JPS6370522A - Ultraviolet ray exposure method - Google Patents

Ultraviolet ray exposure method

Info

Publication number
JPS6370522A
JPS6370522A JP61214124A JP21412486A JPS6370522A JP S6370522 A JPS6370522 A JP S6370522A JP 61214124 A JP61214124 A JP 61214124A JP 21412486 A JP21412486 A JP 21412486A JP S6370522 A JPS6370522 A JP S6370522A
Authority
JP
Japan
Prior art keywords
chip
expansion
wavelength
etalon
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61214124A
Other languages
Japanese (ja)
Inventor
Kiichi Takamoto
喜一 高本
Yoshiharu Ozaki
尾崎 義治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP61214124A priority Critical patent/JPS6370522A/en
Publication of JPS6370522A publication Critical patent/JPS6370522A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To superpose patterns in a highly accurate manner even when a wafer is expanded or contracted by a method wherein the wavelength of the source of light is controlled based on the amount of expansion and contraction of the wafer. CONSTITUTION:A control device system is composed of a CPU 20, a rotating stage control circuit 21, a mark detecting device 22 with which the mark to be used for detection of the amount of expansion and contraction is detected, a mark detecting signal processing circuit 23, an X-Y-Z stage control circuit 24, an X-Y control circuit 25, an X-Y direction shifting mechanism 26, a Z-control part 27, and a Z-direction shifting mechanism 28. The position of chip marks 33 and 34 is detected, and the size of the chip is computed from the result of said detection. After the amount of expansion and correction of the chip has been computed from the chip size, the magnification of the projection lens is worked out, the center wavelength of the laser is computed for the purpose of correcting said amount of expansion and contraction, the position of image formation is set, and the height of the wafer is adjusted using the X-Y-Z stage. On the other hand, when the center wavelength of the laser is computed, the angle of rotation of an etalon is set, and the etalon is rotated by the rotating stage. At this point, all preparations are arranged, and the pattern is exposed on the chip.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体集積回路などのパタン形成に用いら
れる紫外線露光方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an ultraviolet exposure method used for pattern formation of semiconductor integrated circuits and the like.

〔従来の技術〕[Conventional technology]

一般に、半導体集積回路を製造するとき、レーザを光源
とする紫外線露光装置が用いられている。
Generally, when manufacturing semiconductor integrated circuits, an ultraviolet exposure apparatus using a laser as a light source is used.

これは例えば、マイクロサーキット・エンジニアリング
83 (Microcircuit Engineer
ing83)、 73〜78頁(著者G、M、 Dub
roeucq。
For example, Microcircuit Engineer 83
ing83), pp. 73-78 (Authors G, M, Dub
roeucq.

D 、 Zahorsky ) iで開示されているよ
うに、エキシマレーザを光源とし、そこから発生した光
を拡散させた後、照明レンズを介して物面であるレチク
ルにその拡散光を照射し、レチクルを透過した光を投影
レンズによって試料であるクエ・・面に集束させるもの
である。この場合、紫外線としてりls(波長435 
nm )や1線(波長365nm)のものを使用すると
、最小線幅0.5μm8反のバタン形成が可能となる。
As disclosed in D., Zahorsky) i, an excimer laser is used as a light source, the light generated from it is diffused, and then the diffused light is irradiated onto a reticle, which is an object surface, through an illumination lens, and the reticle is The transmitted light is focused onto the surface of the sample by a projection lens. In this case, the ultraviolet rays (wavelength 435
When using one line (wavelength: 365 nm) or one line (wavelength: 365 nm), it is possible to form battens with a minimum line width of 0.5 μm and 8 lines.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら半導体集積回路の製造時、各種のプロセス
を経ることによってウェハに伸縮が発生するので、パタ
ンの重ね合わせを行なうとき、ウェハ伸縮の前後におけ
るパタンの重ね合わせ精度を確保するのが困難であると
いう問題を有していた。
However, when manufacturing semiconductor integrated circuits, wafers undergo expansion and contraction through various processes, so when overlapping patterns, it is difficult to ensure pattern overlay accuracy before and after the wafer expands and contracts. I had a problem.

〔問題点を解決するための手段〕[Means for solving problems]

このような問題を解決するためにこの発明は、試料の伸
重量を検出して、その検出結果にもとづいて光源の波長
を制御するようにしたものである。
In order to solve such problems, the present invention detects the stretched weight of the sample and controls the wavelength of the light source based on the detection result.

