JPS63239774A - Solid electrolyte sheet and its manufacture - Google Patents

Solid electrolyte sheet and its manufacture

Info

Publication number
JPS63239774A
JPS63239774A JP62073727A JP7372787A JPS63239774A JP S63239774 A JPS63239774 A JP S63239774A JP 62073727 A JP62073727 A JP 62073727A JP 7372787 A JP7372787 A JP 7372787A JP S63239774 A JPS63239774 A JP S63239774A
Authority
JP
Japan
Prior art keywords
solid electrolyte
hardness
sheet
electrolyte powder
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62073727A
Other languages
Japanese (ja)
Other versions
JPH0576137B2 (en
Inventor
Masaki Nagata
正樹 永田
Tadashi Yasuda
直史 安田
Shigeo Kondo
繁雄 近藤
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Panasonic Holdings Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP62073727A priority Critical patent/JPS63239774A/en
Priority to US07/172,165 priority patent/US4828945A/en
Priority to DE3852411T priority patent/DE3852411T2/en
Priority to EP88104872A priority patent/EP0284103B1/en
Priority to KR1019880003330A priority patent/KR970004136B1/en
Publication of JPS63239774A publication Critical patent/JPS63239774A/en
Publication of JPH0576137B2 publication Critical patent/JPH0576137B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/181Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To make it possible to obtain a thin type and a large area size by dispersing a specific solid electrolyte powder in an insulating high polymer elastic body evenly at a volume percentage 55 to 95 %. CONSTITUTION:This solid electrolyte sheet is composed of an ion conductive inorganic solid electrolyte powder (solid electrolyte powder) and an insulating high polymer elastic body. And the solid electrolyte powder is dispersed in the insulating high polymer elastic body evenly at a volume percentage 55 to 95 %. The hardness is 65 to 96 (ASTM A hardness), and the thickness is 10 to 250 mum. In such a composition, a thin type and a large area size can be realized, and can be used as an electrolyte sheet for a thin type cell less than 1.0 mm thick.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は固体電解質シートおよびその製造方法に関し、
さらに詳しくは例えば固体マイクロ電池に使用されるイ
オン導電性に優れた固体電解質シートおよびその製造方
法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a solid electrolyte sheet and a method for manufacturing the same.
More specifically, the present invention relates to a solid electrolyte sheet with excellent ionic conductivity used, for example, in solid microbatteries, and a method for producing the same.

(従来の技術) 電子産業における近年の技術的進歩は著しく、あらゆる
分野にIC,LSI等の電子部品が多く用いられている
が、電池技術の分野においても例外ではなく、小型化、
薄型化が図られており、カード型電卓用電源、カメラ用
電源、腕時計用電源等として多量に使用されている。
(Prior art) Technological advances in the electronics industry have been remarkable in recent years, and electronic components such as ICs and LSIs are widely used in all fields.The field of battery technology is no exception, and miniaturization,
It is designed to be thin and is widely used as power supplies for card-type calculators, cameras, wristwatches, etc.

これらの用途に用いられる電池は、アルカリ電池または
リチウム電池がほとんどであり、使用される電解質はい
ずれも液体電解質である。これら液体電解質を使用した
電池は、電池の封目方法に高度の加工技術を要し、現状
ではガスケットを介したクリンプシールを用いた封口技
術が主に用いられているが、電池が薄くなるほど封口部
材の電池容積に占める割合が増大し、要求される電池容
量の提供が難しくなり、電池の薄型化にも限界がある。
Most of the batteries used in these applications are alkaline batteries or lithium batteries, and the electrolytes used are liquid electrolytes. Batteries that use these liquid electrolytes require advanced processing technology to seal the battery, and currently the sealing technology that uses crimp seals with gaskets is mainly used, but the thinner the battery, the more difficult it is to seal the battery. As the ratio of the components to the battery volume increases, it becomes difficult to provide the required battery capacity, and there is a limit to how thin the battery can be made.

以上のことから、電池の薄型化および軽量化を図るため
に、新しい電解質材料の開発が試みられており、−例と
qで、易加工性、柔軟性等の長所を生かした高分子電解
質の電池等への応用がある。
Based on the above, attempts are being made to develop new electrolyte materials to make batteries thinner and lighter. It has applications in batteries, etc.

オリゴオキシエチレン)−アルカリ金属塩系が挙げられ
るが、該高分子電解質のイオン伝導度は最も優れたもの
でも室温で10=s/cm程度であり、また移動イオン
の選択性が悪く、カチオン(例えばLi”)だけでなく
アニオン(例えばClO4’″)の移動を生ずる等の問
題があり、実用段階に到っていない。
(oligooxyethylene)-alkali metal salt system, but the ionic conductivity of the polymer electrolyte is about 10 = s/cm at room temperature even if it is the best, and the selectivity of mobile ions is poor, and the cation ( For example, there are problems such as migration of not only Li") but also anions (for example, ClO4'"), and this method has not yet reached a practical stage.

