JPS63237367A - Manufacture of electrochemical element member - Google Patents

Manufacture of electrochemical element member

Info

Publication number
JPS63237367A
JPS63237367A JP62072405A JP7240587A JPS63237367A JP S63237367 A JPS63237367 A JP S63237367A JP 62072405 A JP62072405 A JP 62072405A JP 7240587 A JP7240587 A JP 7240587A JP S63237367 A JPS63237367 A JP S63237367A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sheet
solid
toluene
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62072405A
Other languages
Japanese (ja)
Other versions
JP2666276B2 (en
Inventor
Shigeo Kondo
繁雄 近藤
Tadashi Tonomura
正 外邨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62072405A priority Critical patent/JP2666276B2/en
Priority to US07/097,367 priority patent/US4977007A/en
Priority to CA 546422 priority patent/CA1309456C/en
Priority to EP19870113550 priority patent/EP0260679B1/en
Priority to DE87113550T priority patent/DE3785901T2/en
Priority to CN87107102A priority patent/CN1022273C/en
Priority to KR1019870010356A priority patent/KR900007731B1/en
Publication of JPS63237367A publication Critical patent/JPS63237367A/en
Application granted granted Critical
Publication of JP2666276B2 publication Critical patent/JP2666276B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1525Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/188Processes of manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Nonlinear Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the ion conductivity of a solid electrolytic sheet by forming an electrochemical element member through a process crushing plastic resin and solid electrolyte grains. CONSTITUTION:When the power of RbCu4I1.5Cl3.5 with 200 mesh or less is used as a solid electrolyte, for example, this power is mixed into a solution of styrene butadiene copolymer and toluene at the volume ratio of about 85%. The mixture thus obtained is extended by an applicator bar on a sheet such as Teflon, toluene is evaporated in the dry air, and a plastic sheet-shaped solid electrolyte with no fluidity is obtained. Next, this sheet is crushed by a roller press and rolled to about 2/3 of the sheet thickness, for example, thus a solid electrolyte sheet is obtained, with solid electrolyte grains crushed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、固体電気化学素子、特に全固体電池。[Detailed description of the invention] Industrial applications The present invention relates to a solid state electrochemical device, particularly an all solid state battery.

全固体電気二ffl増コンデンサ、全固体エレクトロク
ロミックディスプレー素子等を構成する際に使用される
固体電解質あるいは電極の製造方法に関するものである
The present invention relates to a method for manufacturing solid electrolytes or electrodes used in constructing all-solid-state electric 2FFL capacitors, all-solid-state electrochromic display devices, and the like.

従来の技術 電気化学素子の構成要素が全て固体物質からなる素子は
、液体電解質を用いた素子に較べ、電極間を隔離するた
めのセパレータが不要となり、容積的にも小さな素子を
形成しうろこと、あるいは素子からの電解液の漏液がな
い事、液体電解質の分解に併なう所のガス発生がないな
ど数々の利点を有していることから、さかんに研究開発
が進められている。
Conventional technology Electrochemical devices in which all of the components are made of solid materials do not require separators to isolate electrodes, compared to devices using liquid electrolytes, and can form devices with a smaller volume. Research and development is being actively carried out because it has many advantages such as no leakage of electrolyte from the device and no generation of gas when the liquid electrolyte decomposes.

しかしながら、素子購成材料が弾性に欠く固体物質から
なるため、作成された素子自身9機械的強度が弱く、外
部からの衝撃に対して、極めてもろく破損しやすいもの
であった。即ち、この素子に使用される電極および固体
電解質板の作成は、たとえば電極の場合、電極活物質と
固体電解質粉末からなる電極合剤をプレス金型を使用し
、必要な形状に約1 torV/(7以上の大きな圧力
で加圧成型し作成されるため、形成された電極は強度的
に弱いものであった。したがって、強度を増加させるた
めにはフッ素樹脂等のバインダとなる粉末を必要に応じ
電極合剤に混入し使用する場合がある。
However, since the element material is made of a solid substance lacking in elasticity, the manufactured element 9 itself has low mechanical strength and is extremely brittle and easily damaged by external impact. That is, to create the electrodes and solid electrolyte plates used in this device, for example, in the case of electrodes, an electrode mixture consisting of an electrode active material and solid electrolyte powder is molded into the desired shape using a press mold at about 1 torV/ (The formed electrodes were weak in strength because they were created by pressure molding with a high pressure of 7 or more. Therefore, in order to increase the strength, powder such as fluororesin as a binder was required. It may be used by mixing it into the electrode mixture.