〔作 用〕[For production]

波長が制御されることによってパタンの拡大率が制御さ
れる。
By controlling the wavelength, the enlargement rate of the pattern is controlled.

〔実施例〕〔Example〕

第1図はこの発明を適用して構成した露光装置の一実施
例を示す構成図である。同図において、1はエキシマレ
ーザ、1a、1bは共振器、1cはエタロン、1dはエ
タロン1cの保持枠、1eは回転ステージ、1fは放電
管、1F、1hは窓、2は反射焼、3は拡散板、4a、
4bは照明レンズ、5は絞シ、6はレチクル、Tは投影
レンズ、8はウェハ、9はxYzステージである。共振
器18〜窓1hハエキシマレーザ1を構成している。ま
たエタロン1cは回転ステージ1eによって回転するよ
うになっておシ、このことによって後述するように、エ
キシマレーザ1から発生する光の波長を248.94〜
249.06nm程度の範囲で変化できるようにしてい
る。投影レンズγは石英ガラスで構成し、焦点距離は8
0 mf?1 % レチクル6の面と投影レンズ7の後
主面との距離aは480 mm s波長が249nmの
場合、投影レンズ7の前主面と像面となるウェハ8の面
との距離すは96 mm 。
FIG. 1 is a block diagram showing an embodiment of an exposure apparatus constructed to which the present invention is applied. In the figure, 1 is an excimer laser, 1a and 1b are resonators, 1c is an etalon, 1d is a holding frame for the etalon 1c, 1e is a rotating stage, 1f is a discharge tube, 1F and 1h are windows, 2 is a reflection burner, and 3 is a diffuser plate, 4a,
4b is an illumination lens, 5 is an aperture, 6 is a reticle, T is a projection lens, 8 is a wafer, and 9 is an xYz stage. The resonator 18 to the window 1h constitute the excimer laser 1. In addition, the etalon 1c is rotated by the rotation stage 1e, which allows the wavelength of the light generated from the excimer laser 1 to vary from 248.94 to 248.94, as will be described later.
It is designed to be able to vary within a range of about 249.06 nm. The projection lens γ is made of quartz glass and has a focal length of 8
0 mf? 1% The distance a between the surface of the reticle 6 and the rear principal surface of the projection lens 7 is 480 mm. When the s wavelength is 249 nm, the distance a between the front principal surface of the projection lens 7 and the surface of the wafer 8 that becomes the image plane is 96 mm. mm.

倍率すなわちb/aは115である。The magnification, or b/a, is 115.

投影レンズ7は石英ガラスを用いているため焦点距離の
波長依存性が大きく、第2図に示すよりに、波長を24
8.5 nmから249.5am に変化させると、焦
点距離は79.985 mmから80.015mmK変
化する。また、波長が変化すると距離すが第3図に示す
ように変化し、したがって結像位置が変化する。距離す
が変化するとb/&  で表わされる倍率が変化するが
、波長による投影レンズ7の倍率変化を第4図に示す。
Since the projection lens 7 uses quartz glass, its focal length has a large dependence on wavelength, and as shown in FIG.
When changing from 8.5 nm to 249.5 am, the focal length changes from 79.985 mm to 80.015 mmK. Further, when the wavelength changes, the distance changes as shown in FIG. 3, and therefore the imaging position changes. When the distance changes, the magnification represented by b/& changes, and FIG. 4 shows the change in the magnification of the projection lens 7 depending on the wavelength.

半導体集積回路などの製造プロセスにおけるウェハの伸
縮量は10mmスパンで±0.14μm程度である。そ
して、第4図に示すように、像面上の10mmスパンに
対する伸縮量±0.14μmを発生させるには、波長を
248.97nmから249.O3nmまで変化させれ
ば良いことがわかるので、ウェハの伸縮に対してはこの
範囲で波長全変化させれば良いことになる。
The amount of expansion and contraction of a wafer in the manufacturing process of semiconductor integrated circuits and the like is approximately ±0.14 μm in a 10 mm span. As shown in FIG. 4, in order to generate an expansion/contraction amount of ±0.14 μm for a 10 mm span on the image plane, the wavelength is changed from 248.97 nm to 249. Since it is understood that it is sufficient to change the wavelength up to 03 nm, it is sufficient to completely change the wavelength within this range in response to expansion and contraction of the wafer.