また、大きなイオン導電率を有する例えば銀イオンや銅
イオン等のイオン伝導性固体電解質を利用する試みがな
されており、その代表的なものには、銀イオン伝導性固
体電解質としてRbAg4■5、銅イオン伝導性固体電
解質としてRbCu4I 1.!5 C1節、リチウム
イオン伝導性固体電解質として0.4LiSi04−0
.6Li3VO4、プロトン伝導性固体電解質としてH
3MO12PO4゜・29H20やH3W12PO,,
29H20等がある。
In addition, attempts have been made to use ionic conductive solid electrolytes such as silver ions and copper ions that have high ionic conductivity, and typical examples include RbAg4■5, copper ion conductive solid electrolytes, and silver ion conductive solid electrolytes. RbCu4I as an ion conductive solid electrolyte 1. ! 5 C1 clause, 0.4LiSi04-0 as lithium ion conductive solid electrolyte
.. 6Li3VO4, H as a proton-conducting solid electrolyte
3MO12PO4゜・29H20 and H3W12PO,,
There are 29H20 etc.

これらの固体電解質は、無機固体粉末であるため、電池
等への加工時に、高圧プレスによるペレット化が必要と
なるため、生産性、均−性等を得る上で大きな障害とな
っている。また、得られるベレットは硬(、脆いため、
薄型化に限界があり、大面積のものを得ることが困難で
ある。さらに電池等に応用する場合、電極活物質との接
合時に、大きな加圧力で電解質−電極間を密着させる必
要があるため、作業性、密着性等のバラ付きの問題があ
り、かつ大面積での接合では均一な密着性が得られず、
電解質の破壊を生ずる問題がある。
Since these solid electrolytes are inorganic solid powders, they must be pelletized by high-pressure pressing when processed into batteries, etc., which is a major obstacle in achieving productivity, uniformity, etc. In addition, the resulting pellet is hard (and brittle, so
There is a limit to thinning, and it is difficult to obtain one with a large area. Furthermore, when applied to batteries, etc., it is necessary to apply a large pressure force to bring the electrolyte and electrode into close contact when bonding with the electrode active material, resulting in problems with variations in workability, adhesion, etc. Uniform adhesion cannot be obtained by joining
There is a problem with electrolyte breakdown.

(発明が解決しようとする問題点) 本発明の目的は、前記従来技術の問題点を解決し、イオ
ン導電性の優れた固体電解質において、加工性、生産性
、放置安定性および柔軟性が優れ、かつ電極活物質との
密着性に優れ、薄型化および大面積化が可能な固体電解
質シートおよびその製造方法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the problems of the prior art, and to provide a solid electrolyte with excellent ionic conductivity that has excellent processability, productivity, storage stability, and flexibility. It is an object of the present invention to provide a solid electrolyte sheet that has excellent adhesion to an electrode active material and can be made thinner and larger in area, and a method for producing the same.

(問題点を解決するための手段) 本発明の固体電解質シートは、イオン伝導性の無機質固
体電解質粉(以下、単に「固体電解質粉」という)と絶
縁性高分子弾性体とからなり、該固体電解質粉が該絶縁
性高分子弾性体中に体積分率55〜95%で均一に分散
し、硬度が65〜96 (ASTM  A硬度)であり
、厚みが10〜250μmであることを特徴とする。
(Means for Solving the Problems) The solid electrolyte sheet of the present invention is composed of an ion-conductive inorganic solid electrolyte powder (hereinafter simply referred to as "solid electrolyte powder") and an insulating polymeric elastomer. The electrolyte powder is uniformly dispersed in the insulating polymer elastic body at a volume fraction of 55 to 95%, the hardness is 65 to 96 (ASTM A hardness), and the thickness is 10 to 250 μm. .

