JPH09153444A - Projection x-ray aligner - Google Patents

Projection x-ray aligner

Info

Publication number
JPH09153444A
JPH09153444A JP7312277A JP31227795A JPH09153444A JP H09153444 A JPH09153444 A JP H09153444A JP 7312277 A JP7312277 A JP 7312277A JP 31227795 A JP31227795 A JP 31227795A JP H09153444 A JPH09153444 A JP H09153444A
Authority
JP
Japan
Prior art keywords
aberration
ray
mask
wafer
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7312277A
Other languages
Japanese (ja)
Other versions
JP3632264B2 (en
Inventor
Tetsuya Oshino
哲也 押野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP31227795A priority Critical patent/JP3632264B2/en
Publication of JPH09153444A publication Critical patent/JPH09153444A/en
Application granted granted Critical
Publication of JP3632264B2 publication Critical patent/JP3632264B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a projection X-ray aligner in which aberration is measured and reduced or eliminated to prevent resolution from lowering without a decrease in throughput. SOLUTION: An aberration measuring mechanism 5 is fixed to a wafer stage 12 and is movable with it. To measure aberration, the wafer stage 12 is slid outside the imaging position of a projection optical imaging system 2, while the aberration measuring mechanism 5 is brought near the imaging position. To measure aberration, an X-ray beam 9' passing through the projection optical imaging system 2 is introduced to the aberration measuring mechanism 5. If an aberration greater than allowable is detected by the aberration measuring mechanism 5, it is reduced or eliminated by an aberration corrective mechanism, which is an optical adjustment mechanism 6 for adjusting the shapes and positions of optical elements of the projection optical system 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、フォトマスク(マ
スクまたはレチクル)上の回路パターンをX線光学系等
のミラープロジェクション方式により、投影結像光学系
を介してウエハ等の基板上に転写する際に好適なX線投
影露光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention transfers a circuit pattern on a photomask (mask or reticle) onto a substrate such as a wafer through a projection imaging optical system by a mirror projection method such as an X-ray optical system. The present invention relates to a suitable X-ray projection exposure apparatus.

【0002】[0002]

【従来の技術】半導体製造用の露光装置は、物体面とし
てのフォトマスク(以下、マスクと称する)面上に形成
された回路パターンを結像装置を介してウエハ等の基板
上に投影転写する。基板にはレジストが塗布されてお
り、露光することによってレジストが感光し、レジスト
パターンが得られる。
2. Description of the Related Art A semiconductor manufacturing exposure apparatus projects and transfers a circuit pattern formed on a photomask (hereinafter referred to as a mask) surface as an object surface onto a substrate such as a wafer through an image forming device. . The substrate is coated with a resist, and the exposure exposes the resist to light to obtain a resist pattern.

【0003】露光装置の解像力w は、主に露光波長λと
結像光学系の開口数NAで決まり、次式で表される。 w=k λ/NA k:定数 従って、解像力を向上させるためには、波長を短くする
か、或いは開口数を大きくすることが必要となる。現
在、半導体の製造に用いられている露光装置は、主に波
長365nm のi線を使用しており、開口数約0.5 の場合で
0.5 μmの解像力が得られている。
The resolving power w of the exposure apparatus is mainly determined by the exposure wavelength λ and the numerical aperture NA of the imaging optical system, and is represented by the following equation. w = k λ / NA k: constant Therefore, in order to improve the resolution, it is necessary to shorten the wavelength or increase the numerical aperture. At present, the exposure equipment used in the manufacture of semiconductors mainly uses i-line with a wavelength of 365 nm.
A resolution of 0.5 μm is obtained.

【0004】開口数を大きくすることは、光学設計上困
難であることから、解像力を向上させるためには、今後
は露光光の短波長化が必要となる。i線より短波長の露
光光としては、例えばエキシマレーザーが挙げられ、そ
の波長はKrF で248nm 、ArFで193nm である。従って、K
rF では0.25μm、ArF では0.18μmの解像力が得られ
る。
Since it is difficult to increase the numerical aperture in terms of optical design, it is necessary to shorten the wavelength of the exposure light in the future in order to improve the resolution. An example of the exposure light having a wavelength shorter than the i-line is an excimer laser, and the wavelength thereof is 248 nm for KrF and 193 nm for ArF. Therefore, K
Resolutions of 0.25 μm for rF and 0.18 μm for ArF can be obtained.

【0005】そして、露光光としてさらに波長の短いX
線を用いると、例えば波長13nmで0.1 μm以下の解像力
が得られる。従来の、露光装置(一例)の構成(一部)
を概念的に図6に示す。露光装置は主に、光源及び照明
光学系(不図示)、マスク1のステージ11、結像光学
系2、ウエハ3のステージ12により構成される。
Then, as the exposure light, X having a shorter wavelength is used.
When a line is used, a resolution of 0.1 μm or less can be obtained at a wavelength of 13 nm, for example. Conventional configuration of exposure apparatus (example) (part)
Is conceptually shown in FIG. The exposure apparatus is mainly composed of a light source and an illumination optical system (not shown), a stage 11 of the mask 1, an imaging optical system 2 and a stage 12 of the wafer 3.

【0006】マスク1には、描画するパターンの等倍あ
るいは拡大パターンが形成されている。結像光学系2
は、複数のレンズまたは反射鏡等により構成され、マス
ク1上のパターンをウエハ3上に結像するようになって
いる。露光装置が所望の解像力を有するためには、少な
くとも結像光学系2が無収差または無収差に近い光学系
である必要がある。仮に、結像光学系2に収差がある
と、レジストパターンの断面形状が劣化し、露光後のプ
ロセスに悪影響を及ぼす他、像が歪んでしまうという問
題点が発生する。
The mask 1 is formed with an equal size or enlarged pattern of the pattern to be drawn. Imaging optical system 2
Is composed of a plurality of lenses, reflecting mirrors, or the like, and is adapted to form an image of the pattern on the mask 1 on the wafer 3. In order for the exposure apparatus to have a desired resolving power, at least the imaging optical system 2 needs to be an aberration-free or near-aberration-free optical system. If the imaging optical system 2 has an aberration, the cross-sectional shape of the resist pattern is deteriorated, which adversely affects the process after exposure and causes a problem that the image is distorted.

【0007】無収差と同等の性能を得るための、収差の
許容上限値(rms 値)としては、波長の14分の1 程度の
値が要求される。従って、波長が短くなるほど収差の値
も小さくしなければならない。例えば、露光光がi線の
場合、収差の許容上限値は約26nmrms である。無収差の
光学系を作製するためには、まず各光学素子の形状を設
計値どうりに加工しなければならない。要求される形状
精度、即ち形状誤差の許容上限値は、収差の許容上限値
と比較して少なくとも小さく、また、光学素子の数が多
くなるほど値は小さくなる。
As an allowable upper limit value (rms value) of aberration for obtaining the same performance as aberration-free, a value of about 1/14 of the wavelength is required. Therefore, the shorter the wavelength is, the smaller the aberration value must be. For example, when the exposure light is the i-line, the allowable upper limit of aberration is about 26 nmrms. In order to produce an aberration-free optical system, the shape of each optical element must first be processed according to the design value. The required shape accuracy, that is, the allowable upper limit value of the shape error is at least smaller than the allowable upper limit value of the aberration, and the value decreases as the number of optical elements increases.

