JPS63239781A - Lithium ion conductive eiectrolyte - Google Patents

Lithium ion conductive eiectrolyte

Info

Publication number
JPS63239781A
JPS63239781A JP62071589A JP7158987A JPS63239781A JP S63239781 A JPS63239781 A JP S63239781A JP 62071589 A JP62071589 A JP 62071589A JP 7158987 A JP7158987 A JP 7158987A JP S63239781 A JPS63239781 A JP S63239781A
Authority
JP
Japan
Prior art keywords
lithium
electrolyte
ion conductive
lithium salt
li3alf6
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62071589A
Other languages
Japanese (ja)
Inventor
Shinichi Tobishima
真一 鳶島
Masayasu Arakawa
正泰 荒川
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62071589A priority Critical patent/JPS63239781A/en
Publication of JPS63239781A publication Critical patent/JPS63239781A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To obtain a lithium ion conductive electrolyte with a high stability and possible to charge and discharge lithium by using Li3AlF6 as the lithium salt. CONSTITUTION:In a nonaqueous electrolyte in which a lithium salt is dissolved in a nonaqueous solvent, or in a high polymer electrolyte including a lithium in a high polymer matrix, Li3AlF6 is used as the lithium salt. Since the Li3AlF6 has Li<+> ion conductibility and a high charge and discharge effieiency while being stable to an organic compound, a Li<+> ion conductive nonaqueous electrolyte or high polymer electrolyte with an excellent property can be obtained by using the Li3AlF6 as the lithium salt.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リチウムを負極活物質とする電池、あるいは
リチウムイオン又はアニオンをドープしたものを電極と
する電池に用いられる非水電解液あるいは高分子電解質
を構成する電解質に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a nonaqueous electrolyte or a high It relates to electrolytes that constitute molecular electrolytes.

〔従来の技術〕[Conventional technology]

リチウムを負極活物質として用いるリチウム電池は高エ
ネルギー密度の電池としてよく知られている。例えば、
負極にリチウム金属、リチウム−アルミニウム合金、あ
るいはウッドメタル系化合物とリチウムの合金を用い、
正極にTiEj、、カーボン、(CF)nあるいはMn
O,等を用いたリチウム電池が提案されている。また、
π電子共役系を有する化合物(例えば、ポリアセチレン
、ポリアセン、ポリパラフェニレン等)にリチウムイオ
ンやアニオンをドープしたものを電極に用いる電池も広
く研究されている。これらの電池には、x、1atoい
LiBFいLiAs F6 、Li PFa、xaxa
y、go3あるいはLihtct、等のリチウム塩を非
水溶媒(例えば、プロビレ/カーボネート、γ−ブチロ
ラクトン、テトラヒドロフラン誘導体、ジアルコキシエ
タン類、Bootffi等)に溶解させた非水電解液あ
るいは前記リチウム塩を高分子マトリックス(例えば、
ポリエチレンオキシド等)中に含んだ高分子電解質が用
いられている。
Lithium batteries that use lithium as a negative electrode active material are well known as high energy density batteries. for example,
Using lithium metal, lithium-aluminum alloy, or an alloy of wood metal compound and lithium for the negative electrode,
TiEj, carbon, (CF)n or Mn for the positive electrode
Lithium batteries using O, etc. have been proposed. Also,
Batteries using compounds having a π-electron conjugated system (for example, polyacetylene, polyacene, polyparaphenylene, etc.) doped with lithium ions or anions as electrodes have also been widely studied. These batteries include x, 1ato LiBF, LiAs F6, Li PFa, xaxa
A non-aqueous electrolyte solution in which a lithium salt such as y, go3 or Lihtct is dissolved in a non-aqueous solvent (e.g., probile/carbonate, γ-butyrolactone, tetrahydrofuran derivatives, dialkoxyethanes, Bootffi, etc.) or the lithium salt is Molecular matrices (e.g.
Polymer electrolytes contained in polyethylene oxide (polyethylene oxide, etc.) are used.

