JPS63237304A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JPS63237304A
JPS63237304A JP62070891A JP7089187A JPS63237304A JP S63237304 A JPS63237304 A JP S63237304A JP 62070891 A JP62070891 A JP 62070891A JP 7089187 A JP7089187 A JP 7089187A JP S63237304 A JPS63237304 A JP S63237304A
Authority
JP
Japan
Prior art keywords
oxide
dielectric
present
composition
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62070891A
Other languages
Japanese (ja)
Inventor
健二 中塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP62070891A priority Critical patent/JPS63237304A/en
Publication of JPS63237304A publication Critical patent/JPS63237304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、マイクロ波誘電体共振器用材料として好適で
あって、誘電損失が小さく、周波数温度係数の制御も容
易な誘電体磁器組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a dielectric ceramic composition suitable as a material for microwave dielectric resonators, which has low dielectric loss and whose frequency temperature coefficient can be easily controlled. .

「従来の技術」 近年、衛星通信や自動車電話等の普及につれてマイクロ
波を取り扱う高周波回路技術が進展し、これに伴って回
路の小型化が一層望まれつつある状況である。
"Prior Art" In recent years, with the spread of satellite communications, car telephones, etc., high frequency circuit technology that handles microwaves has progressed, and as a result, miniaturization of circuits is increasingly desired.

従来、この種の高周波回路には空洞共振器が使用されて
いたが、空洞共振器の大きさはマイクロ波の波長と同程
度になるために、回路の小型化に対する障害となってい
た。そこでこの間層を解決するために、誘電体磁器を使
用して波長そのものを短縮することにより小型化を図る
試みがなされている。この種の誘電体磁器には、比誘電
率(er)が高く、誘電損失(tanδ)が小さく、し
かも周波数温度係数(τf)をOppm/’Cを中心と
して任意に設定できるものが望ましい。
Conventionally, cavity resonators have been used in this type of high-frequency circuit, but the size of the cavity resonator is comparable to the wavelength of the microwave, which has been an obstacle to miniaturizing the circuit. Therefore, in order to solve this interlayer problem, attempts have been made to reduce the size by shortening the wavelength itself using dielectric ceramics. It is desirable for this type of dielectric ceramic to have a high relative dielectric constant (er), a small dielectric loss (tan δ), and a frequency temperature coefficient (τf) that can be arbitrarily set around Oppm/'C.

そこで、従来、これらの要求を満゛たすべき誘電体磁器
組成物として、B ao −T io を系、Ti1t
−Z ro t−S nO!系、CaT iOs −M
gT io 3− L atOl−TiOx系等の組成
物が提供されている。
Therefore, conventionally, as dielectric ceramic compositions that should satisfy these requirements, Bao-Tio system, Ti1t
-Zrot-S nO! system, CaTiOs-M
Compositions such as the gTio3-LatOl-TiOx system have been provided.

「発明が解決しようとする問題点」 しかしながら、前記従来の組成物からなる誘電体共振器
の場合、共振周波数の温度係数をOppm7℃付近に設
定しようとすると、比誘電率が20〜40程度の低い値
となってしまう問題がある。
"Problems to be Solved by the Invention" However, in the case of a dielectric resonator made of the above-mentioned conventional composition, when trying to set the temperature coefficient of the resonant frequency to around 7°C Oppm, the dielectric constant is about 20 to 40. There is a problem that the value becomes low.

このため3GHz以下の周波数帯用では小型化が困難と
なる問題がある。
For this reason, there is a problem in that it is difficult to downsize the device for a frequency band of 3 GHz or less.

なお、近年では、比誘電率が70以上の組成物として、
B a −T iO*−NdtO3系、およびBa0−
Tsot−NdtOクーB LOs系(D、KOLAR
,S、GABERs硅に、z、5rAot、ER,o、
5uvoRovらニヨル)等が報告されている。
In addition, in recent years, as a composition with a dielectric constant of 70 or more,
B a -T iO*-NdtO3 system, and Ba0-
Tsot-NdtO KuB LOs system (D, KOLAR
,S,GABERs,z,5rAot,ER,o,
5uvoRov et al.), etc. have been reported.

