alignment in synchronization with the pulse source, which has the disadvantage of complicating the control system. Therefore, it is necessary to use a separate continuous light source such as an ultra-high pressure mercury lamp as an alignment light source.

一方、アライメント方式としては、種々の方式が提案さ
れているが、原理的にはビームスプリッタ−を用いたT
TLアライメント方式が最も良い。
On the other hand, various alignment methods have been proposed, but in principle T
The TL alignment method is the best.

ところが、アライメント光と露光にそれぞれ別領域の波
長の光を用いると、少くとも、2波長領域の光を透す光
学系が必要となる。一般にエキシマ−元に用いる遠紫外
領域のレンズ系は、 CaF、。
However, if lights with wavelengths in different regions are used for alignment light and exposure, an optical system that transmits light in at least two wavelength regions is required. The far-ultraviolet lens system generally used for excimer elements is CaF.

や石英レンズを用い接着剤を利用することなく組立が可
能であるが、TTLアライメントを行うためのビームス
プリッタ−には必らず接着剤が必要となる。ところが、
遠紫外領域の波長まで全て透過する接着剤が無かった為
に、エキシマ−光用のビームスプリッタ−は、今だ開発
されていなかった○ そこで、本発明ではTTLアライメント方式を採用した
エキシマ−露光装置に必要欠くべからざるビームスプリ
ッタ−5すなわち、使用するエキシマ−光の波長とアラ
イメント光の波長の2領域に1吏用可能なビームスプリ
ッタ−を製作することにより超々LSI製造用縮小投影
型エキシマ−露光装置を提供することを目的とした。
Although it is possible to assemble the beam splitter using a quartz lens or a quartz lens without using an adhesive, an adhesive is always required for a beam splitter for performing TTL alignment. However,
A beam splitter for excimer light had not yet been developed because there was no adhesive that could transmit all wavelengths in the deep ultraviolet region. Therefore, in the present invention, an excimer exposure device that uses a TTL alignment method was developed. By manufacturing a beam splitter that is indispensable for 5 wavelengths, that is, a beam splitter that can be used in two regions: the wavelength of the excimer light used and the wavelength of the alignment light, reduction projection type excimer exposure for ultra-super LSI manufacturing can be achieved. The purpose was to provide equipment.

問題点を解決するだめの手段 すなわち、ビームスプリッタ−の基材として可視光域か
ら200mmまで透明な合成石英を用い、接着剤として
は、少くともエキシマ−光の波長とアライメント光の波
長の2領域に吸収のない樹脂を開発し接着剤として用い
ることにより2波長領域に使用可能なビームスプリッタ
ーを製作する。
The only way to solve the problem is to use synthetic quartz, which is transparent from the visible light range to 200 mm, as the base material of the beam splitter, and to use an adhesive that has at least two wavelength ranges: the excimer light wavelength and the alignment light wavelength. By developing a resin that does not absorb light and using it as an adhesive, we will create a beam splitter that can be used in two wavelength regions.

作用 つまり、上述のビームスプリッタ−を用いることにより
、エキシマ−光源を用いた露光装置において、高精度な
TTLアライメント方式の採用が可能となる。
In other words, by using the above-mentioned beam splitter, it becomes possible to employ a highly accurate TTL alignment method in an exposure apparatus using an excimer light source.

実施例 例えば、第1図に示すように、エキシマ−光源1、光学
ミラー21インチグレーター3.コンデンサーレンズ4
.マスクホルダー5.ビームスプリッタ−6、縮小投影
レンズ7、ウェハーステージ8よりなる本体部9と、ア
ライメントレンズ11、アライメント用ビームスプリッ
タ−12゜アライメント光の132画像読取りカメラ1
4よりなるアライメント光学系16、およびアライメン
ト光学系より得た画像信号を処理し、ウェハーステージ
の移動を制御するコンピューター16よりなるエキシマ
−露光装置において、使用する露光用エキシマ−光の波
長とアライメント光の波長の2領域に使用可能なビーム
スプリッター6を製作する。
For example, as shown in FIG. 1, an excimer light source 1, an optical mirror 21 inch grater 3. condenser lens 4
.. Mask holder5. A main body 9 consisting of a beam splitter 6, a reduction projection lens 7, a wafer stage 8, an alignment lens 11, an alignment beam splitter 12, and a camera 1 for reading 132 images of alignment light.
The wavelength of the excimer light used for exposure and the alignment light are determined in the excimer exposure apparatus, which includes an alignment optical system 16 consisting of 4, and a computer 16 that processes image signals obtained from the alignment optical system and controls the movement of the wafer stage. A beam splitter 6 that can be used in two wavelength regions is manufactured.