【0008】そして、光学素子が全てレンズの場合は、
屈折面の数をN とすると、形状誤差の許容上限値は収差
のそれの1/N1/2程度の値が要求される。例えば露光光が
i線の場合、屈折面の数を30とすると、形状誤差の許容
上限値は約5nmrmsとなる。次に、この様にして作製した
光学素子を高精度に位置合わせして組立なければならな
い。組立精度は、光学計算から求めることができるが、
露光光がi線の場合、少なくともμmオーダーでの位置
合わせが必要になる。
If all the optical elements are lenses,
When the number of refracting surfaces is N, the allowable upper limit of the shape error is required to be about 1 / N 1/2 of that of aberration. For example, in the case where the exposure light is i-line, if the number of refraction surfaces is 30, the allowable upper limit of the shape error is about 5 nmrms. Next, the optical element thus manufactured must be aligned and assembled with high accuracy. Assembling accuracy can be obtained from optical calculation,
When the exposure light is the i-line, it is necessary to perform alignment on the order of at least μm.

【0009】以上のように、無収差の光学系を作製する
ためには、高い加工精度および組み立て精度が必要であ
るが、これまでは高精度な加工および組立を行うことに
より、無収差光学系を作製することができた。また、光
学系の収差は、装置の作動中も許容上限値以下に保持さ
れる必要がある。しかし、実際には外部の温度変化の影
響で、光学素子等が熱変形を起こしてしまう場合があ
る。さらに、露光光を光学素子が吸収することでも温度
は変化してしまう。
As described above, in order to manufacture an aberration-free optical system, high processing accuracy and assembling accuracy are required. Until now, however, high-accuracy processing and assembling have been performed to obtain an aberration-free optical system. Could be made. Further, the aberration of the optical system needs to be kept below the allowable upper limit value even during the operation of the apparatus. However, actually, the optical element or the like may be thermally deformed due to the influence of a change in external temperature. Further, the temperature changes even when the exposure light is absorbed by the optical element.

【0010】そこで、光学系を高精度に温度コントロー
ルされたチャンバーの中に入れて、熱変形しない程度に
温度を一定に保持している。以上の様にして、従来の露
光装置は、作動中も所望の解像度を得ることができた。
Therefore, the optical system is placed in a chamber whose temperature is controlled with high precision, and the temperature is kept constant to the extent that it is not thermally deformed. As described above, the conventional exposure apparatus was able to obtain the desired resolution even during operation.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、露光装
置の解像度を向上するために露光光の波長を短くする
と、それに従って収差の許容上限値も小さくなる。露光
光をX線とし、例えば波長を13nmとすると、収差の許容
上限値は約1nmrmsとなる。この値は、i線における収差
の許容上限値約26nmrms と比較して非常に小さい。従っ
て、光学素子はさらに形状精度の高いものが要求され
る。
However, when the wavelength of the exposure light is shortened in order to improve the resolution of the exposure apparatus, the allowable upper limit value of the aberration becomes smaller accordingly. When the exposure light is X-rays and the wavelength is 13 nm, for example, the allowable upper limit of aberration is about 1 nmrms. This value is very small compared to the allowable upper limit value of the aberration at the i-line of about 26 nmrms. Therefore, the optical element is required to have higher shape accuracy.

【0012】X線露光装置の場合、光学系は全て反射鏡
であることが好ましい。反射面の形状誤差は、屈折の場
合の半分の値が必要であるため、反射面の数をN とする
と、必要な形状誤差は収差の1/(2N1/2 )となる。例え
ば反射面の数を4 とすると、波長13nmにおける形状誤差
は0.23nmrms となる。このように、X線投影露光装置
は、結像光学系2の収差として極めて小さな値が要求さ
れ、そのため、光学素子の形状精度もnm以下の精度が要
求される。この様な結像光学系は、作製することができ
ても、その精度を装置の作動(運転)中も保持すること
が困難であるという問題点を有している。
In the case of an X-ray exposure apparatus, it is preferable that all optical systems are reflecting mirrors. Since the shape error of the reflecting surface needs to be half the value of the case of refraction, if the number of reflecting surfaces is N, the required shape error is 1 / (2N 1/2 ) of the aberration. For example, if the number of reflecting surfaces is 4, the shape error at a wavelength of 13 nm is 0.23 nmrms. As described above, in the X-ray projection exposure apparatus, an extremely small value is required as the aberration of the imaging optical system 2, and therefore the shape accuracy of the optical element is also required to be less than nm. Although such an imaging optical system can be manufactured, it has a problem that it is difficult to maintain its accuracy even during operation (operation) of the apparatus.

【0013】即ち、露光装置の作動中に、光学素子の熱
変形を含めた様々な原因により収差が変化するが、その
変化は、従来の温度制御だけでは抑えることができない
という問題点を有している。以上のように、従来のX線
投影露光装置においては、装置作動中の収差の変化を抑
制することが困難であり、これが原因で装置作動中にX
線露光装置の解像度が低下するという問題点があった。
That is, during the operation of the exposure apparatus, the aberration changes due to various causes including thermal deformation of the optical element, but the change cannot be suppressed only by the conventional temperature control. ing. As described above, in the conventional X-ray projection exposure apparatus, it is difficult to suppress the change in aberration during the operation of the apparatus, which causes the X-ray projection during the operation of the apparatus.
There is a problem that the resolution of the line exposure apparatus is lowered.

【0014】本発明は、かかる問題点に鑑みてなされた
ものであり、作動中の解像度の低下を防止できるX線投
影露光装置を提供すること、好ましくはスループットを
低下させないで、作動中の解像度の低下を防止できるX
線投影露光装置を提供することを目的としている。
The present invention has been made in view of the above problems, and provides an X-ray projection exposure apparatus capable of preventing a decrease in resolution during operation, preferably a resolution during operation without reducing throughput. X can be prevented
An object is to provide a line projection exposure apparatus.

【0015】[0015]

【課題を解決するための手段】そのため、本発明は第一
に「少なくとも、X線源、該X線源から発生するX線を
マスク上に照射する照明光学系、該マスクを保持するマ
スクステージ、該マスクからのX線を受けて該マスク上
に形成されたパターンをウエハー上に投影結像する投影
結像光学系、及び該ウエハを保持するウェハステージを
備えたX線投影露光装置において、前記投影結像光学系
からのX線の収差を測定する収差測定機構と、前記X線
の収差を低減または解消する収差補正機構と、を設けた
ことを特徴とするX線投影露光装置(請求項1)」を提
供する。
Therefore, the first aspect of the present invention is to provide "at least an X-ray source, an illumination optical system for irradiating a mask with X-rays generated from the X-ray source, and a mask stage for holding the mask. An X-ray projection exposure apparatus including a projection imaging optical system that receives an X-ray from the mask and projects and forms a pattern formed on the mask onto a wafer, and a wafer stage that holds the wafer, An X-ray projection exposure apparatus comprising: an aberration measuring mechanism that measures the X-ray aberration from the projection imaging optical system; and an aberration correcting mechanism that reduces or eliminates the X-ray aberration. Item 1) ”is provided.