そして、%K LihaF、、LiBF、等の大きなア
ニオンを有する電解質を用いると放電あるいは充放電特
性が良好になることが知られている。しかし、LiAs
 F、やLid?、は、極く微量の不純物が存在しても
分解し易く、溶媒や電極材料と反応し易いという欠点を
有し、実用上、その安定性が問題となっている。これを
改善するために新しい電解質としてLiTaF、やLl
、aep、(第5回リチウム電池国際集会予稿集、第1
55〜156頁、1986年)が提案されている。
It is known that using an electrolyte having a large anion such as %K LihaF, LiBF, etc. improves the discharge or charge/discharge characteristics. However, LiAs
F, Lid? has the drawbacks of being easily decomposed even in the presence of extremely small amounts of impurities and easily reacting with solvents and electrode materials, and its stability has become a problem in practice. To improve this, new electrolytes such as LiTaF and Ll
, aep, (Proceedings of the 5th International Conference on Lithium Batteries, Vol. 1
55-156, 1986) has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、溶媒を酸化分解してしまう等の欠点があ
るだけでなく、リチウムの充放電特性も不明であり、新
しい電解質の開発は不充分なのが現状である。更に、リ
チウム塩を非水溶媒に溶解させた非水電解液は電気二重
層を利用したキャパンタへの応用も考えられ、新しい電
解質の開発はこの分野への適用を考慮しても、重要であ
る。
However, not only do they have drawbacks such as oxidative decomposition of the solvent, but also the charging and discharging characteristics of lithium are unknown, and the development of new electrolytes is currently insufficient. Furthermore, a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent can be applied to capantas using an electric double layer, and the development of new electrolytes is important even when considering application to this field. .

本発明はこのような現状にかんがみてなされたものであ
り、その目的は、安定性が高く、かつ、リチウムの充放
電が可能なリチウムイオン伝導性電解質を提供すること
にある。
The present invention has been made in view of the current situation, and its purpose is to provide a lithium ion conductive electrolyte that is highly stable and capable of charging and discharging lithium.

〔問題点を解決するための手段〕[Means for solving problems]

本発明を概説すれば、本発明はリチウムイオン伝導性電
解質に関する発明であって、リチウム塩を非水溶媒に溶
解させた非水電解液、あるいはリチウム塩を高分子マト
リックス中に含む高分子電解質において、前記リチウム
塩としてLi、ムjF、  を用いたことを特徴とする
To summarize the present invention, the present invention relates to a lithium ion conductive electrolyte, which is a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent, or a polymer electrolyte containing a lithium salt in a polymer matrix. , Li, MujF, are used as the lithium salt.

本発明について更に詳しく説明する。The present invention will be explained in more detail.

リチウム電池、特にリチウム二次電池用電解液の電解質
としてLiAalF、 、LiPFll 、LiBF、
等が多用されている。これらの電解質のアニオン(As
F、″、PF、−1BIF、″)は、ルイス塩基である
F″″ とルイス酸であるムa烏、PIF、 、 BP
、との錯イオンであり、電解質の分解はこの錯体イオ/
の配位結合が切断されることに帰因する。例えば、Li
ム81P6の場合、式(1)のように分解する。
As electrolytes for lithium batteries, especially lithium secondary batteries, LiAalF, , LiPFll, LiBF,
etc. are often used. These electrolyte anions (As
F,'', PF, -1BIF,'') are Lewis base F'''' and Lewis acid Mua, PIF, , BP
, and the decomposition of the electrolyte is caused by this complex ion/
This is due to the cleavage of the coordination bond. For example, Li
In the case of program 81P6, it is decomposed as shown in equation (1).