例えば、xecl(aosnm  )xキシマー光を用
い、アライメント光に超高圧水銀灯のg線(436mm
)を用いる場合には、ビームスプリッタ−の基材6人と
して合成石英を用い接着剤6Bとしてエポキシ系樹脂(
エポテック305(2液性硬化タイプ)、米国エポキシ
テクノロジー社商品名等)を用いて接着したビームスプ
リノターを用意する。このときエポテック306の接着
の分光透過率は第2図に示すように280nmから可視
光域までほぼ100%透明であり、アライメント光(4
36nm)と露光(308nm  )に同時に使用可能
である。なお、このとき、使用するレジストは、当然、
4361mの波長に不感応性であり308nmの波長に
感応するものを用いる必要がある。
For example, use xecl (aosnm) x ximer light and use the g-line (436 mm
), synthetic quartz is used as the base material of the beam splitter and epoxy resin (
Prepare a beam splinter glued using Epotec 305 (two-component curing type, trade name of American Epoxy Technology Co., Ltd.). At this time, the spectral transmittance of Epotec 306 adhesive is almost 100% transparent from 280 nm to the visible light range, as shown in Figure 2, and the alignment light (4
36 nm) and exposure (308 nm) at the same time. In addition, at this time, the resist used is, of course,
It is necessary to use a material that is insensitive to a wavelength of 4361 m and sensitive to a wavelength of 308 nm.

また、KrF(2a9nm  )エキシマ−光を用い、
アライメント光に超高圧水銀灯のi線(366nm)を
用いる場合には、ビームスプリッタ−の基材はやはり合
成石英を用い、接着剤として、アクリル・ポリエステル
系の樹脂を用いて接着したビームスプリッタ−を製作す
る。このとき、アクリル・ポリエステル系(例えば、−
OH2−OCOCH=GH2基等を含む多感応アクリレ
ート)の接着剤の分光透過率の一例を第3図に示しであ
るが、この場合、アライメント光365 nmと露光2
49 nff1の間に272 nmの吸収があるが、少
くとも366nm と249nmの波長透過率は両方と
も98%以上であり、十分使用可能なことがわかる。な
お、この場合も、使用レジストは当然、249nmの光
に感応し、365nmの光に感応しないものを用いるこ
とは言うまでもない。また、272nmにある吸収は、
アライメント光のフィルターとしての効果もあるので都
合が良い。
In addition, using KrF (2a9nm) excimer light,
When using the i-line (366 nm) from an ultra-high pressure mercury lamp as the alignment light, the base material of the beam splitter is synthetic quartz, and the beam splitter is bonded using acrylic/polyester resin as the adhesive. To manufacture. At this time, acrylic/polyester type (for example, -
An example of the spectral transmittance of an adhesive (OH2-OCOCH=multi-sensitized acrylate containing GH2 groups, etc.) is shown in FIG.
Although there is absorption at 272 nm between 49nff1 and 249nm, the wavelength transmittance of at least 366nm and 249nm is 98% or more, indicating that it can be used sufficiently. In this case as well, it goes without saying that the resist used is sensitive to 249 nm light and insensitive to 365 nm light. Also, the absorption at 272 nm is
This is convenient because it also has the effect of filtering the alignment light.

さらにまた、アクリル・ポリエステル系の樹脂は、光硬
化、熱硬化特性を付与することが容易であり、石英やガ
ラス材料への接着力も強いので実用性が高い。
Furthermore, acrylic/polyester resins can be easily imparted with photocuring and thermosetting properties, and have strong adhesion to quartz and glass materials, making them highly practical.