本発明に使用される固体電解質粉としては、例えばK 
y Rb+−y Cu 4 ■2−X Cl 3tx 
(yi O〜0.5、x ;0.2〜0.6) 、MA
g4Ih  (M;RbまたはK) 、0.4LiSi
040.6Li3 VO4、H3Mo12PO40・2
9 H20,H3W12PO46・29H20等が挙げ
られ、イオン導電率が優れている点から、RbCu+ 
l2−X C(13+x  (x : 0.2〜0.6
)が好ましく、特にRb Cu 4I1.!s Cl 
35が好ましい。RbCu4I2−x Cff3+xお
よびMAg4I!sはともに結晶性の物質(J、Ele
ctrochem。
As the solid electrolyte powder used in the present invention, for example, K
y Rb+-y Cu 4 ■2-X Cl 3tx
(yi O~0.5, x;0.2~0.6), MA
g4Ih (M; Rb or K), 0.4LiSi
040.6Li3 VO4, H3Mo12PO40・2
9 H20, H3W12PO46・29H20, etc., and RbCu+
l2-X C(13+x (x: 0.2-0.6
) is preferred, especially Rb Cu 4I1. ! s Cl
35 is preferred. RbCu4I2-x Cff3+x and MAg4I! s are both crystalline substances (J, Ele
ctrochem.

Soc、126.1658(1979)参照)であり、
例えばRbCu4  I 2−x C13+xは次のよ
うにして製造される。
Soc, 126.1658 (1979)),
For example, RbCu4 I 2-x C13+x is produced as follows.

すなわち、RbCu4I2−x Cff3+xは、Cu
ClおよびCuIを塩酸中で再結晶させ、これらをp2
0!!乾燥剤入りのデシケータ−中、室温で真空乾燥さ
せ、一方、RbC1を100 ”Cで真空乾燥させ、こ
れら成分塩を所定量混合し、130 ’Cで17時間加
熱して完全に税水し、これをパイレックスガラス管中に
真空封入させ、融解させたのち室温まで除冷し、固化し
たものをトルエンを分散剤としてボールミルでよく粉砕
させ、粉砕した粉末を加圧成型し、これをNz中130
’Cで17時間程度処理し、さらに得られた加圧成型物
を再度ボールミルで粉砕して、粉体として得られる。
That is, RbCu4I2-x Cff3+x is Cu
Cl and CuI are recrystallized in hydrochloric acid and converted into p2
0! ! Vacuum-dried at room temperature in a desiccator containing a desiccant, while RbC1 was vacuum-dried at 100'C, predetermined amounts of these component salts were mixed, and heated at 130'C for 17 hours to completely remove water. This was vacuum sealed in a Pyrex glass tube, melted, and slowly cooled to room temperature.The solidified product was thoroughly ground in a ball mill using toluene as a dispersant, and the ground powder was pressure molded.
'C for about 17 hours, and the resulting press-molded product is ground again in a ball mill to obtain a powder.

本発明に使用される固体電解質粉の形状および粒径は特
に限定されるものではないが、絶縁性高分子弾性体との
混合し易さ等の点から、100〜200メツシユ(タイ
ラー標準篩)を通過するものが好ましい。
The shape and particle size of the solid electrolyte powder used in the present invention are not particularly limited, but from the viewpoint of ease of mixing with the insulating polymer elastomer, etc. Preferably, those that pass through.

本発明に使用される絶縁性高分子弾性体としては、例え
ば1,4−ポリブタジェン、天然ゴム、ポリイソプレン
、SBR,NBR,EPDM、EPM、ウレタンゴム、
ポリエステル系ゴム、クロロプレンゴム、エピクロルヒ
ドリンゴム、シリコーンゴム、スチレン−ブタジェン−
スチレンブロック共重合体(SBS)、スチレン−イソ
プレン−スチレンブロック共重合体(S I S ) 
、スチレン−エチレン−ブチレン−スチレンJ” 重合
体(5EBS)、ブチルゴム、ホスファゼンゴム、ポリ
エチレン、ポリプロピレン、ポリエチレンオキシド、ポ
リプロピレンオキシド、ポリスチレン、塩化ビニル、エ
チレン−酢酸エチル共重合体、1゜2−ポリブタジェン
、エポキシ樹脂、フェノール樹脂、環化ポリブタジェン
、環化ポリイソプレン、ポリメタクリル酸メチルおよび
これらの混合物等が挙げられるが、電極活物質との接着
性の点から5BSSSIS、5EBS、1.2−ポリブ
タジェン等の熱可塑性を有するものが好ましく、さらに
柔軟性の点からASTM  A硬度で90以下のものが
好ましい。また固体電解質粉の耐熱性の点から150℃
以下での成型加工性を有するものが好ましい。
Examples of the insulating polymer elastomer used in the present invention include 1,4-polybutadiene, natural rubber, polyisoprene, SBR, NBR, EPDM, EPM, urethane rubber,
Polyester rubber, chloroprene rubber, epichlorohydrin rubber, silicone rubber, styrene-butadiene
Styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS)
, styrene-ethylene-butylene-styrene J" polymer (5EBS), butyl rubber, phosphazene rubber, polyethylene, polypropylene, polyethylene oxide, polypropylene oxide, polystyrene, vinyl chloride, ethylene-ethyl acetate copolymer, 1゜2-polybutadiene, Examples include epoxy resin, phenol resin, cyclized polybutadiene, cyclized polyisoprene, polymethyl methacrylate, and mixtures thereof, but from the viewpoint of adhesion to the electrode active material, 5BSSSIS, 5EBS, 1,2-polybutadiene, etc. It is preferable to have thermoplasticity, and from the viewpoint of flexibility, it is preferable to have ASTM A hardness of 90 or less.Also, from the viewpoint of heat resistance of the solid electrolyte powder, 150 ° C.
It is preferable that the material has the following moldability.