L1ム5IF6→LLIP十ムsF5   sea (
1)つまり、電解質を安定化させるためにはいかKして
アニオン中の特定の?原子に電荷密度を集中させないよ
うにするか、すなわち等電子的に負電荷をアニオン中に
分散させるか、ということが必要である。本発明で用い
るLi、AjF−のやPF、−(A 2 A )と大差
ないが、5価のアニオン(AjF、”−)であるため、
アニオンの電子密度は約5倍と高い。このためアニオン
はよシ安定化するものと推定される。
L1mu5IF6→LLIP10mu sF5 sea (
1) In other words, how can we stabilize the electrolyte by increasing the amount of K in the anion? It is necessary to prevent the charge density from concentrating on the atoms, or to disperse the negative charges isoelectronically into the anions. Although it is not much different from Li, AjF- and PF, -(A 2 A ) used in the present invention, since it is a pentavalent anion (AjF, "-),
The electron density of anions is about 5 times higher. Therefore, it is presumed that the anion becomes more stable.

本発明に用いられるLi、ArIF、を溶解させる非水
溶媒は、通常、リチウム電池に用いられる電解液溶媒を
用いることができる。例えば、プロピレンカーボネート
、γ−ブチロラクトン、スルホラン、エチレンカーボネ
ート、テトラヒドロフラン、ジメトキシエタン、ジオキ
ソラン、2−メチルテトラヒドロフジン、4−メチル−
1,3−ジオキノラン、BOQ4等の中から選ばれた少
なくとも1種以上の溶媒を用いることができる。また、
本発明に用いられるLi、ム116 を使用する高分子
電解質のマトリックスとしては、通常、リチウムイオン
伝導性高分子固体電解質に用いられる高分子材料を用い
ることができる。
As the non-aqueous solvent for dissolving Li and ArIF used in the present invention, an electrolyte solvent normally used for lithium batteries can be used. For example, propylene carbonate, γ-butyrolactone, sulfolane, ethylene carbonate, tetrahydrofuran, dimethoxyethane, dioxolane, 2-methyltetrahydrofuzine, 4-methyl-
At least one solvent selected from 1,3-dioquinolane, BOQ4, etc. can be used. Also,
As the matrix of the polymer electrolyte using Li or Mu116 used in the present invention, a polymer material normally used for a lithium ion conductive polymer solid electrolyte can be used.

例えば、ポリエチレンオキシド、ポリエチレングリコー
ルメタクリレート、ポリエチレンアジペート、ポリビニ
ルアセテート、ポリプロピレンオキシド、ポリジメチル
シロ中サン等の中から選ばれた少なくとも1種以上の化
合物を用いることができる。
For example, at least one compound selected from polyethylene oxide, polyethylene glycol methacrylate, polyethylene adipate, polyvinyl acetate, polypropylene oxide, polydimethylsilane, etc. can be used.

〔実施例〕〔Example〕

以下、本発明を実施例によシ更KA体的に説明するが、
本発明はこれら実施例に限定されない。
Hereinafter, the present invention will be concretely explained using examples.
The invention is not limited to these examples.