以上の実施例では、アライメント光源として超高圧水銀
灯を用いた例を示したが、クセノンランプ、重水素ラン
プ、連続発振できるレーザー光源(例えばHeedレー
ザー)等を用いることが可能なことは言うまでもない。
In the above embodiment, an example was shown in which an ultra-high pressure mercury lamp was used as the alignment light source, but it goes without saying that a xenon lamp, a deuterium lamp, a continuous wave laser light source (for example, a Heed laser), etc. can also be used.

まだ、接着方法としては、上述の樹脂に熱硬化開始剤を
混ぜて熱硬化で接着しても良いし、光硬化開始剤を混ぜ
て光硬化で接着しても良い。さらに呼た、光と熱両方の
硬化開始剤を用いて、位置合せ後の固定は光で行ない、
完全接着は熱硬化で行っても良い。
However, as an adhesion method, a thermosetting initiator may be mixed with the above-mentioned resin for adhesion by thermosetting, or a photocuring initiator may be mixed for adhesion by photocuring. Furthermore, using both optical and thermal curing initiators, fixation after alignment is performed with light,
Complete adhesion may be achieved by thermosetting.

発明の効果 すなわち、少くとも使用するエキシマ−光の波長とアラ
イメント光の波長の2波長領域に吸収の無い接着剤を用
いてビームスプリッタ−を製作することにより、遠紫外
領域の露光波長(308μm  、2491m等)を使
用するエキシマ−露光装置において、TTLアライメン
ト方式を用いることが可能となり、超々LSI製造に必
要な解像度とアライメント精度を実現できる効果がある
The effect of the invention is that by manufacturing a beam splitter using an adhesive that does not absorb at least two wavelengths, that is, the wavelength of the excimer light used and the wavelength of the alignment light, the exposure wavelength in the deep ultraviolet region (308 μm, 2491m, etc.), it becomes possible to use the TTL alignment method, which has the effect of realizing the resolution and alignment accuracy required for ultra-super LSI manufacturing.

例えば、KrFエキシマ−レーザー元と超高圧水銀灯の
i線を用いた場合、0.6μmの解像度と±0.061
tmのアライメント精度が実現できる。
For example, when using a KrF excimer laser source and an i-line from an ultra-high pressure mercury lamp, the resolution is 0.6 μm and ±0.061
tm alignment accuracy can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

発明のエキシマ−露光装置に使用されるビームスプリッ
タ−用接着剤の分光透過率を示す図である。 1・・・・・・エキシマ−f源、5・・・・・・マスク
ホルダー、6・・・・・・ビームスプリッタ−,6B・
・・・・・接着剤、7・・・・・・縮小投影レンズ、8
・・・・・・ウェハーステージ、15・・・・・・アラ
イメント光学系。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名宕 
2 図 2′θ          Jυθ3oδ      
  407)    dJi灰長 (得す
FIG. 3 is a diagram showing the spectral transmittance of a beam splitter adhesive used in the excimer exposure apparatus of the invention. 1...Excimer f source, 5...Mask holder, 6...Beam splitter, 6B...
...Adhesive, 7...Reduction projection lens, 8
...Wafer stage, 15... Alignment optical system. Name of agent: Patent attorney Toshio Nakao and one other person
2 Figure 2′θ Jυθ3oδ
407) dJi Haicho (Tokusu)

Claims (4)