【0016】また、本発明は第二に「少なくとも、X線
源、該X線源から発生するX線をマスク上に照射する照
明光学系、該マスクを保持するマスクステージ、該マス
クからのX線を受けて該マスク上に形成されたパターン
をウエハー上に投影結像する投影結像光学系、及び該ウ
エハを保持するウェハステージを備えたX線投影露光装
置において、前記投影結像光学系からのX線の収差を測
定する収差測定機構と、収差測定時に前記ウェハステー
ジを前記投影結像光学系の結像位置から遠ざけて、前記
収差測定機構を前記結像位置またはその付近に配置さ
せ、投影露光時に前記収差測定機構を前記結像位置また
はその付近から遠ざけて、前記ウェハステージを前記結
像位置に配置させる移動機構と、前記X線の収差を低減
または解消する収差補正機構と、を設けたことを特徴と
するX線投影露光装置(請求項2)」を提供する。
The present invention is secondly "at least an X-ray source, an illumination optical system for irradiating a mask with X-rays generated from the X-ray source, a mask stage for holding the mask, and an X from the mask. A projection imaging optical system including a projection imaging optical system that receives a line to project an image formed on the mask onto a wafer, and an X-ray projection exposure apparatus including a wafer stage that holds the wafer. And an aberration measuring mechanism for measuring the X-ray aberration from the wafer stage, at the time of measuring the aberration, the wafer stage is moved away from the image forming position of the projection image forming optical system, and the aberration measuring mechanism is arranged at or near the image forming position. A moving mechanism for moving the aberration measuring mechanism away from the image forming position or its vicinity during projection exposure to dispose the wafer stage at the image forming position, and an aberration for reducing or eliminating the X-ray aberration. To provide an X-ray projection exposure apparatus being characterized in that a positive mechanism, the provided (claim 2) ".

【0017】また、本発明は第三に「前記収差測定機構
が前記ウエハステージに固定され、該ウエハステージが
前記移動機構を兼ねていることを特徴とする請求項2記
載のX線投影露光装置(請求項3)」を提供する。ま
た、本発明は第四に「前記収差測定機構がX線空間像の
測定器であることを特徴とする請求項1〜3記載のX線
投影露光装置(請求項4)」を提供する。
A third aspect of the present invention is that the X-ray projection exposure apparatus according to claim 2, wherein the aberration measuring mechanism is fixed to the wafer stage, and the wafer stage also serves as the moving mechanism. (Claim 3) "is provided. A fourth aspect of the present invention provides an "X-ray projection exposure apparatus (claim 4)", wherein the aberration measuring mechanism is an X-ray aerial image measuring instrument.

【0018】また、本発明は第五に、「前記収差補正機
構は少なくとも、前記投影結像光学系を構成する光学素
子の位置及び形状の調整、前記マスクの形状の調整、ま
たは前記ウエハの形状の調整を行うことにより前記X線
の収差を低減または解消することを特徴とする請求項1
〜4記載のX線投影露光装置(請求項5)」を提供す
る。
The fifth aspect of the present invention is that "at least the aberration correction mechanism adjusts the position and shape of an optical element constituting the projection imaging optical system, the shape of the mask, or the shape of the wafer. 2. The aberration of the X-ray is reduced or eliminated by performing the adjustment of 1.
X-ray projection exposure apparatus (claim 5) ”is provided.

【0019】また、本発明は第六に「前記収差測定機
構、移動機構及び収差補正機構の動作を制御する制御機
構をさらに設けたことを特徴とする請求項1〜5記載の
X線投影露光装置(請求項6)」を提供する。また、本
発明は第七に「前記制御機構は、前記ウエハを交換する
時間内、または装置をメンテナンスする時間内に、前記
収差測定機構、移動機構及び収差補正機構を動作させる
ことを特徴とする請求項6記載のX線投影露光装置(請
求項7)」を提供する。
A sixth aspect of the present invention is that "a control mechanism for controlling the operations of the aberration measuring mechanism, the moving mechanism and the aberration correcting mechanism is further provided, and the X-ray projection exposure according to claim 1 to 5. Apparatus (claim 6) ". In the seventh aspect of the present invention, "the control mechanism operates the aberration measuring mechanism, the moving mechanism, and the aberration correcting mechanism within a time period in which the wafer is exchanged or a time period in which the apparatus is maintained. An X-ray projection exposure apparatus according to claim 6 is provided.

【0020】[0020]

【発明の実施の形態】図1は、本発明にかかる露光装置
(一例)の構成(一部)を示すブロック図である。図1
の露光装置は、X線源、該X線源から発生するX線をマ
スク1上に照射する照明光学系(不図示)、マスク1の
ステージ11、マスク1からのX線9を受けてマスク1
上に形成されたパターンをウエハ3上に投影結像する投
影結像光学系2、ウエハ3のステージ12、結像光学系
2からのX線9’の収差を測定する収差測定機構5、収
差測定時に前記ウェハステージ12を前記投影結像光学
系2の結像位置から遠ざけて、前記収差測定機構5を前
記結像位置またはその付近に配置させ、投影露光時に前
記収差測定機構5を前記結像位置またはその付近から遠
ざけて、前記ウェハステージ12を前記結像位置に配置
させる移動機構4、前記X線9’の収差を補正する収差
補正機構6、7、8、前記収差測定機構5、移動機構4
及び収差補正機構6、7、8の動作を制御する制御機構
13を有する。
1 is a block diagram showing a configuration (a part) of an exposure apparatus (an example) according to the present invention. FIG.
The exposure apparatus described above receives an X-ray source, an illumination optical system (not shown) for irradiating the mask 1 with X-rays generated from the X-ray source, a stage 11 of the mask 1, an X-ray 9 from the mask 1, and a mask. 1
A projection imaging optical system 2 that projects and forms a pattern formed on the wafer 3 onto the wafer 3, a stage 12 of the wafer 3, an aberration measuring mechanism 5 that measures the aberration of X-rays 9 ′ from the imaging optical system 2, and an aberration. At the time of measurement, the wafer stage 12 is moved away from the image forming position of the projection image forming optical system 2 and the aberration measuring mechanism 5 is arranged at or near the image forming position, and the aberration measuring mechanism 5 is connected at the time of projection exposure. A moving mechanism 4 for arranging the wafer stage 12 at the image forming position away from the image position or its vicinity, aberration correcting mechanisms 6, 7, 8 for correcting the aberration of the X-ray 9 ', the aberration measuring mechanism 5, Moving mechanism 4
And the control mechanism 13 for controlling the operations of the aberration correction mechanisms 6, 7, and 8.

【0021】収差測定機構5は、通常(収差測定を行わ
ないとき)はウエハステージ12の下部或いは隣接する
位置に配置されている。そして、収差を測定するとき
は、図3に示すように、移動機構4により、ウエハステ
ージ12を結像光学系2の結像位置以外にスライドさせ
て、収差測定機構5を前記結像位置またはその付近に移
動させる。さらに、結像光学系2を透過したX線9’
を、収差測定機構5に導入することにより、収差を測定
する。
The aberration measuring mechanism 5 is usually arranged (when the aberration is not measured) under the wafer stage 12 or at a position adjacent thereto. Then, when measuring the aberration, as shown in FIG. 3, the moving mechanism 4 slides the wafer stage 12 to a position other than the image forming position of the image forming optical system 2 to move the aberration measuring mechanism 5 to the image forming position or the image forming position. Move to the vicinity. Further, the X-ray 9 ′ transmitted through the imaging optical system 2
Is introduced into the aberration measuring mechanism 5 to measure the aberration.