実施例1 電解液として、エチレンカーボネート(以下、里Cと略
記)と2−メチルテトラヒドロフジン(以下、2MeT
HF’と略記)との混合溶媒(体積混合比、1:1)に
αOf5M(M:モル//)のLi、ム/IF、  を
溶解したものを作製した。従来知られている一1FF、
やLi、TaF、  では、溶媒の分解が見られたのに
対し、IIi、ム/?、  を用いた上記電解液は、無
色透明のままで安定していた。本発明による上記電解液
の25℃における導電率は五3×10″″I日1−!で
あり、テトラヒドロフランに対して安定であると報告さ
れているLj4GeFaの導電率(1゜6X10”Sα
−1)より1桁高かった本発明による上記電解液を用い
て、以下に述べる方法によってリチウムの充放電効率2
求めた。充放電効率(E&)は作用極に白金を、対極及
び参照電極としてリチウムを用いた電池を作製し、以下
のように測定した。測定は、まず5μA/ca?の定1
流で80分間白金極上に1ルチウムを析出嘔せた(&7
μAh/crI?)。この操作でリチウムが析出し、L
i、A4F、はI、i+イオン伝導性であることがわか
る。その後、析出させたリチウムの一部(1,7μムh
/、、?)をL1+イオンとして放電し、再び更に1.
7μムh/Jの容量で放電するサイクル試験を繰返した
。充放電効率(ms)は白金極の電位の変化よう求め、
見掛は上100チの効率を示すサイクル数をnとすると
、下記の式(II)より、前記Kaを求めることができ
る。
Example 1 Ethylene carbonate (hereinafter abbreviated as Ri-C) and 2-methyltetrahydrofuzine (hereinafter 2MeT) were used as electrolytes.
A product was prepared by dissolving αOf5M (M: mol//) of Li, Mu/IF, in a mixed solvent (volume mixing ratio, 1:1) with HF' (abbreviated as HF'). Conventionally known 1FF,
, Li, TaF, etc., decomposition of the solvent was observed, whereas IIi, Mu/? The above electrolyte solution using , remained colorless and transparent and stable. The conductivity of the electrolyte according to the invention at 25° C. is 53×10″I day 1−! The conductivity of Lj4GeFa (1°6X10”Sα), which is reported to be stable in tetrahydrofuran, is
-1) Using the electrolyte according to the present invention, which was one order of magnitude higher than that of lithium charge/discharge efficiency 2, the method described below
I asked for it. The charge/discharge efficiency (E&) was measured as follows using a battery using platinum as a working electrode and lithium as a counter electrode and a reference electrode. First, measure 5μA/ca? Determination 1
1 rutium was deposited on the platinum electrode for 80 minutes by flowing water (&7
μAh/crI? ). In this operation, lithium is precipitated and L
It can be seen that i,A4F, has I,i+ ion conductivity. After that, a part of the precipitated lithium (1.7 μm h
/,,? ) is discharged as L1+ ions, and again 1.
A cycle test of discharging at a capacity of 7 μm h/J was repeated. The charge/discharge efficiency (ms) is determined by the change in potential of the platinum electrode,
Assuming that the number of cycles indicating an apparent efficiency of 100 cm is n, the above Ka can be determined from the following formula (II).

KA−(1,7−(iy−1,7)、/n)、/i、7
X 100m o、*(H)結果を第1表に他の例と共
に示す。第1表には、比較例として、I M LiPF
、 −IC/2Me THI! (体積混合比、1/1
  )を用いた場合のリチウムの充O放電効率も示しで
ある。Li3AlF6を用いた場合〔第1表(4)〕は
LiPF、を用いた場合〔第1表■)〕より高いリチウ
ムの充放電効率を示すことがわかる。
KA-(1,7-(iy-1,7),/n),/i,7
X 100m o, *(H) The results are shown in Table 1 along with other examples. Table 1 shows I M LiPF as a comparative example.
, -IC/2Me THI! (Volume mixing ratio, 1/1
) is also shown for the charging and discharging efficiency of lithium. It can be seen that the case where Li3AlF6 is used [Table 1 (4)] shows higher lithium charge/discharge efficiency than the case where LiPF is used [Table 1 (■)].

実施例2 実施例1と同じ電解液を用いて、充放電電流密度を50
μA/、m”に設定した以外は実施例1と同様にしてリ
チウムの充放電効率を求めた。結果をt$、1表(C)
に示す。第1表から判るように、本発明のLi、A4P
F、を用いた場合、LiI’?、を用いた場合〔第1表
a3)〕よりも高いリチウムの充放電効率を示すことが
判る。
Example 2 Using the same electrolyte as in Example 1, the charging/discharging current density was set to 50
The charging and discharging efficiency of lithium was determined in the same manner as in Example 1 except that it was set to μA/, m''.The results are expressed in t$, Table 1 (C)
Shown below. As can be seen from Table 1, the Li, A4P of the present invention
When using F, LiI'? It can be seen that a higher lithium charging/discharging efficiency is exhibited than when using , [Table 1 a3)].