このバインダの混入は、固体電解質自身のイオン伝導性
が元来、液体系電解質に比べ極めて悪いものであるため
、全固体電気化学素子では、はとんど行う事は余りなか
った。同様な考え方は固体電解質を使用した素子の電極
の作成に関しても存在していた。
This mixing of a binder has rarely been done in all-solid-state electrochemical devices because the ionic conductivity of the solid electrolyte itself is inherently much worse than that of liquid electrolytes. Similar ideas existed regarding the creation of electrodes for devices using solid electrolytes.

発明者らは、固体電解質層の強度を増大させるため、固
体電解質の粉末粒子を可塑性樹脂材料中に包含させた固
体電解質シートを形成させた結果。
In order to increase the strength of the solid electrolyte layer, the inventors formed a solid electrolyte sheet in which solid electrolyte powder particles were included in a plastic resin material.

強度的に強い固体電解質シートを提案した(特願昭61
−223101号公報)。
We proposed a strong solid electrolyte sheet (patent application 1986).
-223101).

発明が解決しようとする問題点 固体電解質板を強度的に増大させるために、固体電解質
粉末を可塑性樹脂に包含させた状態では作成した固体電
解質シートのイオン伝導性は極めて悪いものであった。
Problems to be Solved by the Invention In order to increase the strength of the solid electrolyte sheet, solid electrolyte powder was included in a plastic resin, but the ionic conductivity of the solid electrolyte sheet produced was extremely poor.

そこで、電子導電性ゴムシートの電子的接続を計シ抵抗
を下げる方法と同様に固体電解質粉末の充填密度を向上
させるために。
Therefore, in order to improve the packing density of solid electrolyte powder as well as the method of lowering the resistance by measuring electronic connections of electronically conductive rubber sheets.

可塑性樹脂で包含された固体電解質シートを加圧したが
、該電解質シートのイオン伝導性をほとんど向上させる
ことは出来ず、低いものであった。
Although a solid electrolyte sheet covered with a plastic resin was pressurized, the ionic conductivity of the electrolyte sheet could hardly be improved and was low.

本発明は該固体電解質シートのイオン伝導性を向上させ
ることの出来る固体電解質シートおよび電極の製造方法
を提供することにある。
An object of the present invention is to provide a method for manufacturing a solid electrolyte sheet and an electrode that can improve the ionic conductivity of the solid electrolyte sheet.

問題点を解決するための手段 本発明は、少なくとも可塑性樹脂と電解質を含有してな
る電気化学素子部材の構成要素である固体電解質粒子を
圧壊する工程を経て電気化学素子部材を形成することを
特徴とする製造方法である。
Means for Solving the Problems The present invention is characterized in that an electrochemical element member is formed through a step of crushing solid electrolyte particles, which are constituent elements of an electrochemical element member containing at least a plastic resin and an electrolyte. This is the manufacturing method.