【特許請求の範囲】[Claims] (1)エキシマー光源、縮小投影レンズ、ウェハーステ
ージ、マスクホルダー、ビームスプリッター、アライメ
ント光学系を含む露光装置において、前記ビームスプリ
ッターの接着剤として少くともエキシマー光とアライメ
ント光の両方の光を透過する光硬化型または熱硬化型樹
脂または光熱硬化型樹脂を用い、アライメント光でマス
クとウェハーの位置合せを作った後、エキシマー光で露
光することが可能なことを特徴とした露光装置。
(1) In an exposure apparatus that includes an excimer light source, a reduction projection lens, a wafer stage, a mask holder, a beam splitter, and an alignment optical system, light that transmits at least both excimer light and alignment light is used as an adhesive for the beam splitter. An exposure apparatus that uses a curable or thermosetting resin or a photothermosetting resin and is capable of aligning a mask and a wafer with alignment light and then exposing the wafer with excimer light.
(2)エキシマー光源にKrFエキシマーレーザーを用
い、接着剤としてアクリル系またはポリエステル系また
はアクリル・ポリエステル系の樹脂を用いることを特徴
とした特許請求の範囲第1項記載の露光装置。
(2) The exposure apparatus according to claim 1, wherein a KrF excimer laser is used as the excimer light source, and an acrylic, polyester, or acrylic/polyester resin is used as the adhesive.
(3)アライメント光として超高圧水銀灯またはクセノ
ンラプまたは重水素ランプまたは連続発信が可能なレー
ザー光等を用いることを特徴とした特許請求の範囲第2
項記載の露光装置。
(3) Claim 2, characterized in that an ultra-high-pressure mercury lamp, a xenon lamp, a deuterium lamp, a laser beam capable of continuous transmission, or the like is used as the alignment light.
Exposure device described in Section 2.
(4)接着剤が特定の吸収領域を狭んで露光用エキシマ
ー光とアライメント光を通すことを特徴とした特許請求
の範囲第1項記載の露光装置。
(4) The exposure apparatus according to claim 1, wherein the adhesive narrows a specific absorption region to allow exposure excimer light and alignment light to pass through.
JP61008226A 1986-01-17 1986-01-17 Exposure device Granted JPS62165915A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP61008226A JPS62165915A (en) 1986-01-17 1986-01-17 Exposure device
US07/004,133 US4724466A (en) 1986-01-17 1987-01-16 Exposure apparatus
US07/104,041 US4805000A (en) 1986-01-17 1987-10-02 Exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61008226A JPS62165915A (en) 1986-01-17 1986-01-17 Exposure device

Publications (2)

Publication Number Publication Date
JPS62165915A true JPS62165915A (en) 1987-07-22
JPH0365889B2 JPH0365889B2 (en) 1991-10-15

Family

ID=11687252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61008226A Granted JPS62165915A (en) 1986-01-17 1986-01-17 Exposure device

Country Status (1)

Country Link
JP (1) JPS62165915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191493A (en) * 1988-01-27 1989-08-01 Ushio Inc Exposure in manufacturing printed board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191493A (en) * 1988-01-27 1989-08-01 Ushio Inc Exposure in manufacturing printed board

Also Published As

Publication number Publication date
JPH0365889B2 (en) 1991-10-15

Similar Documents

Publication Publication Date Title
TW583720B (en) Optical illuminating system, light exposure equipment and manufacturing method of micro-devices
JP2001297976A (en) Method of exposure and aligner
US6558868B2 (en) Method of fabricating a high aspect ratio microstructure
US4724466A (en) Exposure apparatus
JP2010096866A5 (en)
JP2650895B2 (en) Exposure apparatus and exposure method
JPS62165915A (en) Exposure device
TW200817843A (en) Exposure apparatus and device manufacturing method
JP3296296B2 (en) Exposure method and exposure apparatus
JPS63240019A (en) Exposure device
JP2685179B2 (en) Exposure equipment
JPS6319612A (en) Projection lens and exposure device using same
JPH09246179A (en) Projection exposure apparatus and manufacture of device using the aligner
Ogawa The state-of-the-art of ArF excimer laser lithography
AU2002222484A8 (en) Photolithographic method including measurement of the latent image
JP2000021761A (en) Exposure method and apparatus
JP2000021754A (en) Exposure method and apparatus
JPH06325994A (en) Pattern forming method, pattern forming device and mask
JPS61129828A (en) Projection exposing apparatus
JPH0290170A (en) Pattern forming method
JP3123543B2 (en) Exposure method and exposure apparatus
JPS6473617A (en) Aligning method of projection system
JPH02312221A (en) Pattern forming method using excimer laser and excimer laser exposing device
JPH0574677A (en) Exposing device
JP2000021756A (en) Pattern forming method and exposure apparatus