固体電解質粉を絶縁性高分子弾性体中に均一に分散させ
、シート化する方法としては、イオン伝導性の固体電解
質粉を体積分率で55〜95%および絶縁性高分子弾性
体を体積分率で5〜45%を飽和炭化水素系溶剤、芳香
族炭化水素溶剤、ハロゲン化炭化水素溶剤およびエステ
ル系溶剤から選ばれる少なくとも1種の溶剤に混合し、
得られた混合物を基板上に塗布し乾燥することにより、
硬度が65〜96 (ASTM  A硬度)であり、厚
みが10〜250μmであるシートを形成する方法があ
る。
As a method for uniformly dispersing solid electrolyte powder in an insulating polymeric elastic material and forming a sheet, ion conductive solid electrolyte powder is mixed in a volume fraction of 55 to 95% and an insulating polymeric elastic material is mixed in a volume fraction of 55 to 95%. 5 to 45% of the solvent is mixed with at least one solvent selected from saturated hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents,
By applying the obtained mixture onto the substrate and drying it,
There is a method of forming a sheet having a hardness of 65 to 96 (ASTM A hardness) and a thickness of 10 to 250 μm.

この場合、固体電解質粉、絶縁性高分子弾性体、溶剤の
添加順序は特に限定するものではないが、混合物の均一
性をさらに高めるためには、絶縁性高分子弾性体を特定
の溶剤に溶解させた高分子溶液と固体電解質粉をボール
ミル等で混練し、得られた混合物をアプリケーターバー
等で圧延し溶剤を乾燥することによりシートを得る方法
が好ましい。前記方法は、100μm以下の厚みムラの
少ない薄膜が得られること、混練時の発熱が少な(固体
電解質粉の変質および分解が起こり難いこと、ざらに混
練時大気との接触がほとんどなく、固体電解質粉の湿気
および酸素による変質または分解が起き難いため、作業
環境上の配慮が容易なこと等から好ましい。この製造方
法において用いられる特定の溶剤としては、例えばn−
ヘキサン、n−へブタン、n−オクタン、シクロヘキサ
ン、ベンゼン、トルエン、キシレン、酢酸エチル、トリ
クレン等の非吸水性で固体電解質粉と反応しない飽和炭
化水素系溶剤、芳香族炭化水素溶剤、ハロゲン化炭化水
素溶剤、またはエステル系溶剤が挙げられ、また絶縁性
高分子弾性体として上記溶剤に可溶な1.4−ポリブタ
ジェン、天然ゴム、ポリイソプレン、SBR,NBR,
SBS、S I S。
In this case, the order in which the solid electrolyte powder, insulating polymer elastomer, and solvent are added is not particularly limited; A preferred method is to knead the polymer solution and solid electrolyte powder using a ball mill or the like, roll the resulting mixture using an applicator bar or the like, and dry the solvent to obtain a sheet. The above method has the following advantages: a thin film with a thickness of 100 μm or less is obtained, there is little heat generation during kneading (the solid electrolyte powder is hard to change or decompose), there is almost no contact with the atmosphere during rough kneading, and the solid electrolyte This is preferable because it is easy to consider the working environment because the powder is difficult to change or decompose due to moisture and oxygen.The specific solvent used in this manufacturing method is, for example, n-
Saturated hydrocarbon solvents that do not absorb water and do not react with solid electrolyte powder, such as hexane, n-hebutane, n-octane, cyclohexane, benzene, toluene, xylene, ethyl acetate, and trichlene, aromatic hydrocarbon solvents, and halogenated carbonized solvents. Examples include hydrogen solvents or ester solvents, and 1,4-polybutadiene, natural rubber, polyisoprene, SBR, NBR, etc. soluble in the above solvents as the insulating polymer elastomer.
SBS, SIS.

5EBS、ブチルゴム、ホスファゼンゴム、ポリエチレ
ンオキシド、ポリスチレン、1,2−ポリブタジェン等
を使用するのが好ましい。
Preferably, 5EBS, butyl rubber, phosphazene rubber, polyethylene oxide, polystyrene, 1,2-polybutadiene, etc. are used.