ところが、Ba−Tidy  Nd*C)s系の組成物
にあっでは、比誘電率が70以上であって、しかも周波
数温度係数が0ppIIl/℃の誘電体磁器を得られな
い欠点がある。また、B ao  T to t−Nd
tO、−Bi、O,系の組成物にあっては、比誘電率が
70以上であって、しかも、周波数温度係数がOppm
/ ℃の誘電体磁器を得ることはできるものの、マイク
ロ波領域での誘電損失が大きいために、Q(1/lan
δ:電気的品質因数)の高い誘電体共振器が得られない
問題点があった。
However, the Ba-Tidy Nd*C)s-based composition has the disadvantage that it is not possible to obtain a dielectric ceramic having a dielectric constant of 70 or more and a frequency temperature coefficient of 0 ppIIl/°C. Also, Bao T to t-Nd
The tO, -Bi, O, system composition has a dielectric constant of 70 or more and a frequency temperature coefficient of Oppm.
Although it is possible to obtain a dielectric ceramic with a temperature of
There was a problem in that a dielectric resonator with high δ (electrical quality factor) could not be obtained.

本発明は、前記事情に鑑みてなされたもので、回路の小
型化が可能でQが高く、しかも、共振周波数の温度係数
をOppm/’Cを中心とする正または負の範囲で任意
に設定できる上に、周波数温度係数をOppm7℃付近
とした場合に、約3GHzの周波数帯域での誘電損失が
極めて少ない′誘電体へ器を得ることができる組成物の
提供を目的とする。
The present invention has been made in view of the above circumstances, and allows for miniaturization of the circuit, high Q, and the temperature coefficient of the resonant frequency can be arbitrarily set within a positive or negative range centered on Oppm/'C. The object of the present invention is to provide a composition capable of obtaining a dielectric material having an extremely low dielectric loss in a frequency band of approximately 3 GHz when the frequency temperature coefficient is set to Oppm around 7°C.

「問題点を解決するための手段」 本発明の誘電体磁器組成物は、前記問題点を解決するた
めに、酸化バリウムと酸化チタンと酸化ネオジウムと酸
化セリウムと酸化サマリウムと酸化ビスマスを主成分と
してなり、 その組成を一般式、− X B ao  y T iOt  Z ((NdtO
s)+−u −v(Ceto 4)Ll (S lto
 3)V )−v B two Sと表したときに、 組成比X +’/ *Z +W *u +vをモル分率
で0.12≦X≦0.165 0.66≦y≦0670 0.13≦2≦0.175 0.015≦、≦0.035 0≦U≦0,40 0≦7≦0.60 (但しx+ y+ z+ w=1) の範囲とした誘電体磁器組成物に対し、酸化鉄(Fet
Os)を2.5重量%以下の範囲で添加してなるもので
ある。
"Means for Solving the Problems" In order to solve the above problems, the dielectric ceramic composition of the present invention contains barium oxide, titanium oxide, neodymium oxide, cerium oxide, samarium oxide, and bismuth oxide as main components. The composition is given by the general formula, −X Bao y TiOt Z ((NdtO
s)+-u-v(Ceto 4)Ll(S lto
3) When expressed as V)-v B two S, the composition ratio X +'/ *Z +W *u +v is expressed as a mole fraction of 0.12≦X≦0.165 0.66≦y≦0670 0. 13≦2≦0.175 0.015≦, ≦0.035 0≦U≦0,40 0≦7≦0.60 (however, x+ y+ z+ w=1) , iron oxide (Fet
Os) is added in an amount of 2.5% by weight or less.