第1表 充放電電流密度: a)5/’A/i 、b)sapム
A7EC;エチレンカーホネート、2MeT!IF’:
  2−メチルテトラヒドロフラン〔発明の効果〕 以上説明したように、本発明によるLi、ム/F。
Table 1 Charging and discharging current density: a) 5/'A/i, b) sapm A7EC; ethylene carbonate, 2MeT! IF':
2-Methyltetrahydrofuran [Effects of the Invention] As explained above, Li, Mu/F according to the present invention.

はLi+イオン伝導性を有し、有機化合物に対して安定
で、かつLlの充放電効率も高いため、Li、ム/IF
6  をリチウム塩として用いることによシ特性が優れ
たLi+イオン伝導性の非水電解液あるいは高分子電解
質を提供できるという利点がある。
has Li+ ion conductivity, is stable against organic compounds, and has high charge/discharge efficiency of Ll, so Li, Mu/IF
By using 6 as a lithium salt, there is an advantage that a Li+ ion conductive non-aqueous electrolyte or polymer electrolyte with excellent lithium properties can be provided.

Claims (1)

【特許請求の範囲】[Claims] 1、リチウム塩を非水溶媒に溶解させた非水電解液、あ
るいはリチウム塩を高分子マトリックス中に含む高分子
電解質において、前記リチウム塩としてLi_3AlF
_6を用いたことを特徴とするリチウムイオン伝導性電
解質。
1. In a non-aqueous electrolyte in which a lithium salt is dissolved in a non-aqueous solvent or a polymer electrolyte containing a lithium salt in a polymer matrix, Li_3AlF is used as the lithium salt.
A lithium ion conductive electrolyte characterized by using _6.
JP62071589A 1987-03-27 1987-03-27 Lithium ion conductive eiectrolyte Pending JPS63239781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071589A JPS63239781A (en) 1987-03-27 1987-03-27 Lithium ion conductive eiectrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071589A JPS63239781A (en) 1987-03-27 1987-03-27 Lithium ion conductive eiectrolyte

Publications (1)

Publication Number Publication Date
JPS63239781A true JPS63239781A (en) 1988-10-05

Family

ID=13465012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071589A Pending JPS63239781A (en) 1987-03-27 1987-03-27 Lithium ion conductive eiectrolyte

Country Status (1)

Country Link
JP (1) JPS63239781A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372584A2 (en) * 1988-12-09 1990-06-13 Dow Corning Corporation Acrylate functional organosiloxane/oxyalkylene copolymers and electrically conductive compositions containing same and a solubilized lithium salt
WO1997037394A1 (en) * 1996-03-29 1997-10-09 Consiglio Nazionale Delle Ricerche GALLIUM DOPED LITHIUM MANGANESE OXIDE SPINELS (LiGaxMn2-xO4) AS ACTIVE CATHODE MATERIAL FOR LITHIUM OR LITHIUM-ION RECHARGEABLE BATTERIES WITH IMPROVED CYCLING PERFORMANCE
WO2003012894A2 (en) * 2001-08-01 2003-02-13 California Institute Of Technology Solid acid electrolytes for electrochemical devices
WO2004042853A1 (en) * 2002-10-30 2004-05-21 Smith Novis W Separators for electrochemical devices having an ionically conductive solid compound therein
US7250232B2 (en) 2004-06-10 2007-07-31 California Institute Of Technology Processing techniques for the fabrication of solid acid fuel cell membrane electrode assemblies
US7416803B2 (en) 1999-01-22 2008-08-26 California Institute Of Technology Solid acid electrolytes for electrochemical devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204478A (en) * 1982-05-24 1983-11-29 Asahi Chem Ind Co Ltd High output battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204478A (en) * 1982-05-24 1983-11-29 Asahi Chem Ind Co Ltd High output battery