その他前記以外の製造方法としては、例えば2軸混線装
置にて絶縁性高分子弾性体と固体電解質粉とを混練し、
得られた混合物をロール圧延してシート化する方法等も
挙げられる。
Other manufacturing methods other than those mentioned above include, for example, kneading an insulating polymer elastomer and solid electrolyte powder in a two-axis mixing device,
Examples include a method of rolling the obtained mixture into a sheet.

本発明の固体電解質シートにおいては、使用する固体電
解質粉の絶縁性高分子弾性体中における体積分率を55
〜95%、好ましくは75〜92%とすることが重要で
ある。固体電解質粉の体積分率が55%未満の場合には
導電率がIXlXlo−6s7以下となり、実用に適さ
ない。また体積分率が95%を超えると脆くなりシート
としての形状が保てなくなる。
In the solid electrolyte sheet of the present invention, the volume fraction of the solid electrolyte powder used in the insulating polymer elastomer is 55
It is important to set it to ~95%, preferably 75-92%. If the volume fraction of the solid electrolyte powder is less than 55%, the conductivity will be less than IXlXlo-6s7, which is not suitable for practical use. Moreover, if the volume fraction exceeds 95%, the sheet becomes brittle and cannot maintain its shape as a sheet.

また、本発明の固体電解シートの硬度は、ASTM  
A硬度で65〜96である。該シートの硬度が65未満
では、導電率1×10″″6 s / cm以下となり
、実用に適さない。また硬度が96を超えると、可とう
性が悪(なり跪くなる。
Further, the hardness of the solid electrolytic sheet of the present invention is as per ASTM
A hardness is 65 to 96. If the hardness of the sheet is less than 65, the electrical conductivity will be 1×10″″6 s/cm or less, making it unsuitable for practical use. If the hardness exceeds 96, the flexibility will be poor.

さらに、本発明の固体電解質シートの厚みは、10〜2
50μmである。該シートの厚みが10μm未満では裂
は易く、強度が保てなくなる。また厚みが250μmを
超えると、導電率1×10″″6s/cm以下となり易
い。
Furthermore, the thickness of the solid electrolyte sheet of the present invention is 10 to 2
It is 50 μm. If the thickness of the sheet is less than 10 μm, it will easily tear and its strength will not be maintained. Moreover, if the thickness exceeds 250 μm, the conductivity tends to be 1×10″″6 s/cm or less.

本発明の固体電解質シートは、電極活物質との接着強度
を増すために、例えば変性口・ジン、ロジン誘導体、テ
ルペン樹脂、クマロン−インデン樹脂、フェノール変性
クマロン−インデン樹脂等のロジン系粘着付与剤、芳香
族系粘着付与剤またはテルペン系粘着付与剤を添加され
ていてもよい。
The solid electrolyte sheet of the present invention uses a rosin-based tackifier such as a modified coumaron-indene resin, a rosin derivative, a terpene resin, a coumaron-indene resin, a phenol-modified coumaron-indene resin, etc., in order to increase the adhesive strength with the electrode active material. , an aromatic tackifier or a terpene tackifier may be added.

(実施例) 以下、本発明を実施例により詳細に説明するが、本発明
は、これら実施例に限定されるものではない。
(Examples) Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to these Examples.

実施例1〜3、比較例1〜2 CuCISCu IおよびRbC1をモル比でCucl
 : Cu I : RbCj!=2.5 : 1.5
 : 1の割合となるように、それぞれ秤量した。前記
CuCaおよびCuIを塩酸中で再結晶させ、これらを
P2O5乾燥剤入りのデシケータ−中で真空乾燥させ、
一方、前記RbCgを100℃で真空乾燥させ、これら
成分塩を所定量混合し、130℃で17時間加熱して完
全に脱水し、これをパイ1・ノクスガラス管中に真空封
入させ、融解させたのち室温まで除冷し、固化したもの
をトルエンを分散剤としてボールミルでよ(粉砕し、粉
砕した粉末を加圧成型し、これをN2中130℃で17
時間程度処理し、さらに得られた加圧成型物を再度ボー
ルミルで粉砕して、Rb Cu 4 I 1.!t C
135粉末を得た。
Examples 1 to 3, Comparative Examples 1 to 2 CuCISCu I and RbC1 in molar ratio Cucl
: Cu I : RbCj! =2.5 : 1.5
: Each was weighed so that the ratio was 1:1. Recrystallize the CuCa and CuI in hydrochloric acid, vacuum dry them in a desiccator containing a P2O5 desiccant,
On the other hand, the above RbCg was vacuum dried at 100°C, a predetermined amount of these component salts were mixed, and the mixture was heated at 130°C for 17 hours to completely dehydrate it, and this was vacuum sealed in a Pi 1 Nox glass tube and melted. After that, it was slowly cooled to room temperature, and the solidified material was milled in a ball mill using toluene as a dispersant.
After processing for about an hour, the obtained pressure-molded product was ground again in a ball mill to obtain Rb Cu 4 I 1. ! tC
135 powder was obtained.