次にエキシマレーザ1の波長はエタロン1cの回転角を
変化させることによシ制御される。エタロン1cの反射
面の間隔をd、光軸と直交する面に対する反射面の傾き
角をθ、空気の屈折率をnとすると、エタロン1cを通
過する光の中心波長λ0は次のように表わされる。
Next, the wavelength of the excimer laser 1 is controlled by changing the rotation angle of the etalon 1c. If the interval between the reflective surfaces of the etalon 1c is d, the angle of inclination of the reflective surfaces with respect to the plane orthogonal to the optical axis is θ, and the refractive index of air is n, then the center wavelength λ0 of the light passing through the etalon 1c is expressed as follows. It will be done.

nd λ0=−μsθ  ・・拳・(1) ここでmは整数であシ、(2nd/m)は定数になるの
で、波長λ0は―θの値にしたがって変化する。エタロ
ン1cの傾き角θと中心波長λ0の関係を第5図に示す
nd λ0=−μsθ ・・Fist・(1) Here, m is an integer and (2nd/m) is a constant, so the wavelength λ0 changes according to the value of −θ. FIG. 5 shows the relationship between the inclination angle θ of the etalon 1c and the center wavelength λ0.

像面上の10mmスパンに対して±0.14μmの伸縮
量を補正するには0.02μm程度の単位で補正が行な
われれば十分であるから、0.02μmの補正を行なう
には第4図よシ中心波長を0.004 nm単位で変化
すれば良いことになる。中心波長を0.004 nm変
化させるために必要なエタロン1cの回転角は第5図よ
F) 1 mrad  となり、そのときの結像位置の
変化は第3図より0,2μmとなる。
In order to correct the expansion/contraction amount of ±0.14 μm for a 10 mm span on the image plane, it is sufficient to perform the correction in units of about 0.02 μm. In other words, it is sufficient to change the center wavelength in units of 0.004 nm. The rotation angle of the etalon 1c required to change the center wavelength by 0.004 nm is 1 mrad as shown in FIG. 5, and the change in the imaging position at that time is 0.2 μm as shown in FIG.

1mraciLv回転角制御シよび0.2μmの2方向
の位置制御精度は周知技術により十分実現できる。
A rotation angle control accuracy of 1 mraciLv and a two-direction position control accuracy of 0.2 μm can be sufficiently achieved using known techniques.

第6図はこの実施例における制御装置系を示し、20は
CPU、21は回転ステージ制御回路、22は後述する
ウェハ上に付された伸縮量検出用のマークを検出するマ
ーク検出装置、23はマーク検出信号処理回路、24は
XYzステージ制御回路、25はXY制御部、26はx
y方向移動機構、21は2制御部、28は2方向移動機
構である。第7図はウェハ8の詳細を示し、30は半導
体集積回路などのチップ、31.32はウェハマーク、
33.34はテップマークである。
FIG. 6 shows a control device system in this embodiment, 20 is a CPU, 21 is a rotation stage control circuit, 22 is a mark detection device for detecting a mark for detecting the amount of expansion and contraction attached on a wafer, which will be described later, and 23 is a Mark detection signal processing circuit, 24 is an XYz stage control circuit, 25 is an XY control section, 26 is an x
21 is a y-direction moving mechanism, 21 is a 2-control unit, and 28 is a 2-direction moving mechanism. FIG. 7 shows details of the wafer 8, 30 is a chip such as a semiconductor integrated circuit, 31.32 is a wafer mark,
33.34 are step marks.

N8図はこのようなり工へKg光するときの露光手順を
示す。先ずステップS1 に示すようにテップマーク3
3.34の位置を検出し、この検出結果からチップの寸
法を求める。このチップ寸法からステップS2に示すよ
うにチップの伸縮量を算出したうぇでステップs3 に
示すように投影レンズの倍率を算出し、この伸W3量を
補正するためステップS4 に示すようにレーザの中心
波長を算出し、ステップS5に示す:うに結像位置の設
定を行ない、ステップS6に示すようにXYzステ−ジ
によるウェハの高さvI&整を行なう。一方、ステップ
S4においてレーザの中心波長が求められるとステップ
s7においてエタロンの回転角が設定され、ステップS
8に示すように回転ステージによるエタロンの回転が行
なわれる。ここで全ての準備が整ったので、ステップS
9においてチップにバタンか露光される。
Diagram N8 shows the exposure procedure when applying Kg light to such a curved surface. First, as shown in step S1, step mark 3
3. Detect the position of 34, and determine the dimensions of the chip from this detection result. From this chip dimension, the amount of expansion and contraction of the chip is calculated as shown in step S2, and then the magnification of the projection lens is calculated as shown in step s3.In order to correct this amount of expansion W3, the amount of expansion and contraction of the chip is calculated as shown in step S4. The center wavelength is calculated, the imaging position is set as shown in step S5, and the height vI& of the wafer is adjusted using the XYZ stage as shown in step S6. On the other hand, when the center wavelength of the laser is determined in step S4, the rotation angle of the etalon is set in step s7, and step S
As shown in 8, the etalon is rotated by the rotation stage. Now that everything is ready, step S
At step 9, the chip is exposed to light.