【0022】また、図2は、本発明にかかる露光装置
(別の一例)の構成(一部)を示すブロック図であり、
本発明にかかる露光装置の別の一例を示している。図2
の露光装置は、X線源、該X線源から発生するX線をマ
スク1上に照射する照明光学系(不図示)、マスク1の
ステージ11、マスク1からのX線9を受けてマスク1
上に形成されたパターンをウエハ3上に投影結像する投
影結像光学系2、ウエハ3のステージ12、結像光学系
2からのX線9’の収差を測定する収差測定機構5、前
記X線9’の収差を補正する収差補正機構6、7、8、
前記収差測定機構5、収差補正機構6、7、8及びウェ
ハステージ12の動作を制御する制御機構13を有す
る。
FIG. 2 is a block diagram showing the configuration (part) of the exposure apparatus (another example) according to the present invention.
7 shows another example of the exposure apparatus according to the present invention. FIG.
The exposure apparatus described above receives an X-ray source, an illumination optical system (not shown) for irradiating the mask 1 with X-rays generated from the X-ray source, a stage 11 of the mask 1, an X-ray 9 from the mask 1, and a mask. 1
The projection imaging optical system 2 for projecting and imaging the pattern formed on the wafer 3, the stage 12 of the wafer 3, the aberration measuring mechanism 5 for measuring the aberration of the X-ray 9 ′ from the imaging optical system 2, Aberration correction mechanisms 6, 7, 8 for correcting the aberration of X-ray 9 ',
It has a control mechanism 13 for controlling the operations of the aberration measuring mechanism 5, the aberration correcting mechanisms 6, 7, 8 and the wafer stage 12.

【0023】収差測定機構5は、ウエハステージ12に
固定されており、ウエハステージとともにその位置を移
動する。そして、収差を測定するときは、図4に示すよ
うに、ウエハステージ12を結像光学系2の結像位置以
外にスライドさせると同時に、収差測定機構5を前記結
像位置付近に移動させる。さらに、結像光学系2を透過
したX線9’を、収差測定機構5に導入することによ
り、収差を測定する。
The aberration measuring mechanism 5 is fixed to the wafer stage 12 and moves along with the wafer stage. Then, when measuring the aberration, as shown in FIG. 4, the wafer stage 12 is slid to a position other than the image forming position of the image forming optical system 2, and at the same time, the aberration measuring mechanism 5 is moved to the vicinity of the image forming position. Further, the X-ray 9 ′ that has passed through the imaging optical system 2 is introduced into the aberration measuring mechanism 5 to measure the aberration.

【0024】即ち、図2の露光装置では、ウエハステー
ジ12自身が収差測定時にウェハステージ12を前記投
影結像光学系2の結像位置から遠ざけて、前記収差測定
機構5を前記結像位置またはその付近に配置させ、投影
露光時に前記収差測定機構5を前記結像位置またはその
付近から遠ざけて、ウェハステージ12を前記結像位置
に配置させる移動機構としての機能を果たしている。
That is, in the exposure apparatus of FIG. 2, the wafer stage 12 itself moves the wafer stage 12 away from the image forming position of the projection image forming optical system 2 when measuring the aberration, and the aberration measuring mechanism 5 moves to the image forming position or It is arranged in the vicinity thereof and functions as a moving mechanism for moving the aberration measuring mechanism 5 away from the image forming position or the vicinity thereof during projection exposure and arranging the wafer stage 12 in the image forming position.

【0025】本発明にかかる収差測定機構5としては、
露光光自体の収差を測定するために測定精度が高い、例
えばX線空間像測定装置が好ましい(請求項4)。X線
空間像測定装置は、マスクパターンのX線像を検出器上
に結像させて、その強度分布を測定するものであり、強
度分布を計算値と比較することにより収差を知ることが
できる。
As the aberration measuring mechanism 5 according to the present invention,
An X-ray aerial image measuring device, which has high measurement accuracy for measuring the aberration of the exposure light itself, is preferable (claim 4). The X-ray aerial image measuring apparatus forms an X-ray image of a mask pattern on a detector and measures the intensity distribution thereof. The aberration can be known by comparing the intensity distribution with a calculated value. .

【0026】収差測定機構5による測定から、収差が許
容上限値よりも大きいことが判明したら、収差を低減ま
たは解消するように補正する。収差は、主に投影結像光
学系2を構成する光学素子の形状変化および位置変化に
より生じるので、収差を補正するためには、形状および
位置を元に戻してやることが好ましい。そこで、収差を
補正するためには、例えば、収差補正機構として、投影
結像光学系2を構成する光学素子の形状および位置を調
整する光学系調整機構6を設ければよい。
When it is found from the measurement by the aberration measuring mechanism 5 that the aberration is larger than the allowable upper limit value, the aberration is corrected so as to be reduced or eliminated. Aberration is mainly caused by a change in shape and a position of an optical element forming the projection imaging optical system 2, and therefore it is preferable to restore the shape and position to correct the aberration. Therefore, in order to correct the aberration, for example, an optical system adjustment mechanism 6 that adjusts the shape and position of the optical element that constitutes the projection imaging optical system 2 may be provided as the aberration correction mechanism.

【0027】光学系調整機構6は、例えば図5に示すよ
うに、光学素子(例えば、反射鏡14)の周囲にピエゾ
素子等のアクチュエータ15を配置したものであり、ア
クチュエータ15を用いて光学素子に所望の応力を加え
ることにより、位置及び形状を変えることができる。収
差の補正は、このように光学系調整機構6を用いて光学
素子の形状および位置を変える方法により可能である
が、この方法に限らない。
The optical system adjusting mechanism 6 is, for example, as shown in FIG. 5, in which an actuator 15 such as a piezo element is arranged around an optical element (for example, a reflecting mirror 14). The position and shape can be changed by applying a desired stress to the. Aberration can be corrected by a method of changing the shape and position of the optical element by using the optical system adjusting mechanism 6 as described above, but not limited to this method.

【0028】例えば、収差により像に歪みが生じた場合
は、その歪みを補正するようにマスク1及び/またはウ
エハ3の形状を変形させてもよい。また、像面湾曲のよ
うに像面が光軸方向にゆがんだ場合にも、マスク1及び
/またはウエハ3を湾曲させることにより、補正するこ
とが可能である。このような場合は、収差補正機構とし
て、マスク1の形状を調整するマスク調整機構7、及び
/またはウエハ3の形状を調整するウエハ調整機構8を
設けてやればよい。かかる調整機構においても、マスク
1及び/またはウエハ3の周囲に例えばアクチュエータ
を配置して、マスク1及び/またはウエハ3に応力を加
えて変形させてやればよい。
For example, when the image is distorted due to aberration, the shape of the mask 1 and / or the wafer 3 may be deformed so as to correct the distortion. Further, even when the image plane is distorted in the optical axis direction such as the field curvature, it is possible to correct it by bending the mask 1 and / or the wafer 3. In such a case, a mask adjusting mechanism 7 for adjusting the shape of the mask 1 and / or a wafer adjusting mechanism 8 for adjusting the shape of the wafer 3 may be provided as the aberration correcting mechanism. Also in such an adjusting mechanism, for example, an actuator may be arranged around the mask 1 and / or the wafer 3, and the mask 1 and / or the wafer 3 may be deformed by applying stress.

【0029】図1の装置では、三つの収差補正機構(光
学系調整機構6、マスク調整機構7、ウエハ調整機構
8)を配置したが、収差補正機構が必ずしも三つ必要で
あるとは限らない。例えば、光学系調整機構6による補
正だけで収差の補正が可能であるならば、他の収差補正
機構7、8は設けなくてもよい。即ち、必要に応じて収
差補正機構を設ければよい。
In the apparatus of FIG. 1, three aberration correcting mechanisms (optical system adjusting mechanism 6, mask adjusting mechanism 7, wafer adjusting mechanism 8) are arranged, but three aberration correcting mechanisms are not always necessary. . For example, if the aberration can be corrected only by the correction by the optical system adjusting mechanism 6, the other aberration correcting mechanisms 7 and 8 may not be provided. That is, an aberration correction mechanism may be provided as needed.