次に、スチレンーブタジエンースチレンブロソク共重合
体(日本合成ゴム社製TR−2000)をトルエン中に
溶解させ高分子溶液を得、これに前記で得られた粒径2
00メツシユ以下のRbCu4I1.ICβお固体電解
質粉(比重;4.5)をその体積分率が60%、80%
、90%(実施例1〜3)および50%、96%(比較
例1〜2)になるようにそれぞれ混合し、ボールミルに
て2時間混練し、得られた混合物をテフロンシート上で
アプリケーターバーにて引き延ばし、乾燥空気中にてト
ルエンを蒸発させ、それぞれのシートを得た。
Next, a styrene-butadiene-styrene broth copolymer (TR-2000 manufactured by Japan Synthetic Rubber Co., Ltd.) was dissolved in toluene to obtain a polymer solution, and this was added to the particle size 2 obtained above.
RbCu4I1.00 mesh or less. ICβ solid electrolyte powder (specific gravity: 4.5) whose volume fraction is 60% and 80%
, 90% (Examples 1 to 3) and 50% and 96% (Comparative Examples 1 to 2), and kneaded in a ball mill for 2 hours. The resulting mixture was placed on a Teflon sheet with an applicator bar. The sheet was stretched in a vacuum cleaner, and the toluene was evaporated in dry air to obtain each sheet.

得られたシートの硬度、厚み、耐屈曲性、銅板への接着
性、全導電率および電子輸率を下記の方法により測定し
、評価を行った。
The hardness, thickness, bending resistance, adhesion to a copper plate, total conductivity, and electron transport number of the obtained sheet were measured and evaluated by the following methods.

硬度:固体電解質シートを折り重ね、厚み1龍程度にし
たものをガラス板上にてASTM  A硬度により評価
した。
Hardness: A solid electrolyte sheet was folded to a thickness of about 1 inch and evaluated by ASTM A hardness on a glass plate.

耐屈曲性:半径80f1曲げ試験を行い、シートのヒビ
割れないしは破断が発生した回数で評価した。
Bending resistance: A bending test was conducted at a radius of 80 f1, and evaluation was made based on the number of times the sheet cracked or broke.

銅板への接着性:よく研磨した銅板上に固体電解質シー
トを置き、その上にテフロンシートをおいて、130℃
で10kg/co!の加圧を5分間行い、銅板に接着し
た固体電解質シートに基盤テスト(市販セロテープ、桝
目の大きさ=5wmX5龍、n=100)を行い、剥離
した桝目の数で評価した。
Adhesion to copper plate: Place a solid electrolyte sheet on a well-polished copper plate, place a Teflon sheet on top, and heat at 130°C.
So 10kg/co! Pressure was applied for 5 minutes, and a base test (commercial cellophane tape, square size = 5wm x 5 dragons, n = 100) was performed on the solid electrolyte sheet adhered to the copper plate, and evaluation was made by the number of squares that peeled off.

全導電率:固体電解質シートを銅板間に挟み、130℃
で10kg/cnの加圧を5分間行って接着したもので
、交流I KHzでのインピーダンスをLCRメーター
(YHP4274A)で評価、し、その直流成分(6A
)より求めた。
Total conductivity: solid electrolyte sheet sandwiched between copper plates at 130℃
The impedance at AC I KHz was evaluated using an LCR meter (YHP4274A), and its DC component (6A
).

電子輸率;固体電解質シートを白金板にて挟み上記と同
様に130℃で10kg/cdの加圧を5分間行って接
着したもので、直流電圧を0〜0.5■まで徐々に変化
させ、通電電流量を評価することにより得られる直流導
電率(6D)と上記直流成分(6A)との比(6D/6
A)として求めた。
Electron transport number: A solid electrolyte sheet was sandwiched between platinum plates and bonded by applying a pressure of 10 kg/cd at 130°C for 5 minutes in the same manner as above, and gradually changing the DC voltage from 0 to 0.5 ■. , the ratio (6D/6) of the DC conductivity (6D) obtained by evaluating the amount of current flowing and the above DC component (6A)
A).