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372584A2 (en) * 1988-12-09 1990-06-13 Dow Corning Corporation Acrylate functional organosiloxane/oxyalkylene copolymers and electrically conductive compositions containing same and a solubilized lithium salt
WO1997037394A1 (en) * 1996-03-29 1997-10-09 Consiglio Nazionale Delle Ricerche GALLIUM DOPED LITHIUM MANGANESE OXIDE SPINELS (LiGaxMn2-xO4) AS ACTIVE CATHODE MATERIAL FOR LITHIUM OR LITHIUM-ION RECHARGEABLE BATTERIES WITH IMPROVED CYCLING PERFORMANCE
US6274278B1 (en) 1996-03-29 2001-08-14 Consiglio Nazionale Delle Ricerche Gallium doped lithium manganese oxide spinels (LiGaxMn2−xO4) as cathode material for lithium or lithium-ion rechargeable batteries with improved cycling performance
US7416803B2 (en) 1999-01-22 2008-08-26 California Institute Of Technology Solid acid electrolytes for electrochemical devices
WO2003012894A2 (en) * 2001-08-01 2003-02-13 California Institute Of Technology Solid acid electrolytes for electrochemical devices
WO2003012894A3 (en) * 2001-08-01 2003-04-24 California Inst Of Techn Solid acid electrolytes for electrochemical devices
JP2004537834A (en) * 2001-08-01 2004-12-16 カリフォルニア・インスティテュート・オブ・テクノロジー Solid acid electrolyte for electrochemical devices
JP4754782B2 (en) * 2001-08-01 2011-08-24 カリフォルニア・インスティテュート・オブ・テクノロジー Solid acid electrolytes for electrochemical devices
WO2004042853A1 (en) * 2002-10-30 2004-05-21 Smith Novis W Separators for electrochemical devices having an ionically conductive solid compound therein
US7250232B2 (en) 2004-06-10 2007-07-31 California Institute Of Technology Processing techniques for the fabrication of solid acid fuel cell membrane electrode assemblies

Similar Documents

Publication Publication Date Title
KR100413595B1 (en) secondary battery
JP3878206B2 (en) Ionic conductive material with good corrosion resistance
KR100709084B1 (en) A lithium battery, a lithium fluoroborate and a lithium electrolyte
JP5410277B2 (en) Nonaqueous electrolyte additive having cyano group and electrochemical device using the same
JP3294400B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2000353543A (en) Nonaqueous electrolyte secondary battery
JP2759479B2 (en) All-solid-state lithium secondary battery
JPS6286673A (en) Electrolyte for lithium secondary battery
KR100920555B1 (en) Electrolyte solution and nonaqueous electrolyte lithium secondary battery
AU593980B2 (en) Electrolyte for lithium-sulfur dioxide electrochemical cell
JPS63239781A (en) Lithium ion conductive eiectrolyte
JP3237394B2 (en) Electrochemical element
JPH0630257B2 (en) Organic electrolyte battery
JP3292220B2 (en) Lithium battery
JPS60154478A (en) Electrolyte for lithium secondary battery
JPH01200572A (en) Electrolyte for lithium storage battery
JP3587791B2 (en) Method for producing positive electrode for battery and non-aqueous electrolyte battery
OHzuKu et al. A graphite compound as cathode for rechargeable nonaqueous lithium battery
JPS63239780A (en) Lithium ion conductive electrolyte
Pistoia et al. Lead compounds as cathode materials for Lithium cells
JPH11250933A (en) Nonaqueous electrolyte secondary battery
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JP2526093B2 (en) Lithium secondary battery
JP3086878B1 (en) Lithium metal secondary battery
JPH0349166A (en) Lithium secondary battery