【0030】以上述べたように、本発明によるX線露光
装置によれば、投影結像光学系2からのX線9’の収差
を測定し、さらに該収差を補正することが可能である。
また、本発明によるX線露光装置では、収差測定してい
る間、X線9がウエハ3上に入射しないため露光はでき
ない。一方、収差測定は、露光装置のスループットを低
下させずに行うのが好ましい。従って、収差測定は露光
を行わない時間に行うことが好ましい。
As described above, according to the X-ray exposure apparatus of the present invention, it is possible to measure the aberration of the X-ray 9'from the projection imaging optical system 2 and further correct the aberration.
Further, in the X-ray exposure apparatus according to the present invention, since the X-ray 9 does not enter the wafer 3 during the aberration measurement, the exposure cannot be performed. On the other hand, it is preferable that the aberration measurement is performed without lowering the throughput of the exposure apparatus. Therefore, it is preferable to perform the aberration measurement during the time when the exposure is not performed.

【0031】露光を行わない時としては、例えば、ウエ
ハ3を交換する時間がある。従来の露光装置では、これ
らの時間において、光源を停止するか、或いは露光光を
シャッターで遮蔽していた。即ち、これらの時間では露
光を行わないので、本発明のように、結像位置に収差測
定機構を配置しても問題はない。
When the exposure is not performed, there is, for example, time to replace the wafer 3. In the conventional exposure apparatus, the light source is stopped or the exposure light is blocked by the shutter at these times. That is, since exposure is not performed during these times, there is no problem even if the aberration measuring mechanism is arranged at the image forming position as in the present invention.

【0032】従って、スループットを低下させないため
に、ウエハ交換時間内に収差を測定することが好まし
い。さらに、収差変動が小さくて例えば1日に1回測定
すれば十分な場合には、測定時間がスループットに及ぼ
す影響は極めて小さいため、メンテナンス時間等に測定
しても良い。
Therefore, it is preferable to measure the aberration within the wafer exchange time so as not to reduce the throughput. Furthermore, when the aberration variation is small and it is sufficient to measure once a day, for example, the influence of the measurement time on the throughput is extremely small, and therefore the measurement may be performed during the maintenance time or the like.

【0033】即ち、本発明にかかる露光装置には、ウエ
ハを交換する時間内、または装置をメンテナンスする時
間内に、前記収差測定機構、移動機構、及び収差補正機
構を動作させる制御機構を設けることが好ましい(請求
項7)。以下、本発明を実施例によりさらに詳細に説明
するが、本発明はこれらの例に限定されるものではな
い。
That is, the exposure apparatus according to the present invention is provided with a control mechanism for operating the aberration measuring mechanism, the moving mechanism, and the aberration correcting mechanism within the time for exchanging the wafer or the time for maintaining the apparatus. Is preferred (Claim 7). Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0034】[0034]

【実施例】【Example】

<第一実施例>図1は、本実施例のX線投影露光装置の
構成を示すブロック図である。図1の露光装置は、X線
源、該X線源から発生するX線をマスク1上に照射する
照明光学系(不図示)、マスク1のステージ11、マス
ク1からのX線9を受けてマスク1上に形成されたパタ
ーンをウエハ3上に投影結像する投影結像光学系2、ウ
エハ3のステージ12、結像光学系2からのX線9’の
収差を測定する収差測定機構5、前記X線9’の収差を
補正する収差補正機構6、7、8、前記収差測定機構
5、収差補正機構6、7、8及びウェハステージ12の
動作を制御する制御機構13を有する。
<First Embodiment> FIG. 1 is a block diagram showing the arrangement of an X-ray projection exposure apparatus according to this embodiment. The exposure apparatus of FIG. 1 receives an X-ray source, an illumination optical system (not shown) that irradiates the mask 1 with X-rays generated from the X-ray source, a stage 11 of the mask 1, and an X-ray 9 from the mask 1. The projection imaging optical system 2 for projecting and forming the pattern formed on the mask 1 on the wafer 3, the stage 12 of the wafer 3, and the aberration measuring mechanism for measuring the aberration of the X-ray 9 ′ from the imaging optical system 2. 5, an aberration correction mechanism 6, 7, 8 for correcting the aberration of the X-ray 9 ′, an aberration measurement mechanism 5, an aberration correction mechanism 6, 7, 8 and a control mechanism 13 for controlling the operation of the wafer stage 12.

【0035】本装置は、光源としてレーザープラズマX
線源を用い、X線を照明装置を介してマスク1に照射す
る。露光波長は13nmとし、またマスク1は反射型のもの
を用いた。マスク1で反射したX線9は、結像光学系2
を透過してウエハ3上に到達し、マスクパターンがウエ
ハ3上に縮小転写される。結像光学系2は4枚の反射鏡
で構成され、それぞれの反射鏡には温度調節機構が設け
てあり、露光時でも温度の変化が0.1 ℃以下に保たれ
る。さらに、露光装置は恒温チャンバー内に置かれ、温
度の変化が0.1 ℃以下に抑えられるようになっている。
This apparatus uses a laser plasma X as a light source.
The mask 1 is irradiated with X-rays through a lighting device using a radiation source. The exposure wavelength was 13 nm, and the mask 1 was a reflective type. The X-ray 9 reflected by the mask 1 is reflected by the imaging optical system 2
After passing through, the mask pattern is transferred onto the wafer 3 and the mask pattern is reduced and transferred onto the wafer 3. The image forming optical system 2 is composed of four reflecting mirrors, and each reflecting mirror is provided with a temperature adjusting mechanism so that the temperature change is kept at 0.1 ° C. or less even during exposure. Further, the exposure apparatus is placed in a constant temperature chamber so that the temperature change can be suppressed to 0.1 ° C or less.

【0036】収差測定機構5は、露光中はウエハステー
ジ12の下部或いは隣接する位置に配置されている。そ
して、ウエハ交換中に、図3に示すように、移動機構4
により、ウエハステージ12を結像光学系2の結像位置
以外にスライドさせて、収差測定機構5を前記結像位置
付近に移動させる。さらに、結像光学系2を透過したX
線9’を、収差測定機構5に導入することにより、収差
を測定する。収差測定機構5は、X線空間像評価装置で
構成され、結像光学系2からのX線9’の収差が測定で
きる。
The aberration measuring mechanism 5 is arranged below or adjacent to the wafer stage 12 during exposure. Then, during the wafer exchange, as shown in FIG.
Thus, the wafer stage 12 is slid to a position other than the image forming position of the image forming optical system 2, and the aberration measuring mechanism 5 is moved to the vicinity of the image forming position. Furthermore, X transmitted through the imaging optical system 2
The aberration is measured by introducing the line 9 ′ into the aberration measuring mechanism 5. The aberration measuring mechanism 5 is composed of an X-ray aerial image evaluation device, and can measure the aberration of the X-ray 9 ′ from the imaging optical system 2.

【0037】露光装置の作動中は収差が変化するので、
測定値が0.9nmrmsを超えた場合には、制御機構13を用
いて収差補正機構である光学系調整機構6、マスク調整
機構7、ウエハ調整機構8の動作を制御することにより
収差の補正を行う。本実施例の露光装置を用いて露光す
ると、最小サイズ0.1 μmのレジストパターンが作製で
き、さらに、24時間以上の長時間運転においてもレジス
トパターンの断面形状に劣化は認められないことが分か
った。
Since the aberration changes during the operation of the exposure apparatus,
When the measured value exceeds 0.9 nmrms, the control mechanism 13 is used to correct the aberration by controlling the operations of the optical system adjusting mechanism 6, the mask adjusting mechanism 7, and the wafer adjusting mechanism 8 which are aberration correcting mechanisms. . It was found that when exposure was performed using the exposure apparatus of this example, a resist pattern having a minimum size of 0.1 μm could be produced, and further, even if the resist pattern was operated for a long time of 24 hours or more, no deterioration was observed in the cross-sectional shape of the resist pattern.