作用 固体電解質粒子を可塑性樹脂で、その表面を被覆した状
態の固体電解質層では、その表面が絶縁性物質で被覆さ
れた状態であると同時に、これら樹脂にはイオン伝導性
はないため、得られた固体電解質層には優れたイオン伝
導性を得ることが出来ない。したがって、イオン伝導性
を優れたものとするには固体電解質粒子の充填密度を9
6%近く上げないと得られない。又、充填密度を上げる
とシートの可塑性を失なうことになる。然る(C1本発
明の方法では、可塑性樹脂で被覆された固体電解質が圧
壊され、圧壊された固体電解質表面は樹脂ではコートさ
れておらず、圧壊された粒子同志が接合される結果、優
れたイオン伝導性の有した可塑性のあるシート状固体電
解質が得られるものである。
In a solid electrolyte layer in which the surface of solid electrolyte particles is coated with a plastic resin, the surface is coated with an insulating material, and at the same time, these resins do not have ionic conductivity, so Excellent ionic conductivity cannot be obtained from the solid electrolyte layer. Therefore, in order to have excellent ionic conductivity, the packing density of solid electrolyte particles should be 9.
You can't get it unless you raise it by nearly 6%. Furthermore, increasing the packing density will cause the sheet to lose its plasticity. (C1 In the method of the present invention, a solid electrolyte coated with a plastic resin is crushed, the crushed solid electrolyte surface is not coated with resin, and the crushed particles are bonded together, resulting in an excellent A sheet-like solid electrolyte with ionic conductivity and plasticity is obtained.

実施例 まずはじめに、本発明の概略について説明する。Example First, an outline of the present invention will be explained.

可塑性樹脂で包含されてなる固体電解質粒子を可′塑性
樹脂が常温で流動性がない状態となった時点で圧壊し、
固体電解質粒子粉末の表面に新しい固体電解質粒子表面
を形成させることによシ、形成された新しい固体電解質
表面への粒子間接触を増大させることによシ固体電解質
シートを優れたイオン伝導性を有したものとすることが
出来る。
The solid electrolyte particles enclosed in a plastic resin are crushed when the plastic resin has no fluidity at room temperature,
By forming a new solid electrolyte particle surface on the surface of the solid electrolyte particle powder, and by increasing interparticle contact with the formed new solid electrolyte surface, the solid electrolyte sheet has excellent ionic conductivity. It can be assumed that

例えば、固体電解質として、2oOメツシュ以下RbC
u4I、5(J□5の粉末を用いた場合、該粉末をスチ
レン−ブタジェン共重合体とトルエン中に溶解させた溶
液中に体積分率として85%になるよう混合し、得られ
た混合物をテフロンシート上でアプリケーターバーにて
引き延ばし、乾燥空気中にて、トルエンを蒸発させ、流
動性を失なった可塑性のあるシート状固体電解質が得ら
れる。次ぎに、該シートをローラーブレス機にて、シー
ト厚さを約シ3以下に圧延することにより、固体電解質
粒子が圧壊された固体電解質シートを得ることが出来る
For example, as a solid electrolyte, RbC below 2oO mesh
When a powder of u4I,5 (J□5 is used, the powder is mixed in a solution of styrene-butadiene copolymer and toluene to a volume fraction of 85%, and the resulting mixture is It is stretched on a Teflon sheet with an applicator bar, and the toluene is evaporated in dry air to obtain a sheet-like solid electrolyte with plasticity that has lost its fluidity.Next, the sheet is placed on a roller press machine, and the toluene is evaporated in dry air. By rolling the sheet to a thickness of about 3 mm or less, a solid electrolyte sheet in which the solid electrolyte particles are crushed can be obtained.

同様な方法により、電極も作成することが出来る。例え
ば、銅を活物質とした電極を作成するに際しては、6ミ
クロン以下の銅粉末と200メツシユ以下のRbCu4
 工15 C1”t5の粉末を重量比で90:10とな
るよう混合したものをスチレン−ブタジェン共重合体を
トルエン中に溶解させた溶液中に体積分率で90%にな
るよう混合し、得られた混合物をテフロンシート上でア
プリケーターバーにて引き延ばし、乾燥空気中にて、ト
ルエンを蒸発させることにより可塑性シートを得た後。
Electrodes can also be created using a similar method. For example, when creating an electrode using copper as an active material, copper powder of 6 microns or less and RbCu4 of 200 mesh or less are used.
Process 15 C1"t5 powder was mixed at a weight ratio of 90:10 and mixed at a volume fraction of 90% in a solution of styrene-butadiene copolymer dissolved in toluene. The resulting mixture was stretched on a Teflon sheet with an applicator bar, and the toluene was evaporated in dry air to obtain a plastic sheet.