第1表に実施例1〜3および比較例1〜2の測定結果を
示す。本発明の固体電解質シートは体積分率が範囲外で
ある比較例と比べて全導電率等が改善されていることが
わかる。
Table 1 shows the measurement results of Examples 1-3 and Comparative Examples 1-2. It can be seen that the solid electrolyte sheet of the present invention has improved total conductivity etc. compared to the comparative example in which the volume fraction is outside the range.

また実施例1〜3の体積分率と全導電率の関係を第1図
に示す。
Moreover, the relationship between the volume fraction and the total conductivity of Examples 1 to 3 is shown in FIG.

以下余白 第  1  表 *1:シート化時にボロボロになり謝訴不可能実施例4
〜6 スチレン−ブタジェン−スチレンブロック共重合体(J
R−2000)のベレットと固体電解質粉(実施例1〜
3と同じもの)を2軸混練装置にて110℃の条件で3
0分混練し、得られた混合物を2軸ロールにて圧延成形
を行い固体電解質シートを得た。得られたシートについ
て、実施例1〜3と同様の測定を行い、その結果を第2
表に示す。
Below is the margin: Table 1: Example 4: The sheet fell apart when it was made, making it impossible to sue.
~6 Styrene-butadiene-styrene block copolymer (J
R-2000) pellets and solid electrolyte powder (Example 1~
3) at 110°C in a twin-screw kneading device.
The mixture was kneaded for 0 minutes, and the resulting mixture was rolled and formed using twin-screw rolls to obtain a solid electrolyte sheet. The obtained sheet was subjected to the same measurements as in Examples 1 to 3, and the results were reported in the second
Shown in the table.

第2表 以上、固体電解質として銅イオン伝導性固体電解質を使
用した例を示したが、その他のイオン伝導性固体電解質
、例えば、銀イオン伝導性、リチウムイオン伝導性、プ
ロトン伝導性固体電解質等を用いても同様の効果が得ら
れることは言うまでもない。
Table 2 and above show examples in which a copper ion conductive solid electrolyte is used as the solid electrolyte, but other ion conductive solid electrolytes, such as silver ion conductive, lithium ion conductive, proton conductive solid electrolytes, etc. Needless to say, the same effect can be obtained by using the same method.

(発明の効果) 本発明の固体電解質シートおよびその製造方法によれば
、従来の高分子電解質に比ベイオン導電率が優れ、また
加工性、生産性、放置安定性および柔軟性に優れ、かつ
電極活物質との密着性に優れ、薄型化および大面積化が
図れるため、従来困難とされてきた例えば1. Otm
以下の薄型電池用電解質シートとしての応用が可能とな
った。
(Effects of the Invention) According to the solid electrolyte sheet and the manufacturing method thereof of the present invention, it has superior specific ion conductivity compared to conventional polymer electrolytes, and has excellent processability, productivity, storage stability, and flexibility, and It has excellent adhesion to the active material and can be made thinner and larger in area. Otm
It has become possible to apply the following as an electrolyte sheet for thin batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1〜3の体積分率と全導電率の関係を
示す図である。
FIG. 1 is a diagram showing the relationship between volume fraction and total conductivity in Examples 1 to 3.

Claims (3)

【特許請求の範囲】[Claims] (1)イオン伝導性の無機質固体電解質粉と絶縁性高分
子弾性体とからなり、該無機質固体電解質粉が該絶縁性
高分子弾性体中に体積分率55〜95%で均一に分散し
、硬度が65〜96(ASTMA硬度)であり、厚みが
10〜250μmであることを特徴とする固体電解質シ
ート。
(1) consisting of an ion-conducting inorganic solid electrolyte powder and an insulating polymeric elastomer, the inorganic solid electrolyte powder being uniformly dispersed in the insulating polymeric elastomer at a volume fraction of 55 to 95%; A solid electrolyte sheet having a hardness of 65 to 96 (ASTMA hardness) and a thickness of 10 to 250 μm.
(2)無機質固体電解質がRbCu_4I_2_−_x
Cl_3_+_x(xは0.2〜0.6)であることを
特徴とする特許請求の範囲第1項記載の固体電解質シー
ト。
(2) The inorganic solid electrolyte is RbCu_4I_2_-_x
The solid electrolyte sheet according to claim 1, characterized in that Cl_3_+_x (x is 0.2 to 0.6).
(3)イオン伝導性の無機質固体電解質粉を体積分率で
55〜95%および絶縁性高分子弾性体を体積分率で5
〜45%を飽和炭化水素系溶剤、芳香族炭化水素溶剤、
ハロゲン化炭化水素溶剤およびエステル系溶剤から選ば
れる少なくとも1種の溶剤に混合し、得られた混合物を
基板上に塗布し乾燥することにより、硬度が65〜96
(ASTMA硬度)であり、厚みが10〜250μmで
あるシートを形成することを特徴とする固体電解質シー
トの製造方法。
(3) Ion conductive inorganic solid electrolyte powder at a volume fraction of 55 to 95% and insulating polymer elastic material at a volume fraction of 5%
~45% saturated hydrocarbon solvent, aromatic hydrocarbon solvent,
By mixing with at least one solvent selected from halogenated hydrocarbon solvents and ester solvents, and applying the resulting mixture onto a substrate and drying it, the hardness can be increased to 65 to 96.
(ASTMA hardness) and a thickness of 10 to 250 μm.
JP62073727A 1987-03-27 1987-03-27 Solid electrolyte sheet and its manufacture Granted JPS63239774A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62073727A JPS63239774A (en) 1987-03-27 1987-03-27 Solid electrolyte sheet and its manufacture
US07/172,165 US4828945A (en) 1987-03-27 1988-03-23 Solid electrolyte sheet and process for producing the same
DE3852411T DE3852411T2 (en) 1987-03-27 1988-03-25 Solid electrolyte layer and manufacturing method.
EP88104872A EP0284103B1 (en) 1987-03-27 1988-03-25 Solid electrolyte sheet and process for producing the same
KR1019880003330A KR970004136B1 (en) 1987-03-27 1988-03-26 Solid electrolyte sheet and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073727A JPS63239774A (en) 1987-03-27 1987-03-27 Solid electrolyte sheet and its manufacture

Publications (2)

Publication Number Publication Date
JPS63239774A true JPS63239774A (en) 1988-10-05
JPH0576137B2 JPH0576137B2 (en) 1993-10-22

Family

ID=13526550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073727A Granted JPS63239774A (en) 1987-03-27 1987-03-27 Solid electrolyte sheet and its manufacture

Country Status (1)

Country Link
JP (1) JPS63239774A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189592A1 (en) * 2018-03-30 2019-10-03 富士フイルム株式会社 Lithium ion permselective membrane, electrodialysis device, lithium-containing compound recovery device, and method for recovering lithium-containing compound

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795083A (en) * 1980-12-05 1982-06-12 Hitachi Maxell Ltd Manufacture of solid electrolyte cell
JPS58123670A (en) * 1982-01-13 1983-07-22 カ−ル・フロイデンベルク Soft electrolyte battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795083A (en) * 1980-12-05 1982-06-12 Hitachi Maxell Ltd Manufacture of solid electrolyte cell
JPS58123670A (en) * 1982-01-13 1983-07-22 カ−ル・フロイデンベルク Soft electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189592A1 (en) * 2018-03-30 2019-10-03 富士フイルム株式会社 Lithium ion permselective membrane, electrodialysis device, lithium-containing compound recovery device, and method for recovering lithium-containing compound

Also Published As

Publication number Publication date
JPH0576137B2 (en) 1993-10-22

Similar Documents

Publication Publication Date Title
EP0284104B1 (en) Structure suitable for solid electrochemical elements
US4985317A (en) Lithium ion-conductive solid electrolyte containing lithium titanium phosphate
JP3655443B2 (en) Lithium battery
JPH0652671B2 (en) Rechargeable electrochemical generator
KR970004136B1 (en) Solid electrolyte sheet and process for producing the same
JPH02250264A (en) Lithium ion conductive solid electrolyte
JPH0381908A (en) Lithium ion conductive solid electrolyte
JPH04245170A (en) High polymer solid electrolyte
JPS63239774A (en) Solid electrolyte sheet and its manufacture
JPH0329206A (en) Lithium ion conductive solid electrolyte and its manufacture
JP2591300B2 (en) Method for producing lithium ion conductive solid electrolyte
JPH0482166A (en) Manufacture of solid electrolytic sheet
JP2564193B2 (en) Method for manufacturing solid electrolyte battery element
JPH01657A (en) solid state electrochemical device
JPH067496B2 (en) Solid electrochemical device
JPH0287415A (en) Lithium ion electroconductive solid electrolytic sheet
JPS63239775A (en) Solid electrolyte cell
JPH04160011A (en) Conductive solid electrolyte
JPH04162306A (en) Lithium ion conductive solid electrolytic sheet
JPH0576136B2 (en)
JPH02148655A (en) Lithium ion conductive solid electrolytic sheet and manufacture thereof
JPS63239776A (en) Solid electrolyte sheet and its manufacture
JPH0261912A (en) Manufacture of solid electrolytic sheets
US20240097130A1 (en) Lithium Secondary Battery and Manufacturing Method for the Same
JPH02148656A (en) Body structure