本発明において、酸化バリウムと酸化チタンと酸化ネオ
ジウムと酸化ビスマスの含有量を前記範囲に限定したの
は、前記範囲外では比誘電率が低下オ^か−すt−は−
溪雷塙牛が増加オスか−すt−は、周波数温度係数がプ
ラス側で太き(なりすぎるためである。また、酸化セリ
ウムと酸化サマリウムの含有量を前記範囲に限定したの
は、前記範囲より多く含有させた場合に誘電損失が増加
するためである。更に、酸化鉄の添加量を前記範囲とし
たのは、この範囲で酸化鉄を添加することによって誘電
損失を減少させた上で周波数温度係数をマイナス側にシ
フトすることができるためであるが、前記範囲を越える
場合、誘電損失が増加して比誘電率も減少するために目
的の特性が得られない。
In the present invention, the content of barium oxide, titanium oxide, neodymium oxide, and bismuth oxide is limited to the above range because outside the above range, the relative permittivity decreases.
This is because the frequency temperature coefficient of the increasing number of male calves in Xileyihan is too thick on the positive side.Also, the content of cerium oxide and samarium oxide was limited to the above range. This is because the dielectric loss increases if the content exceeds the range.Furthermore, the reason why the amount of iron oxide added is set in the above range is that by adding iron oxide within this range, the dielectric loss is reduced. This is because the frequency temperature coefficient can be shifted to the negative side, but if it exceeds the above range, the dielectric loss increases and the dielectric constant decreases, making it impossible to obtain the desired characteristics.

「作用」 酸化バリウムと酸化チタンと酸化ネオジウムと酸化セリ
ウムと酸化サマリウムと酸化ビスマスを所定漬含有させ
、更に酸化アルミニウムを所定量添加することにより、
比誘電率が70以上で、かつ、3GHzでの誘電損失を
8XIO−’以下の極めて小さな値にすることが可能に
なる。
"Function" By containing barium oxide, titanium oxide, neodymium oxide, cerium oxide, samarium oxide, and bismuth oxide in a predetermined amount, and further adding a predetermined amount of aluminum oxide,
It becomes possible to have a dielectric constant of 70 or more and an extremely small dielectric loss of 8XIO-' or less at 3 GHz.

「実施例I」 出発原料として炭酸バリウム(BaCos)と酸化チタ
ン(T io y)と酸化ネオジウム(NdtOs)と
酸化セリウム(Ceo z)と酸化サマリウム(S m
to 3)と酸化ビスマス(BLOt)、および、添加
成分として酸化鉄(F eto 3)を使用し、これら
を所定の組成になるように秤量し、めのうボールを備え
たボールミル装置で湿式混合を行った。
"Example I" Barium carbonate (BaCos), titanium oxide (T io y), neodymium oxide (NdtOs), cerium oxide (Ceo z), and samarium oxide (S m
to 3), bismuth oxide (BLOt), and iron oxide (F eto 3) as an additive component, these were weighed to have a predetermined composition, and wet mixed using a ball mill device equipped with an agate ball. Ta.

この混合物を乾燥した後に、空気中で1100゜℃の温
度で5時間の仮焼成を行った後に、前記ボールミル装置
で湿式粉砕を行った。
After drying this mixture, it was pre-calcined in air at a temperature of 1100° C. for 5 hours, and then wet-pulverized using the ball mill.

こうして得られた粉末をポリビニルアルコール系のバイ
ンダーを添加して造粒し、50メツシユのふるいを通し
て整粒した。この整粒粉体に2000 kg/ cm″
の圧力で乾式プレス成形を施し、直径16mm、厚さ約
10mmの円柱状の成形体を得た。
The powder thus obtained was granulated by adding a polyvinyl alcohol binder and sized through a 50-mesh sieve. 2000 kg/cm'' to this sized powder
Dry press molding was carried out at a pressure of 1.5 mm to obtain a cylindrical molded body with a diameter of 16 mm and a thickness of about 10 mm.