【0038】一方、収差測定機構、移動機構、収差補正
機構を設けていない従来の露光装置による露光の場合
は、運転開始後、徐々にレジストパターンの断面形状が
劣化し、さらに、0.1 μmサイズのパターンは形成され
なくなってしまった。 <第二実施例>図2は、本実施例のX線投影露光装置の
構成を示すブロック図である。
On the other hand, in the case of exposure by a conventional exposure apparatus that does not have an aberration measuring mechanism, a moving mechanism, and an aberration correcting mechanism, the cross-sectional shape of the resist pattern gradually deteriorates after the start of operation, and the 0.1 μm size The pattern is no longer formed. <Second Embodiment> FIG. 2 is a block diagram showing the arrangement of an X-ray projection exposure apparatus according to this embodiment.

【0039】図2の露光装置は、X線源、該X線源から
発生するX線をマスク1上に照射する照明光学系(不図
示)、マスク1のステージ11、マスク1からのX線9
を受けてマスク1上に形成されたパターンをウエハ3上
に投影結像する投影結像光学系2、ウエハ3のステージ
12、結像光学系2からのX線9’の収差を測定する収
差測定機構5、前記X線9’の収差を補正する収差補正
機構6、7、8、前記収差測定機構5、収差補正機構
6、7、8及びウェハステージ12の動作を制御する制
御機構13を有する。
The exposure apparatus of FIG. 2 has an X-ray source, an illumination optical system (not shown) for irradiating the mask 1 with X-rays generated from the X-ray source, a stage 11 of the mask 1, an X-ray from the mask 1. 9
The projection imaging optical system 2 that receives and receives the pattern formed on the mask 1 onto the wafer 3 to form an image, the stage 12 of the wafer 3, and the aberration that measures the aberration of the X-ray 9 ′ from the imaging optical system 2 A measurement mechanism 5, aberration correction mechanisms 6, 7, 8 for correcting the aberration of the X-ray 9 ′, a control mechanism 13 for controlling the operations of the aberration measurement mechanism 5, the aberration correction mechanisms 6, 7, 8 and the wafer stage 12. Have.

【0040】本装置は、光源としてレーザープラズマX
線源を用い、X線を照明装置を介してマスク1に照射す
る。露光波長は13nmとし、またマスク1は反射型のもの
を用いた。マスク1で反射したX線9は、結像光学系2
を透過してウエハ3上に到達し、マスクパターンがウエ
ハ3上に縮小転写される。結像光学系2は4 枚の反射鏡
で構成され、それぞれの反射鏡には温度調節機構が設け
てあり、露光時でも温度の変化が0.1 ℃以下に保たれ
る。さらに、露光装置は恒温チャンバー内に置かれ温度
の変化が0.1 ℃以下に抑えられるようになっている。
This apparatus uses a laser plasma X as a light source.
The mask 1 is irradiated with X-rays through a lighting device using a radiation source. The exposure wavelength was 13 nm, and the mask 1 was a reflective type. The X-ray 9 reflected by the mask 1 is reflected by the imaging optical system 2
After passing through, the mask pattern is transferred onto the wafer 3 and the mask pattern is reduced and transferred onto the wafer 3. The image forming optical system 2 is composed of four reflecting mirrors, and each reflecting mirror is provided with a temperature adjusting mechanism so that the temperature change is kept at 0.1 ° C. or less even during exposure. Further, the exposure apparatus is placed in a constant temperature chamber so that the temperature change can be suppressed to 0.1 ° C or less.

【0041】収差測定機構5は、ウエハステージ12に
固定されており、ウエハステージ12とともにその位置
を移動する。そして、ウエハ交換中に、図4に示すよう
に、ウエハステージ12を結像光学系2の結像位置以外
にスライドさせると同時に、収差測定機構5を該結像位
置付近に移動させる。さらに、結像光学系2を透過した
X線9’を、収差測定機構5に導入することにより、収
差を測定する。収差測定機構5は、X線空間像評価装置
で構成され、結像光学系2の収差が測定できる。
The aberration measuring mechanism 5 is fixed to the wafer stage 12 and moves along with the wafer stage 12. Then, during wafer exchange, as shown in FIG. 4, the wafer stage 12 is slid to a position other than the image forming position of the image forming optical system 2, and at the same time, the aberration measuring mechanism 5 is moved to the vicinity of the image forming position. Further, the X-ray 9 ′ that has passed through the imaging optical system 2 is introduced into the aberration measuring mechanism 5 to measure the aberration. The aberration measurement mechanism 5 is composed of an X-ray aerial image evaluation device and can measure the aberration of the imaging optical system 2.

【0042】即ち、本実施例の露光装置では、ウエハス
テージ12自身が収差測定時にウェハステージ12を前
記投影結像光学系2の結像位置から遠ざけて、前記収差
測定機構5を前記結像位置またはその付近に配置させ、
投影露光時に前記収差測定機構5を前記結像位置または
その付近から遠ざけて、ウェハステージ12を前記結像
位置に配置させる移動機構としての機能を果たしてい
る。
That is, in the exposure apparatus of this embodiment, when the wafer stage 12 itself measures the aberration, the wafer stage 12 is moved away from the image forming position of the projection image forming optical system 2, and the aberration measuring mechanism 5 is moved to the image forming position. Or place it near it,
At the time of projection exposure, the aberration measuring mechanism 5 functions as a moving mechanism that moves the aberration measuring mechanism 5 away from the image forming position or its vicinity and disposes the wafer stage 12 at the image forming position.

【0043】露光装置の作動中は収差が変化するので、
測定値が0.9nmrmsを超えた場合には、制御機構13を用
いて収差補正機構である光学系調整機構6、マスク調整
機構7、ウエハ調整機構8の動作を制御することにより
収差の補正を行う。本実施例の露光装置を用いて露光す
ると、最小サイズ0.1 μmのレジストパターンが作製で
き、さらに、24時間以上の長時間運転においてもレジス
トパターンの断面形状に劣化は認められないことが分か
った。
Since the aberration changes during the operation of the exposure apparatus,
When the measured value exceeds 0.9 nmrms, the control mechanism 13 is used to correct the aberration by controlling the operations of the optical system adjusting mechanism 6, the mask adjusting mechanism 7, and the wafer adjusting mechanism 8 which are aberration correcting mechanisms. . It was found that when exposure was performed using the exposure apparatus of this example, a resist pattern having a minimum size of 0.1 μm could be produced, and further, even if the resist pattern was operated for a long time of 24 hours or more, the cross-sectional shape of the resist pattern was not recognized.

【0044】一方、収差測定機構5、移動機構、収差補
正機構6、7、8を設けていない従来の露光装置による
露光の場合は、運転開始後、徐々にレジストパターンの
断面形状が劣化し、さらに、0.1 μmサイズのパターン
は形成されなくなってしまった。
On the other hand, in the case of exposure by the conventional exposure apparatus that does not have the aberration measuring mechanism 5, the moving mechanism, and the aberration correcting mechanisms 6, 7, and 8, the cross-sectional shape of the resist pattern gradually deteriorates after the start of operation, Furthermore, the 0.1 μm size pattern is no longer formed.