以上の実施例は光の中心波長を変化させるのにエタロン
の角度を制御しているが、実用新案登碌第982222
に示されているように、エタロンを密閉容器の中に入れ
、この密閉容器内の圧力を変化させるようにしてもよい
。とれは弐〇)よシ屈折率nの変化によシ中心波長λ0
を変化させていることになる。第1O図は密閉容器内の
圧力を760〜1520mmHPの範囲内で変化させた
ときの中心波長の変化を示している。そして、エタロン
の密閉容器内の圧力を自動的に調整するようにしておけ
ば、実施例で示した回転ステージ付きのエタロンの代わ
シに密閉容器に入れたエタロンを用いることができる。
In the above embodiments, the angle of the etalon is controlled to change the center wavelength of light, but this method is disclosed in Utility Model Application No. 982222.
As shown in Figure 1, the etalon may be placed in a closed container and the pressure within the container may be varied. The center wavelength λ0 changes depending on the change in the refractive index n.
This means that it is changing. FIG. 1O shows the change in the center wavelength when the pressure inside the closed container is changed within the range of 760 to 1520 mmHP. If the pressure inside the sealed container of the etalon is automatically adjusted, an etalon housed in a sealed container can be used instead of the etalon with a rotating stage shown in the embodiment.

また以上の説明は波長249 nmのエキシマレーザを
光源とする場合について示したが、その他の波長の光を
発生するレーザを光源とする露光装置にも実施でき、エ
タロンをレーザの共振器の外側に設置し、レーザから発
生した光がエタロンを通るようにして投影レンズに入射
するレーザ光の波長を調整するようにしても良い。
Furthermore, although the above explanation has been given for the case where the light source is an excimer laser with a wavelength of 249 nm, it can also be applied to an exposure apparatus whose light source is a laser that generates light of other wavelengths, and the etalon is placed outside the laser cavity. Alternatively, the wavelength of the laser beam incident on the projection lens may be adjusted by installing the laser beam so that the light generated from the laser passes through the etalon.

〔発明の効果〕〔Effect of the invention〕

以上説明したようにこの発明は、ウェハの伸縮量にもと
づいて光源の波長を制御しているので、ウェハが伸縮し
た場合にも高精度にパタンを重ね合わせ、各チップに露
光することができるという効果を有する。
As explained above, this invention controls the wavelength of the light source based on the amount of expansion and contraction of the wafer, so even if the wafer expands and contracts, it is possible to overlap patterns with high precision and expose each chip. have an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成国、第2図、第
3図、第4図は投影レンズの波長対焦点距離特性、波長
対結像位置特性、波長対倍率特性を示すグラフ、第5図
はエタロンの回転角対中心波長特性を示すグラフ、第6
図は制御系のブロック図、W、7図はウェハの平面図、
第8図は露光手順を示すフローチャート、第9図は密閉
容器内にエタロンを封入したときの封入空気圧力に対す
るそこを通過したレーザ光の中心波長の関係を示すグラ
フである。 1争・争・エキシマレーザ、1c ・・・・エタロン、
16e拳・・回転ステージ、6拳・・・レナクル、TΦ
・・−投影レンズ、8・・・・ウェハ、9 e * @
 * XYZ ステ1ジ。
FIG. 1 is a graph showing the constituent countries of an embodiment of the present invention, and FIGS. 2, 3, and 4 are graphs showing wavelength vs. focal length characteristics, wavelength vs. imaging position characteristics, and wavelength vs. magnification characteristics of the projection lens. , Figure 5 is a graph showing the etalon rotation angle versus center wavelength characteristics, Figure 6 is a graph showing the etalon rotation angle versus center wavelength characteristics.
The figure is a block diagram of the control system, W, 7 is a plan view of the wafer,
FIG. 8 is a flowchart showing the exposure procedure, and FIG. 9 is a graph showing the relationship between the enclosed air pressure and the center wavelength of the laser beam passing through the etalon when the etalon is sealed in the airtight container. 1 race/war/excimer laser, 1c... etalon,
16e fist... rotating stage, 6 fist... Renacle, TΦ
...-projection lens, 8...wafer, 9 e * @
*XYZ Stage 1.

Claims (1)

【特許請求の範囲】[Claims]  レーザを光源として試料に露光を行なう紫外線露光方
法において、試料の伸縮量を検出し、この検出結果にも
とづいて光源から発生する光の波長を制御することを特
徴とする紫外線露光方法。
An ultraviolet exposure method in which a sample is exposed to light using a laser as a light source, the ultraviolet exposure method being characterized by detecting the amount of expansion and contraction of the sample and controlling the wavelength of light emitted from the light source based on this detection result.
JP61214124A 1986-09-12 1986-09-12 Ultraviolet ray exposure method Pending JPS6370522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61214124A JPS6370522A (en) 1986-09-12 1986-09-12 Ultraviolet ray exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61214124A JPS6370522A (en) 1986-09-12 1986-09-12 Ultraviolet ray exposure method

Publications (1)

Publication Number Publication Date
JPS6370522A true JPS6370522A (en) 1988-03-30

Family

ID=16650618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61214124A Pending JPS6370522A (en) 1986-09-12 1986-09-12 Ultraviolet ray exposure method

Country Status (1)

Country Link
JP (1) JPS6370522A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237953A (en) * 1996-12-20 1997-09-09 Nikon Corp Manufacture of circuit pattern
JP2006114914A (en) * 2004-10-15 2006-04-27 Asml Netherlands Bv Lithography system, method for adjusting transparent characteristics of optical path in lithography system, semiconductor device, manufacturing method for reflection element used in lithography system, and reflection element manufactured by it
US10656538B2 (en) * 2003-07-16 2020-05-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09237953A (en) * 1996-12-20 1997-09-09 Nikon Corp Manufacture of circuit pattern
US10656538B2 (en) * 2003-07-16 2020-05-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2006114914A (en) * 2004-10-15 2006-04-27 Asml Netherlands Bv Lithography system, method for adjusting transparent characteristics of optical path in lithography system, semiconductor device, manufacturing method for reflection element used in lithography system, and reflection element manufactured by it
JP4639134B2 (en) * 2004-10-15 2011-02-23 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic system and method for adjusting transmission characteristics of an optical path in a lithographic system

Similar Documents

Publication Publication Date Title
US4811055A (en) Projection exposure apparatus
TW583720B (en) Optical illuminating system, light exposure equipment and manufacturing method of micro-devices
US4269505A (en) Device for the projection printing of the masks of a mask set onto a semiconductor substrate
JP2893778B2 (en) Exposure equipment
JP3186011B2 (en) Projection exposure apparatus and device manufacturing method
EP1347501A1 (en) Wavefront aberration measuring instrument, wavefront aberration measuring method, exposure apparatus, and method for manufacturing microdevice
JPH05144701A (en) Projection aligner and fabrication of semiconductor element using the same
JPH0628227B2 (en) Semiconductor exposure equipment
JP2001345245A (en) Method and device for exposure and method of manufacturing device
JP3200244B2 (en) Scanning exposure equipment
KR100558195B1 (en) Method for correcting intensity of light and exposing a wafer, and apparatus for correcting intensity of light and exposing a wafer for performing the same
JP2914315B2 (en) Scanning reduction projection exposure apparatus and distortion measuring method
JPH08279458A (en) Projecting aligner
JP2897345B2 (en) Projection exposure equipment
JP3368227B2 (en) Optical element manufacturing method
JP3097620B2 (en) Scanning reduction projection exposure equipment
JP2001052986A (en) X-ray projection aligner
JPS6370522A (en) Ultraviolet ray exposure method
US5247153A (en) Method and apparatus for in-situ deformation of a surface, especially a non-planar optical surface
KR20050033078A (en) Lithographic method for small line printing
JP2897346B2 (en) Projection exposure equipment
JPH09153444A (en) Projection x-ray aligner
JP3278892B2 (en) Exposure apparatus and method, and device manufacturing method
JP2003045793A (en) Wavefront aberration measurement method, adjustment and exposure methods of projection optical system, and manufacturing method of aligner
JPH0963923A (en) X-ray projection aligner