これら成形体を空気中で1250〜1350℃の温度で
2時間焼成して誘電体磁器試料Nol〜No22を得た
These molded bodies were fired in air at a temperature of 1250 to 1350° C. for 2 hours to obtain dielectric ceramic samples No. 1 to No. 22.

前記誘電体磁器試料No1=No22の各端面を研摩し
、TEモード(transverse electri
c mode)の誘電体共振器とするとともに、ハッキ
・コールマン(Hakki −Colen+an)法に
よって約3GHzにおける比誘電率(εr)と誘電損失
(tanδ)を測定するとともに、共振周波数における
温度係数(τf)を−40℃〜70℃の範囲で測定した
Each end face of the dielectric ceramic samples No. 1 and No. 22 was polished and subjected to TE mode (transverse electric
c mode) dielectric resonator, and measured the relative dielectric constant (εr) and dielectric loss (tanδ) at approximately 3 GHz using the Hakki-Colen method, and measured the temperature coefficient (τf) at the resonant frequency. was measured in the range of -40°C to 70°C.

その結果を第1表と第2表に示す。なお、第1表に示す
試料No1−No13は本発明で限定した組成を有する
誘電体磁器試料であり、第2表に示す試料No14〜N
o22は本発明で限定した範囲外の組成の誘電体磁器試
料である。
The results are shown in Tables 1 and 2. Note that samples No. 1 to No. 13 shown in Table 1 are dielectric ceramic samples having compositions limited in the present invention, and samples No. 14 to No. 1 shown in Table 2 are dielectric ceramic samples having compositions limited in the present invention.
o22 is a dielectric ceramic sample with a composition outside the range defined in the present invention.

(以下、余白) 第1表  (本発明例) 第2表  (比較例) 以下に、第1表に示す各試料で得られた特性と第2表に
示す各試料で得られた特性を比較して本発明の成分限定
理由について説明する。
(Hereinafter, blank spaces) Table 1 (Example of the present invention) Table 2 (Comparative example) Below, the characteristics obtained with each sample shown in Table 1 and the characteristics obtained with each sample shown in Table 2 are compared. The reasons for limiting the components of the present invention will now be explained.

第1表の試料No4とNo5は、組成比Xと2を本発明
で限定した範囲(0,12≦X≦0.165.0、I3
≦2≦0.175)の上限と下限に設定し、他の組成比
を本発明で限定した範囲内に設定した試料であるのに対
し、第2表の試料Not 6とN。
Samples No. 4 and No. 5 in Table 1 have composition ratios X and 2 within the range limited by the present invention (0,12≦X≦0.165.0, I3
≦2≦0.175), and the other composition ratios were set within the ranges defined by the present invention, whereas Samples No. 6 and N in Table 2.

17は組成比Xと2を本発明で限定した範囲外に設定し
た試料である。試料No4とNo5は、比誘電率が高く
、誘電損失も少ないが、試料Nol Bとは誘電損失が
大きく、試料Nol 9は比誘電率が低く誘電損失も大
きくなっている。
Sample No. 17 is a sample in which the composition ratios X and 2 are set outside the range defined by the present invention. Samples No. 4 and No. 5 have a high dielectric constant and a small dielectric loss, but sample No. B has a large dielectric loss, and sample No. 9 has a low dielectric constant and a large dielectric loss.

従って組成比Xと2について本発明で限定した範囲が・
適切であることが明らかとなった。
Therefore, the range limited in the present invention for the composition ratios X and 2 is
It turned out to be appropriate.

第1表の試料No6とNo7は、組成比yを本発明で限
定した範囲(0,66≦y≦0.70)の下限と上限に
設定し、他の組成比を本発明で限定した範囲内に設定し
た試料であり、第2表の試料N。
For samples No. 6 and No. 7 in Table 1, the composition ratio y was set to the lower and upper limits of the range limited by the present invention (0.66≦y≦0.70), and the other composition ratios were set to the range limited by the present invention. Sample N in Table 2.

!8とNol 9は組成比yを本発明で限定した範囲外
に設定した試料である。試料No6とNo7は、比誘電
率が高く誘電損失も少ないが、試料No18は誘電損失
が大きく、試料Nol 9は温度係数が大きくなり過ぎ
ている。   。
! No. 8 and No. 9 are samples in which the composition ratio y was set outside the range defined by the present invention. Samples No. 6 and No. 7 have a high dielectric constant and a small dielectric loss, but sample No. 18 has a large dielectric loss, and sample No. 9 has an excessively large temperature coefficient. .

従って組成比yについて本発明で限定した範囲が適切で
あることが明らかとなった。
Therefore, it has become clear that the range defined by the present invention for the composition ratio y is appropriate.

第1表の試料NolとNo3は、組成比、を本発明で限
定した範囲(0,015≦、≦0.035)の下限と上
限に設定し、他の組成比を本発明で限定した範囲内に設
定した試料であり、第2表の試料Nol 4とNol 
5は組成比、を本発明で限定した範囲外に設定した試料
である。試料NolとNo3は比誘電率が高く誘電損失
も少ないが、試料N。
For samples No. 1 and No. 3 in Table 1, the composition ratios were set to the lower and upper limits of the range limited by the present invention (0,015≦, ≦0.035), and the other composition ratios were set to the ranges limited by the present invention. Sample No. 4 and No. 4 in Table 2
Sample No. 5 is a sample in which the composition ratio was set outside the range defined by the present invention. Samples No. 1 and 3 have high dielectric constants and low dielectric loss, but sample N.

14は温度係数が大きくなり過ぎ、試料Nol 5は誘
電損失が大きくなっている。
Sample No. 14 has an excessively large temperature coefficient, and sample No. 5 has a large dielectric loss.

従って組成比Wについて本発明で限定した範囲が適切で
あることが明らかとなった。
Therefore, it has become clear that the range defined in the present invention for the composition ratio W is appropriate.

第1表において試料No8とNo9は、組成比。In Table 1, samples No. 8 and No. 9 have composition ratios.

とVを本発明で限定した範囲Co5u≦0.40.0≦
9≦0.60)の下限と上限に設定し、他の組成比を本
発明で限定した範囲に設定した試料であり、第2表の試
料No20とNo21は組成比。と9の一方を本発明で
限定した範囲外に設定した試料である。試料No8とN
o9は比誘電率が高く誘電損失も少ないが、試料No2
0とNo21はいずれら誘電損失が大きくなっている。
and V in the range limited by the present invention Co5u≦0.40.0≦
9≦0.60), and the other composition ratios were set within the ranges limited by the present invention. Samples No. 20 and No. 21 in Table 2 have composition ratios. This is a sample in which one of the parameters 9 and 9 was set outside the range defined by the present invention. Sample No.8 and N
o9 has a high dielectric constant and low dielectric loss, but sample No.2
Both No. 0 and No. 21 have large dielectric losses.

従って組成比。と、について本発明で限定した範囲が適
切であることが明らかとなった。
Therefore, the composition ratio. It has become clear that the range defined in the present invention is appropriate for and.

第1表において試料NoI OとNol 1とNo12
とNol 3は、組成比Xとyと2と、と。と、を本発
明で限定した範囲に設定し、Pet’3の添加量を本発
明で限定した範囲内において増減した試料であり、第2
表の試料No22は、Fetusの添加量のみを本発明
で限定した範囲よりも多くした試料である。試料Nol
 O〜Nol 3がいずれも優れた特性を示し、Fet
usの添加量の増加によって誘電損失を減少させ、周波
数温度係数をマイナス側にシフトできているのに対し、
Fevosの添加mが本発明の範囲より多い試料No2
2は誘電槽小Ml曽trn+、−1’;’ρ、0.を禾
加Lτいない材料の誘電損失よりも大きくなってしまう
とともに、比誘電率も70以下となっている。なお、P
e5o。
In Table 1, samples No.I O, No. 1 and No. 12
and No. 3 has a composition ratio of X, y, and 2. and are set within the range limited by the present invention, and the amount of Pet'3 added is increased or decreased within the range limited by the present invention.
Sample No. 22 in the table is a sample in which only the amount of Fetus added was greater than the range limited by the present invention. Sample No.
O~Nol 3 all showed excellent characteristics, and Fet
By increasing the amount of us added, the dielectric loss can be reduced and the frequency temperature coefficient can be shifted to the negative side.
Sample No. 2 in which Fevos addition m is more than the range of the present invention
2 is the dielectric tank small Ml so trn+, -1';'ρ, 0. The dielectric loss becomes larger than the dielectric loss of the material without adding Lτ, and the dielectric constant is also 70 or less. In addition, P
e5o.

を添加していない試料NOI OとFetusを添加し
た試料Nol 2を比較すると誘電損失を約15%低減
できることが判明した。
Comparing the sample NOI O to which Fetus was not added and the sample No. 2 to which Fetus was added, it was found that the dielectric loss could be reduced by about 15%.

従ってFe、O,の添加量について本発明で限定した範
囲が適切であることが明らかとなった。
Therefore, it has become clear that the ranges defined in the present invention are appropriate for the amounts of Fe and O added.

「発明の効果」 以上説明したように本発明の誘電体磁器組成物は、酸化
バリウムと酸化チタンと酸化ネオジウムと酸化セリウム
と酸化サマリウムと酸化ビスマスを特別なモル分率で含
有させ、更に、酸化鉄を特別な重量%で添加したもので
あるため、比誘電率が70以上で、周波数温度係数をO
ppm/ ”Cを中心とする正と負の広い範囲で任意に
設定することができ、しかも周波数温度係数をOppm
/ ”C付近に設定した場合に、約3GHzで4.7X
1(1’の低い誘電損失を示し、Qの高い優れたもので
ある。
"Effects of the Invention" As explained above, the dielectric ceramic composition of the present invention contains barium oxide, titanium oxide, neodymium oxide, cerium oxide, samarium oxide, and bismuth oxide in special molar fractions, and further contains oxidized Because it contains a special weight percent of iron, it has a dielectric constant of 70 or more and a frequency temperature coefficient of O.
It can be set arbitrarily in a wide range of positive and negative values centered on ppm/”C, and the frequency temperature coefficient can be set as
/ 4.7X at approximately 3GHz when set near C
It exhibits a low dielectric loss of 1 (1') and an excellent high Q value.

また、酸化鉄の添加によって誘電損失を約15%低減す
ることができる。
Further, dielectric loss can be reduced by about 15% by adding iron oxide.

従って本発明の誘電体磁器組成物によって、Qが高く、
周波数温度係数をOppm/ ’Cを中心として任意に
設定できる誘電体共振器を得ることができ、この誘電体
共振器を用いるマイクロ波用回路の小型化をなしうる効
果がある。
Therefore, the dielectric ceramic composition of the present invention has a high Q,
A dielectric resonator whose frequency temperature coefficient can be set arbitrarily around Oppm/'C can be obtained, and a microwave circuit using this dielectric resonator can be miniaturized.

Claims (1)

【特許請求の範囲】  酸化バリウムと酸化チタンと酸化ネオジウムと酸化セ
リウムと酸化サマリウムと酸化ビスマスを主成分として
なり、 その組成を一般式、 xBaO−yTiO_2−z{(Nd_2O_3)_1
_−_u_−_v(Ce_2O_4)_u(Sm_2O
_3)_v}−_wBi_2O_3と表したときに、 組成比x,y,z,w,u,vをモル分率で0.12≦
x≦0.165 0.66≦y≦0.70 0.13≦z≦0.175 0.015≦w≦0.035 0≦u≦0.40 0≦v≦0.60 (但しx+y+z+w=1) の範囲とした誘電体磁器組成物に対し、 酸化鉄を2.5重量%以下の範囲で添加してなることを
特徴とする誘電体磁器組成物。
[Claims] The main components are barium oxide, titanium oxide, neodymium oxide, cerium oxide, samarium oxide, and bismuth oxide, and its composition is represented by the general formula: xBaO-yTiO_2-z{(Nd_2O_3)_1
___u_-_v(Ce_2O_4)_u(Sm_2O
_3) _v}-_wBi_2O_3 When expressed as _wBi_2O_3, the composition ratio x, y, z, w, u, v is 0.12≦ in mole fraction.
x≦0.165 0.66≦y≦0.70 0.13≦z≦0.175 0.015≦w≦0.035 0≦u≦0.40 0≦v≦0.60 (However, x+y+z+w= 1) A dielectric ceramic composition characterized in that iron oxide is added in an amount of 2.5% by weight or less to a dielectric ceramic composition in the following range.
JP62070891A 1987-03-25 1987-03-25 Dielectric ceramic composition Pending JPS63237304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62070891A JPS63237304A (en) 1987-03-25 1987-03-25 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62070891A JPS63237304A (en) 1987-03-25 1987-03-25 Dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JPS63237304A true JPS63237304A (en) 1988-10-03

Family

ID=13444603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62070891A Pending JPS63237304A (en) 1987-03-25 1987-03-25 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JPS63237304A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
EP1043288A2 (en) * 1999-04-09 2000-10-11 Murata Manufacturing Co., Ltd. High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
US5304521A (en) * 1991-09-27 1994-04-19 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
US5350721A (en) * 1991-09-27 1994-09-27 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZNO-B203-SI02 glass, method of preparing the same, and resonator and filter using the dielectric ceramic composition
EP1043288A2 (en) * 1999-04-09 2000-10-11 Murata Manufacturing Co., Ltd. High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus
EP1043288A3 (en) * 1999-04-09 2001-03-21 Murata Manufacturing Co., Ltd. High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus
US6304157B1 (en) 1999-04-09 2001-10-16 Murata Manufacturing Co., Ltd. High-frequency dielectric ceramic composition, dielectric resonator, dielectric filter, dielectric duplexer, and communication apparatus

Similar Documents

Publication Publication Date Title
JP2613722B2 (en) Method for producing dielectric ceramic composition for low-temperature firing
JP2974829B2 (en) Microwave dielectric porcelain composition
JPS63237304A (en) Dielectric ceramic composition
JP2554478B2 (en) Microwave dielectric porcelain composition
JP3462517B2 (en) Microwave dielectric porcelain composition
JP2514354B2 (en) Dielectric ceramic composition and method for producing the same
JP2521474B2 (en) Dielectric porcelain composition
JP2609362B2 (en) Dielectric ceramic material for microwave
JPH0280366A (en) Dielectric porcelain composition
JPS63237305A (en) Dielectric ceramic composition
JPS60200855A (en) Dielectric ceramic composition
JP3481767B2 (en) Dielectric porcelain composition
JP3330024B2 (en) High frequency dielectric ceramic composition
JP2840673B2 (en) Dielectric porcelain composition
JPH0256305B2 (en)
JP2001302331A (en) Dielectric ceramic composition
JPH0669904B2 (en) Dielectric porcelain
JPS63250008A (en) Dielectric ceramic
JPS63126115A (en) Dielectric magnetic composition
JPS6172675A (en) Dielectric ceramic composition
JP3243890B2 (en) Dielectric porcelain composition
JPS62283863A (en) Dielectric ceramic composition for microwave
JPH04265269A (en) Dielectric ceramic for microwave
JP3101968B2 (en) Dielectric porcelain composition
JPH09315863A (en) Dielectric ceramics composition and electronic parts