【0045】[0045]

【発明の効果】以上の如く、本発明(第1〜第7発明)
によれば、装置作動中の解像度の低下を防止できる。ま
た、本第7発明によれば、スループットを低下させない
で、装置作動中の解像度の低下を防止できる。即ち、本
発明の露光装置は(特に第7発明の装置では、そのスル
ープットを低下させずに)、X線の収差を測定すること
ができ、さらにその測定結果に基づいて収差を補正する
ことができる。
As described above, the present invention (first to seventh inventions)
According to the invention, it is possible to prevent the resolution from decreasing during the operation of the apparatus. Further, according to the seventh aspect of the present invention, it is possible to prevent the deterioration of the resolution during the operation of the apparatus without decreasing the throughput. That is, the exposure apparatus of the present invention (in particular, the apparatus of the seventh aspect of the invention) can measure the aberration of X-rays and can correct the aberration based on the measurement result. it can.

【0046】そのため、本発明の露光装置は長時間の作
動中、高い解像力を維持することができるので、微細な
レジストパターンを作製し続けることができる。また、
収差の測定は露光光自体を測定するため、測定精度が高
い。本第7発明の装置では、収差の測定をウエハを交換
する時間、メンテナンス時間等の露光しない時間に行う
ので、スループットは従来の露光装置と同じく、高スル
ープットを維持できる。従って、高いスループットで、
マスクのパターンを忠実に基板上に転写することができ
る。
Therefore, since the exposure apparatus of the present invention can maintain a high resolution during a long-time operation, it is possible to continue producing a fine resist pattern. Also,
Since the measurement of the aberration measures the exposure light itself, the measurement accuracy is high. In the apparatus according to the seventh aspect of the present invention, since the aberration is measured during the time when the wafer is exchanged, the maintenance time and the like, during which the exposure is not performed, the throughput can be maintained at the high throughput as in the conventional exposure apparatus. Therefore, with high throughput,
The mask pattern can be faithfully transferred onto the substrate.

【図面の簡単な説明】[Brief description of the drawings]

【図1】は、本発明にかかるX線投影露光装置(一例)
の構成(一部)を示すブロック図である。
FIG. 1 is an X-ray projection exposure apparatus according to the present invention (one example).
3 is a block diagram showing a configuration (a part) of FIG.

【図2】は、本発明にかかるX線投影露光装置(別の一
例)の構成(一部)を示すブロック図である。
FIG. 2 is a block diagram showing a configuration (a part) of an X-ray projection exposure apparatus (another example) according to the present invention.

【図3】は、本発明にかかるX線投影露光装置(一例)
における収差測定プロセスを示す図である(aは露光時
を示す図、bはウエハステージ12及び収差測定機構5
の移動時を示す図、cは収差測定時を示す図である)。
FIG. 3 is an X-ray projection exposure apparatus according to the present invention (one example).
6A and 6B are diagrams showing an aberration measurement process in FIG. 3A (a is a diagram showing an exposure time, b is a wafer stage 12 and an aberration measurement mechanism 5).
Is a diagram showing the time of movement, and c is a diagram showing the time of aberration measurement).

【図4】は、本発明にかかるX線投影露光装置(別の一
例)における収差測定プロセスを示す図である(aは露
光時を示す図、bはウエハステージ12及び収差測定機
構5の移動時を示す図、cは収差測定時を示す図であ
る)。
FIG. 4 is a diagram showing an aberration measurement process in an X-ray projection exposure apparatus (another example) according to the present invention (a is a diagram showing an exposure time, b is a movement of the wafer stage 12 and the aberration measurement mechanism 5). A diagram showing time, and c is a diagram showing aberration measurement).

【図5】は、本発明にかかるX線投影露光装置の収差補
正機構としての光学系調整機構(一例)の構成図であ
る。
FIG. 5 is a configuration diagram of an optical system adjusting mechanism (one example) as an aberration correcting mechanism of the X-ray projection exposure apparatus according to the present invention.

【図6】は、従来のX線投影露光装置(一例)の構成
(一部)を示すブロック図である。
FIG. 6 is a block diagram showing a configuration (a part) of a conventional X-ray projection exposure apparatus (an example).

【主要部分の符号の説明】[Description of Signs of Main Parts]

1...マスク 2...投影結像光学系 3...ウエハ 4...移動機構 5...収差測定機構 6...光学系調整機構(収差補正機構の一例) 7...マスク調整機構(収差補正機構の一例) 8...ウエハ調整機構(収差補正機構の一例) 9...マスクからのX線 9'...投影結像光学系からのX線 10...配線 11...マスクステージ 12...ウエハステージ 13...制御機構 14...反射鏡 15...アクチュエータ 16...反射鏡ホルダー 以上 1. . . Mask 2. . . Projection imaging optical system 3. . . Wafer 4. . . Moving mechanism 5. . . Aberration measuring mechanism 6. . . Optical system adjustment mechanism (an example of an aberration correction mechanism) 7. . . Mask adjustment mechanism (an example of aberration correction mechanism) 8. . . Wafer adjusting mechanism (an example of an aberration correcting mechanism) 9. . . X-ray from mask 9 '. . . X-ray from projection imaging optical system 10. . . Wiring 11. . . Mask stage 12. . . Wafer stage 13. . . Control mechanism 14. . . Reflective mirror 15. . . Actuator 16. . . More than a reflector holder