ローラーブレス機によ゛シ、シート厚を約り以下に圧延
することによシ、優れた電導性とイオン伝導性を備えた
電極を得ることが出来る。
An electrode with excellent electrical conductivity and ionic conductivity can be obtained by rolling the sheet using a roller press machine to a sheet thickness of about 100 mL or less.

以下、本発明を具体的実施例について説明する。Hereinafter, the present invention will be described with reference to specific examples.

〔実施例1〕 固体電解質粒子として、5ミクロン以下の粉末を使用し
、予めスチレン−ブタジェン共重合体の10%を含むト
ルエン溶媒を作成し、固体電解質粉末と共重合体との比
率が体積的に85:15となるよう充分混合した。混合
に際しては、トルエンを希釈剤として適宜使用した。
[Example 1] Powder of 5 microns or less was used as the solid electrolyte particles, a toluene solvent containing 10% of styrene-butadiene copolymer was prepared in advance, and the ratio of the solid electrolyte powder to the copolymer was adjusted by volume. The mixture was thoroughly mixed so that the ratio was 85:15. During mixing, toluene was appropriately used as a diluent.

混合物が少し流動性を有するスラリー状とした後。After the mixture becomes a slurry with a little fluidity.

該スラリーをアプリケーターバーを用い、100ミクロ
ンの厚さとなるようテフロンシート上に引き延ばし、乾
燥空気中でトルエンを蒸発させ、続いて、厚さ7Qミク
ロンの厚さにローラーブレス機にて圧延し、固体電解質
粒子を圧壊、圧延し。
The slurry was spread on a Teflon sheet to a thickness of 100 microns using an applicator bar, the toluene was evaporated in dry air, and then rolled to a thickness of 7Q microns using a roller press machine to form a solid. Crush and roll the electrolyte particles.

所望の固体電解質を得た。A desired solid electrolyte was obtained.

得られた固体電解質のイオン伝導性を測定するため、固
体電解質を1−の面積に切断し、その両面に同寸法の銅
電極2枚でサンドウィッチ状に接触させた。接触に際し
、固体電解質層の表面をトルエンで湿潤させた後、電極
を加圧接触させた。
In order to measure the ionic conductivity of the obtained solid electrolyte, the solid electrolyte was cut into an area of 1-, and two copper electrodes of the same size were contacted on both sides in a sandwich-like manner. Upon contact, the surface of the solid electrolyte layer was moistened with toluene, and then the electrodes were brought into contact under pressure.

続いて、2枚の電極間に交流10 mV周波数1KHz
を印加し、その時の交流抵抗を求めた。その結果、1.
5X1σ’ S/cr!の値が得られた。
Subsequently, AC 10 mV frequency 1 KHz was applied between the two electrodes.
was applied, and the AC resistance at that time was determined. As a result, 1.
5X1σ' S/cr! The value of was obtained.

一方1本発明の効果を調べるための比較実験として次の
方法により固体電解質シートを作成した。
On the other hand, as a comparative experiment to examine the effects of the present invention, a solid electrolyte sheet was prepared by the following method.

固体電解質粒子として、1ミクロン以下のものを用い、
ロー2−プレスによる圧延時に圧壊され難い粒径のもの
を使用し実施例1と全く同様に固体電解質シートを作成
した。その結果、得られた固体電解質のイオン伝導性は
9.5 X 10−’ S /7と実施例11CJ:l
;較して低い値を示した。
Using solid electrolyte particles of 1 micron or less,
A solid electrolyte sheet was prepared in exactly the same manner as in Example 1, using particles with a particle size that was difficult to crush during rolling with a Row 2-press. As a result, the ionic conductivity of the obtained solid electrolyte was 9.5 x 10-'S/7, and Example 11CJ:l
; showed a lower value compared to

〔実施例2〕 実施例IKおける圧壊、圧延方法として1通常のプレス
機を用いた以外は実施例1と全く同様に固体電解質シー
トを作成した。即ち、圧壊、圧延前の固体電解質シート
を2枚のステンレススティール板(厚さ10,1oC1
!1角の正方形板)間に挾み所望の厚さく70ミクロン
)のスベーサーヲ介在させながらプレス機にて1 to
n/7の圧力で加圧し、固体電解質粒子を圧壊すると同
時にシートを圧延した。得られた固体電解質シートのイ
オン伝導性は9.7 X 10−5S/cnlであった
[Example 2] A solid electrolyte sheet was produced in exactly the same manner as in Example 1, except that a normal press was used as the crushing and rolling method in Example IK. That is, the solid electrolyte sheet before crushing and rolling was placed between two stainless steel plates (thickness 10, 1oC1
! Using a press machine, press one to
Pressure was applied at a pressure of n/7 to crush the solid electrolyte particles and simultaneously roll the sheet. The ionic conductivity of the obtained solid electrolyte sheet was 9.7 x 10-5S/cnl.

〔実施例3〕 実施例1で使用した固体電解質粒子単独を、固体電解質
粒子と粒径5ミクロン以下の金属銅粉末を曵童比で5:
96の割合で混合したものを使用した以外は実施例1と
全く同様にして固体電解質素子用電極を作成した。
[Example 3] The solid electrolyte particles used in Example 1 alone were mixed with solid electrolyte particles and metallic copper powder with a particle size of 5 microns or less in a ratio of 5:5.
An electrode for a solid electrolyte element was prepared in exactly the same manner as in Example 1 except that a mixture of 96% and 96% was used.

比較用として1粒径が1ミクロン以下の固体電解質を使
用した以外は実施例3と同様にして電極を作成した。
For comparison, an electrode was prepared in the same manner as in Example 3 except that a solid electrolyte having a particle size of 1 micron or less was used.

第1図は実施例1で得た固体電解質シートを直(11C
TLφの円形とし、その両側に実施例3で得た電極又は
比軟用電極を同寸法に切断し圧着し作成したセルの分極
特性を示したものである。第1図から明らかに本発明の
電極を使用したセルの分極性能が良く、大電流を流しう
ろことが判明した。
Figure 1 shows the solid electrolyte sheet obtained in Example 1 directly (11C
This figure shows the polarization characteristics of a cell made by cutting the electrodes obtained in Example 3 or the electrodes for specific softness into the same size and crimping them on both sides of a circular shape of TLφ. It is clear from FIG. 1 that the cell using the electrode of the present invention has good polarization performance and can pass a large current.

以上の本発明の効果現象が単に固体電解質の充*密度の
向上によるものか否かを確認するため。
In order to confirm whether the above effects of the present invention are simply due to an improvement in the filling density of the solid electrolyte.

実施例1で作成した固体電解質シートを大量のトルエン
中に浸漬し、可塑性樹脂を溶解した後、固体電解質粒子
の形状を電子顕微鏡で調べた結果、圧壊圧延前のシート
に含有する粒子は全体的に丸味のもつ5ミクロン以下の
状態を示している(第3図)が、圧壊圧延処理を行なっ
たシートに含有する粒子は全体的にシャープな断面をも
つ小さな状態となっている(第2図)ことが判明した。
The solid electrolyte sheet prepared in Example 1 was immersed in a large amount of toluene to dissolve the plastic resin, and the shape of the solid electrolyte particles was examined using an electron microscope. As a result, it was found that the particles contained in the sheet before crush rolling were all Figure 3 shows that the sheet has a rounded shape with a size of 5 microns or less, but the particles contained in the sheet that has been subjected to crush rolling are generally small with a sharp cross section (Figure 2). )It has been found.

以上の結果、優れたイオン伝導性を有する固体電解質シ
ートおよび・凄れた分極特性を有する電極を作成するた
めには、単に固体電解質粒子の充填密度を上げることだ
けでなく、可塑性樹脂中に含まれる固体電解質粒子を圧
壊し、圧延することが必須であることが判明した。
As a result of the above, in order to create a solid electrolyte sheet with excellent ionic conductivity and an electrode with excellent polarization characteristics, it is necessary not only to increase the packing density of solid electrolyte particles but also to It has been found that it is essential to crush and roll the solid electrolyte particles.

以上1本発明において、使用した固体電解質およヒ可塑
性樹脂として、Rb 0u41 ts C1,5および
スチレン−ブタジェン共重合体を用いた例を開示したが
、他固体電解質例えばリチウムイオン伝導体、銀イオン
伝導体、水素イオン云導体等全ての固体電解質粒子ある
いけ他用塑性樹脂、例えば。
In the above-described first aspect of the present invention, an example was disclosed in which Rb 0u41ts C1,5 and a styrene-butadiene copolymer were used as the solid electrolyte and plastic resin used, but other solid electrolytes such as a lithium ion conductor, a silver ion conductor, etc. Plastic resins for all solid electrolyte particles such as conductors, hydrogen ion conductors, etc., for example.

天然ゴム、SBR,NBR,ウレタンゴム、クロロプレ
ンゴム、シリコーンゴム等ゴム系材料、ポリエチレン、
ポリプロピレン、塩化ビニル、MM人樹脂、可塑性エポ
キシ樹脂、ブチラール樹脂等全ての可塑性樹脂が使用し
うるものであシ1本発明の範囲に属する。
Rubber materials such as natural rubber, SBR, NBR, urethane rubber, chloroprene rubber, silicone rubber, polyethylene,
All plastic resins such as polypropylene, vinyl chloride, MM resin, plastic epoxy resin, and butyral resin can be used and fall within the scope of the present invention.

発明の効果 本発明の固体電解質および電極の製造方法によれば、優
れたイオン伝導性固体電解質あるいは優れた分極特性を
有する電極が得られる事から、これらを使用することに
よシ、優れた電気化学特性を有する素子(例えば、電池
の場合、高率充放電特性を有する素子、エレクトロクロ
ミック素子の場合、応答速度の早い素子が得られる)を
提供することが出来る。
Effects of the Invention According to the solid electrolyte and electrode manufacturing method of the present invention, a solid electrolyte with excellent ion conductivity or an electrode with excellent polarization characteristics can be obtained. It is possible to provide an element having chemical properties (for example, in the case of a battery, an element having high rate charge/discharge characteristics, and in the case of an electrochromic element, an element with a fast response speed can be obtained).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の電極と比較例の電極の分極特
性図、第2図は本発明の実施例におけるある。
FIG. 1 is a polarization characteristic diagram of an electrode according to an example of the present invention and an electrode according to a comparative example, and FIG. 2 is a polarization characteristic diagram of an electrode according to an example of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも可塑性樹脂と電解質を含有してなる固
体電解質あるいは電極等の電気化学素子部材構成要素で
ある固体電解質粒子を圧壊する工程を有する事を特徴と
する電気化学素子部材の製造方法。
(1) A method for producing an electrochemical element member, which comprises a step of crushing solid electrolyte particles containing at least a plastic resin and an electrolyte or solid electrolyte particles that are constituent elements of an electrochemical element member such as an electrode.
(2)固体電解質粒子を圧壊してイオン伝導性を向上さ
せる工程として、ローラーブレス法により圧壊した事を
特徴とする特許請求の範囲第1項記載の電気化学素子部
材の製造方法。
(2) The method for manufacturing an electrochemical element member according to claim 1, wherein the step of crushing the solid electrolyte particles to improve ionic conductivity is performed by a roller press method.
JP62072405A 1986-09-19 1987-03-26 Method for producing electrochemical element member containing solid electrolyte Expired - Lifetime JP2666276B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP62072405A JP2666276B2 (en) 1987-03-26 1987-03-26 Method for producing electrochemical element member containing solid electrolyte
US07/097,367 US4977007A (en) 1986-09-19 1987-09-08 Solid electrochemical element and production process therefor
CA 546422 CA1309456C (en) 1986-09-19 1987-09-09 Solid electrochemical element and production process thereof
DE87113550T DE3785901T2 (en) 1986-09-19 1987-09-16 Solid electrochemical element and process for its manufacture.
EP19870113550 EP0260679B1 (en) 1986-09-19 1987-09-16 Solid electrochemical element and production process thereof
CN87107102A CN1022273C (en) 1986-09-19 1987-09-18 Solid electrozhemical element and process for manufacturing thereof
KR1019870010356A KR900007731B1 (en) 1986-09-19 1987-09-18 Chemical elements of solid electricity and the manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072405A JP2666276B2 (en) 1987-03-26 1987-03-26 Method for producing electrochemical element member containing solid electrolyte

Publications (2)

Publication Number Publication Date
JPS63237367A true JPS63237367A (en) 1988-10-03
JP2666276B2 JP2666276B2 (en) 1997-10-22

Family

ID=13488340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072405A Expired - Lifetime JP2666276B2 (en) 1986-09-19 1987-03-26 Method for producing electrochemical element member containing solid electrolyte

Country Status (1)

Country Link
JP (1) JP2666276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022841A (en) * 2001-07-06 2003-01-24 National Institute For Materials Science Manufacturing method of lithium ion conductive solid electrolyte molding

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795081A (en) * 1980-12-05 1982-06-12 Hitachi Maxell Ltd Manufacture of solid electrolyte cell
JPS60253174A (en) * 1984-05-14 1985-12-13 ユナイテッド キングドム アトミック エナーヂイ オーソリテイ Method of producing solid state electrochemical battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5795081A (en) * 1980-12-05 1982-06-12 Hitachi Maxell Ltd Manufacture of solid electrolyte cell
JPS60253174A (en) * 1984-05-14 1985-12-13 ユナイテッド キングドム アトミック エナーヂイ オーソリテイ Method of producing solid state electrochemical battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022841A (en) * 2001-07-06 2003-01-24 National Institute For Materials Science Manufacturing method of lithium ion conductive solid electrolyte molding

Also Published As

Publication number Publication date
JP2666276B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
CN106299443B (en) The manufacturing method of all-solid-state battery
US4810599A (en) Structure suitable for solid electrochemical elements
JP5889826B2 (en) Silicon anode for rechargeable battery (secondary battery)
Abraham et al. Modeling the impedance versus voltage characteristics of LiNi0. 8Co0. 15Al0. 05O2
CN106299467A (en) Composite solid electrolyte and flexible all-solid-state battery and preparation method, wearable electronic
CN109074961A (en) Method for the electrode of energy storage device and for manufacturing dry energy storage device electrode film
CN105580169A (en) Positive electrode active substance layer
US20220029166A1 (en) Cathode unit and method for producing a cathode unit
CN104466229A (en) Flexible lithium secondary battery and preparation method thereof
JPH08138724A (en) Manufacture of all solid lithium secondary battery
JP3028560B2 (en) Method for manufacturing polarizable electrode of electric double layer capacitor
Toigo et al. A method to measure the swelling of water-soluble PVDF binder system and its electrochemical performance for lithium ion batteries
US20220044879A1 (en) Large-Area Continuous Flexible Free-Standing Electrode And Preparation Method And Use Thereof
Chinnasa et al. Modeling and simulation of a LaCoO3 Nanofibers/CNT electrode for supercapacitor application
KR20150042350A (en) Manufacturing method of carbon fiber sheet current collector for all solid state rechargeable thin film lithium secondary battery, and all solid state rechargeable thin film lithium secondary battery comprising carbon fiber sheet current collector
JPH0935724A (en) Whole solid lithium battery
JPS63237367A (en) Manufacture of electrochemical element member
US3003015A (en) Battery electrode
CN113422094B (en) Gel concentration difference power generation device and preparation method thereof
JPH0482166A (en) Manufacture of solid electrolytic sheet
CN108270036A (en) The production method of solid state battery
EP0796509B1 (en) Method of manufacturing a battery electrode
JPH067496B2 (en) Solid electrochemical device
JPH01657A (en) solid state electrochemical device
JPH01107448A (en) Plane stack type solid electrolyte battery