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、X線源、該X線源から発生
するX線をマスク上に照射する照明光学系、該マスクを
保持するマスクステージ、該マスクからのX線を受けて
該マスク上に形成されたパターンをウエハー上に投影結
像する投影結像光学系、及び該ウエハを保持するウェハ
ステージを備えたX線投影露光装置において、 前記投影結像光学系からのX線の収差を測定する収差測
定機構と、 前記X線の収差を低減または解消する収差補正機構と、
を設けたことを特徴とするX線投影露光装置。
1. An X-ray source, an illumination optical system for irradiating a mask with X-rays generated from the X-ray source, a mask stage for holding the mask, and an X-ray on the mask for receiving the X-rays from the mask. In an X-ray projection exposure apparatus equipped with a projection imaging optical system for projecting and imaging a pattern formed on a wafer onto a wafer, and a wafer stage for holding the wafer, the X-ray aberration from the projection imaging optical system is corrected. An aberration measuring mechanism for measuring, and an aberration correcting mechanism for reducing or eliminating the X-ray aberration,
An X-ray projection exposure apparatus comprising:
【請求項2】 少なくとも、X線源、該X線源から発生
するX線をマスク上に照射する照明光学系、該マスクを
保持するマスクステージ、該マスクからのX線を受けて
該マスク上に形成されたパターンをウエハー上に投影結
像する投影結像光学系、及び該ウエハを保持するウェハ
ステージを備えたX線投影露光装置において、 前記投影結像光学系からのX線の収差を測定する収差測
定機構と、 収差測定時に前記ウェハステージを前記投影結像光学系
の結像位置から遠ざけて、前記収差測定機構を前記結像
位置またはその付近に配置させ、投影露光時に前記収差
測定機構を前記結像位置またはその付近から遠ざけて、
前記ウェハステージを前記結像位置に配置させる移動機
構と、 前記X線の収差を低減または解消する収差補正機構と、
を設けたことを特徴とするX線投影露光装置。
2. An X-ray source, an illumination optical system for irradiating a mask with X-rays generated from the X-ray source, a mask stage for holding the mask, and an X-ray on the mask for receiving the X-rays from the mask. In an X-ray projection exposure apparatus equipped with a projection imaging optical system for projecting and imaging a pattern formed on a wafer onto a wafer, and a wafer stage for holding the wafer, the X-ray aberration from the projection imaging optical system is corrected. An aberration measuring mechanism to be measured, and the wafer stage is moved away from the image forming position of the projection image forming optical system at the time of measuring the aberration, and the aberration measuring mechanism is arranged at or near the image forming position to measure the aberration during the projection exposure. Away the mechanism from or near the imaging position,
A moving mechanism for arranging the wafer stage at the imaging position, an aberration correcting mechanism for reducing or eliminating the X-ray aberration,
An X-ray projection exposure apparatus comprising:
【請求項3】 前記収差測定機構が前記ウエハステージ
に固定され、該ウエハステージが前記移動機構を兼ねて
いることを特徴とする請求項2記載のX線投影露光装
置。
3. The X-ray projection exposure apparatus according to claim 2, wherein the aberration measuring mechanism is fixed to the wafer stage, and the wafer stage also serves as the moving mechanism.
【請求項4】 前記収差測定機構がX線空間像の測定器
であることを特徴とする請求項1〜3記載のX線投影露
光装置。
4. The X-ray projection exposure apparatus according to claim 1, wherein the aberration measuring mechanism is an X-ray aerial image measuring device.
【請求項5】 前記収差補正機構は少なくとも、前記投
影結像光学系を構成する光学素子の位置及び形状の調
整、前記マスクの形状の調整、または前記ウエハの形状
の調整を行うことにより前記X線の収差を低減または解
消することを特徴とする請求項1〜4記載のX線投影露
光装置。
5. The X-ray aberration correction mechanism adjusts the position and shape of an optical element forming the projection imaging optical system, the shape of the mask, or the shape of the wafer by at least the X-correction mechanism. The X-ray projection exposure apparatus according to claim 1, wherein line aberration is reduced or eliminated.
【請求項6】 前記収差測定機構、移動機構及び収差補
正機構の動作を制御する制御機構をさらに設けたことを
特徴とする請求項1〜5記載のX線投影露光装置。
6. The X-ray projection exposure apparatus according to claim 1, further comprising a control mechanism for controlling the operations of the aberration measuring mechanism, the moving mechanism and the aberration correcting mechanism.
【請求項7】 前記制御機構は、前記ウエハを交換する
時間内、または装置をメンテナンスする時間内に、前記
収差測定機構、移動機構及び収差補正機構を動作させる
ことを特徴とする請求項6記載のX線投影露光装置。
7. The control mechanism operates the aberration measuring mechanism, the moving mechanism, and the aberration correcting mechanism within a time period in which the wafer is exchanged or a time period in which the apparatus is maintained. X-ray projection exposure apparatus.
JP31227795A 1995-11-30 1995-11-30 X-ray projection exposure apparatus Expired - Fee Related JP3632264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31227795A JP3632264B2 (en) 1995-11-30 1995-11-30 X-ray projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31227795A JP3632264B2 (en) 1995-11-30 1995-11-30 X-ray projection exposure apparatus

Publications (2)

Publication Number Publication Date
JPH09153444A true JPH09153444A (en) 1997-06-10
JP3632264B2 JP3632264B2 (en) 2005-03-23

Family

ID=18027310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31227795A Expired - Fee Related JP3632264B2 (en) 1995-11-30 1995-11-30 X-ray projection exposure apparatus

Country Status (1)

Country Link
JP (1) JP3632264B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195788A (en) * 1998-12-23 2000-07-14 Carl Zeiss Stiftung Trading As Carl Zeiss Optical system, projection illumination unit used especially for microlithography
WO2004001820A1 (en) * 2002-06-19 2003-12-31 Canon Kabushiki Kaisha Exposure apparatus and method
JP2005228875A (en) * 2004-02-12 2005-08-25 Canon Inc Exposure apparatus and device manufacturing method
US7505116B2 (en) 2002-07-16 2009-03-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2009545146A (en) * 2006-07-24 2009-12-17 カール・ツァイス・エスエムティー・アーゲー Optical device and method for correcting or improving imaging behavior of an optical device
KR20130089581A (en) * 2010-06-25 2013-08-12 케이엘에이-텐코 코포레이션 Extending the lifetime of a deep uv laser in a wafer inspection tool
JP2016130864A (en) * 2004-12-20 2016-07-21 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000195788A (en) * 1998-12-23 2000-07-14 Carl Zeiss Stiftung Trading As Carl Zeiss Optical system, projection illumination unit used especially for microlithography
WO2004001820A1 (en) * 2002-06-19 2003-12-31 Canon Kabushiki Kaisha Exposure apparatus and method
US7060994B2 (en) 2002-06-19 2006-06-13 Canon Kabushiki Kaisha Exposure apparatus and method
US7505116B2 (en) 2002-07-16 2009-03-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2005228875A (en) * 2004-02-12 2005-08-25 Canon Inc Exposure apparatus and device manufacturing method
JP4537087B2 (en) * 2004-02-12 2010-09-01 キヤノン株式会社 Exposure apparatus and device manufacturing method
JP2016130864A (en) * 2004-12-20 2016-07-21 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus
US9835960B2 (en) 2004-12-20 2017-12-05 Asml Netherlands B.V. Lithographic apparatus
US10248035B2 (en) 2004-12-20 2019-04-02 Asml Netherlands B.V. Lithographic apparatus
JP2009545146A (en) * 2006-07-24 2009-12-17 カール・ツァイス・エスエムティー・アーゲー Optical device and method for correcting or improving imaging behavior of an optical device
KR20130089581A (en) * 2010-06-25 2013-08-12 케이엘에이-텐코 코포레이션 Extending the lifetime of a deep uv laser in a wafer inspection tool

Also Published As

Publication number Publication date
JP3632264B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
KR101624758B1 (en) Telecentricity Corrector for Microlithographic Projection System
JP2002246309A (en) Lithographic system, method of manufacturing device, and device manufactured by the method
JP4787282B2 (en) Device manufacturing method, computer program, and lithographic apparatus
US7083290B2 (en) Adjustment method and apparatus of optical system, and exposure apparatus
JPH0794393A (en) Projection aligner
JP2003092253A (en) Illumination optical system, projection aligner, and manufacturing method of microdevice
JP3218478B2 (en) Projection exposure apparatus and method
JPH05144701A (en) Projection aligner and fabrication of semiconductor element using the same
JP4095376B2 (en) Exposure apparatus and method, and device manufacturing method
JP2000036449A (en) Aligner
JP2002329651A (en) Aligner, method of manufacturing aligner and method of manufacturing micro-device
JP2003068622A (en) Aligner, control method thereof, and method of manufacturing device
JP3632264B2 (en) X-ray projection exposure apparatus
US20030234993A1 (en) Adaptive optic off-axis metrology
JP2897345B2 (en) Projection exposure equipment
JP3541262B2 (en) X-ray projection exposure equipment
JP2005243953A (en) Aligner and method therefor
KR20180129625A (en) Determination method, exposure method, information processing apparatus, program, and article manufacturing method
JP4639134B2 (en) Lithographic system and method for adjusting transmission characteristics of an optical path in a lithographic system
US7826036B2 (en) Scanning exposure apparatus and method of manufacturing device
JP3958261B2 (en) Optical system adjustment method
US5247153A (en) Method and apparatus for in-situ deformation of a surface, especially a non-planar optical surface
US5666206A (en) Exposure system and exposure method
JP2010123755A (en) Exposure apparatus, and device manufacturing method
JPH0982599A (en) Projection aligner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees