JPS63236388A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63236388A
JPS63236388A JP7061687A JP7061687A JPS63236388A JP S63236388 A JPS63236388 A JP S63236388A JP 7061687 A JP7061687 A JP 7061687A JP 7061687 A JP7061687 A JP 7061687A JP S63236388 A JPS63236388 A JP S63236388A
Authority
JP
Japan
Prior art keywords
current
layer
mode
semiconductor laser
trapped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7061687A
Other languages
Japanese (ja)
Inventor
Masahiro Kume
雅博 粂
Kunio Ito
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7061687A priority Critical patent/JPS63236388A/en
Publication of JPS63236388A publication Critical patent/JPS63236388A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent noises almost completely from generating even it a mode hopping occurs by a method wherein a current inlet is rendered narrower than a current trapped in lateral mode by refractive index. CONSTITUTION:A current, which is injected into a active layer 4 through a V groove provided on a mesa 10, is trapped by use of an GaAs current block layer 2 on a substrate 1 side. An electrode 8 is formed on a n-GaAs layer 6 through the intermediary of a SiO2 film 7 and kept only in contact with the layer 6 at the point above the V groove, wherefore a current is effectively constricted. Namely, a current injection is performed more narrowly than a current trapped by refractive index. Thereby, an oscillator mode spectrum oscillates in plural modes. And, when a laser with a refractive wave guide structure is operated in a gain wave guide manner by concentrating a current, a saturable absorber is horizontally formed in the junction of a active layer, which effect causes a light output to vary by a few GHz in frequency. By this effect, each mode gets broader in spectrum width. Even it a temperature of a semiconductor laser changes, a stable noise property could be obtained without any excess noises.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光情報処理機器に用いられる、半導体レーザ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device used in optical information processing equipment.

従来の技術 半導体レーザ装置は、小型で高効率のため、光情報処理
分野でのレーザ光源として広く用いられている。特に近
年著しく発展している光ディスクにおいては、情報の記
録・再生を行なう光ピツクアップの小型化は半導体レー
ザなくしては不可能となっている。
2. Description of the Related Art Semiconductor laser devices are small and highly efficient, and are therefore widely used as laser light sources in the field of optical information processing. Particularly in the field of optical discs, which have been significantly developed in recent years, miniaturization of optical pickups for recording and reproducing information is impossible without semiconductor lasers.

さて半導体レーザは、GaAs半導体のバンド間遷移に
よる発光現象を利用し、結晶面を使って共振器を形成し
ている。バンド間遷移による発光のスペクトルは広く、
そのピーク波長における共振器モードでレーザ発振が起
こる。ピーク波長はバンド間のエネルギーギャップ差に
相当するため、注入電流の変化や結晶の温度変化によっ
てエネルギーギャップが変化すると、ピーク波長が変わ
るため、レーザ発振波長は異なった共振器モードに移行
する。これをモードホッピングと呼ぶ。光デイスク装置
に半導体レーザを用いる場合、ディスク上にレーザ光を
集光し、ディスクからの反射光(再生信号)の強弱で情
報を読み取るために、半導体レーザ内に自分自身のレー
ザ光が帰還する。
Now, a semiconductor laser utilizes a light emission phenomenon caused by band-to-band transition of a GaAs semiconductor, and forms a resonator using a crystal plane. The spectrum of emission due to interband transitions is wide;
Laser oscillation occurs in the resonator mode at its peak wavelength. The peak wavelength corresponds to the energy gap difference between bands, so if the energy gap changes due to a change in the injection current or a change in the temperature of the crystal, the peak wavelength changes and the laser oscillation wavelength shifts to a different resonator mode. This is called mode hopping. When a semiconductor laser is used in an optical disk device, the laser beam is focused on the disk and its own laser beam returns into the semiconductor laser in order to read information based on the strength of the reflected light (playback signal) from the disk. .

この現象によっても、ピーク発光波長が変化し、モード
ホッピングが引き起こされる。このモードホッピング現
象に伴ってレーザ発振波長は離散的に変化し、ホッピン
グ時にレーザ光出力は変化する。
This phenomenon also changes the peak emission wavelength and causes mode hopping. Accompanying this mode hopping phenomenon, the laser oscillation wavelength changes discretely, and the laser light output changes during hopping.

発明が解決しようとする問題点 モードホッピングによってレーザ光出力が変化すると、
再生信号に雑音が混入することになり、情報の読出しエ
ラーが発生する。従って光ディスクの再生に半導体レー
ザを用いる場合、モードホッピングによるレーザ光のゆ
らぎ(雑音)が極力小さな半導体レーザ装置を使用しな
ければならない。しかしながら、通常の半導体レーザは
、1個の共振器モードで発振するため、モードホッピン
グ時に極めて大きな雑音を発生する。
Problems to be Solved by the Invention When the laser light output changes due to mode hopping,
Noise will be mixed into the reproduced signal, causing an error in reading information. Therefore, when using a semiconductor laser to reproduce an optical disk, it is necessary to use a semiconductor laser device in which the fluctuation (noise) of the laser light due to mode hopping is as small as possible. However, since a normal semiconductor laser oscillates in one resonator mode, it generates extremely large noise during mode hopping.

問題点を解決するための手段 本発明の半導体レーザ装置は電流注入幅が屈折率による
横モード閉じ込め幅よりも狭くなるように構成されてい
る。
Means for Solving the Problems The semiconductor laser device of the present invention is constructed such that the current injection width is narrower than the transverse mode confinement width due to the refractive index.

作用 横モードの導波機構が屈折率導波から利得導波に近づく
ために、横モードに高次のモードが介入し、そのために
、複数の共振器モードで発振するようになる。すると、
モードホッピングが起きてもレーザ発振波長は全体とし
て連続的に変化していることと同等になり雑音は殆んど
発生しなくなる0 実施例 第1図に、本発明の実施例による半導体レーザ装置の構
造図を示す。活性層4に注入される電流を閉じ込めるの
に、基板1側ではn −GaAs電流ブロック層2を用
い、メサ1o上にあけたV溝12から注入している。ま
たn −GaAs層6上にSiO2膜7によって電極8
が、■溝上の位置のみ層6と接するようになっていて、
電流の狭窄の効果を上げるようになっている。すなわち
、電流注入幅が屈折率による閉じ込め幅よりも狭くなっ
ている。
Since the waveguide mechanism of the active transverse mode approaches gain waveguide from refractive index waveguide, higher-order modes intervene in the transverse mode, which causes oscillation in multiple resonator modes. Then,
Even if mode hopping occurs, the laser oscillation wavelength is equivalent to continuously changing as a whole, and almost no noise is generated.Embodiment FIG. 1 shows a semiconductor laser device according to an embodiment of the present invention. A structural diagram is shown. To confine the current injected into the active layer 4, an n-GaAs current blocking layer 2 is used on the substrate 1 side, and the current is injected through a V-groove 12 formed on the mesa 1o. Further, an electrode 8 is formed on the n-GaAs layer 6 by a SiO2 film 7.
However, only the position above the groove is in contact with layer 6,
It is designed to increase the effect of current constriction. That is, the current injection width is narrower than the confinement width due to the refractive index.

第2図に、共振器モードスペクトルを示す。スペクトル
は複数のモードで発振しているのがわかる。また、屈折
率導波構造を持つレーザで、電流を絞って利得導波的に
すると、活性層の接合に水平方向で、可飽和吸収体が形
成され、この作用によって光出力が数GH2の周波数で
揺らぐ。この効果のため、一本のモードのスペクトル幅
が広がる。
FIG. 2 shows the resonator mode spectrum. It can be seen that the spectrum oscillates in multiple modes. In addition, when a laser with a refractive index waveguide structure is used as a gain waveguide by narrowing down the current, a saturable absorber is formed horizontally at the junction of the active layer, and this action increases the optical output at a frequency of several GH2. It sways. This effect widens the spectral width of one mode.

第3図に半導体レーザの温度を変化させた時のレーザ光
の相対雑音強度(RIM )の結果を示す。
FIG. 3 shows the relative noise intensity (RIM) of the laser beam when the temperature of the semiconductor laser is changed.

過剰雑音の全く発生しない安定な雑音特性が得られてい
るのがわかる。
It can be seen that stable noise characteristics with no excess noise generated are obtained.

発明の効果 本発明によれば、モードホッピングによる雑音が全く発
生しない半導体レーザ装置が実現でき、光ディスク等の
応用に際して犬なる効果を有する。
Effects of the Invention According to the present invention, it is possible to realize a semiconductor laser device that does not generate any noise due to mode hopping, which has significant effects when applied to optical discs and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ装置の構造図、第2図は
スペクトルを示す図、第3図は雑音特性を示す図である
。 1・・・・・・P −GALA!!基板、2・・・・・
・n −GaムS電流ブロック層、3・・・・・・P 
−GaAlAsクラッド層、4・・・・・・GaAJA
s活性層、6・・・・・・n−GaAlAsクラッド層
、6・・・・・・n −GILA5! コンタクト層、
7・・・・・・5102膜、8・・・・・・ムuGeH
i電極、9・・・・・・ムuZn電極、1o・・・・・
・メサ、11・・・・・・リッジ、12・・・・・・V
溝0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
P−広tAs基版 2. J −−−7’L−(拉AS屑 、3−r−cra、Al25s71t 4・−貿’7−ttAlAs層 S −−−7t −Crct−AIAs層’7−−Si
θ?膜 8− ハLLcreNi’fL”)Fixq−−−ハt
Lzn艷末k 10− メサ 第2図 汲長(贋仇) 第3図 0     20    4o      6゜1及(
°0)
FIG. 1 is a structural diagram of a semiconductor laser device of the present invention, FIG. 2 is a diagram showing a spectrum, and FIG. 3 is a diagram showing noise characteristics. 1...P-GALA! ! Board, 2...
・n-Gamus current blocking layer, 3...P
-GaAlAs cladding layer, 4...GaAJA
s active layer, 6...n-GaAlAs cladding layer, 6...n-GILA5! contact layer,
7...5102 film, 8...MuGeH
i electrode, 9... mu Zn electrode, 1o...
・Mesa, 11...Ridge, 12...V
Mizo 0 Name of agent Patent attorney Toshio Nakao and 1 other person/-
P-wide tAs base plate 2. J ---7'L-(拉AS scrap, 3-r-cra, Al25s71t 4.-trade'7-ttAlAs layer S ---7t -Crct-AIAs layer'7--Si
θ? Membrane 8- LLcreNi'fL") Fixq---hat
Lzn end k 10- Mesa 2nd drawing length (false) 3rd figure 0 20 4o 6゜1 and (
°0)

Claims (1)

【特許請求の範囲】[Claims] 凸状のメサを有する一導電型の半導体基板上に、前記一
導電型とは反対の導電型の半導体層があり、前記半導体
層には前記メサの直上の位置に溝が形成されて、その両
側にリッジがあり、前記半導体層の上に、P−nヘテロ
接合があり、最上層の上に、前記V形状の溝に対応する
位置に開孔を有する絶縁膜が形成され、電極金属が前記
開孔を通じて前記最上層に接していることを特徴とする
半導体レーザ装置。
A semiconductor layer of a conductivity type opposite to the one conductivity type is provided on a semiconductor substrate of one conductivity type having a convex mesa, and a groove is formed in the semiconductor layer at a position directly above the mesa. There are ridges on both sides, a P-n heterojunction is formed on the semiconductor layer, an insulating film having an opening at a position corresponding to the V-shaped groove is formed on the top layer, and an electrode metal is formed on the uppermost layer. A semiconductor laser device, wherein the semiconductor laser device is in contact with the uppermost layer through the opening.
JP7061687A 1987-03-25 1987-03-25 Semiconductor laser device Pending JPS63236388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7061687A JPS63236388A (en) 1987-03-25 1987-03-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7061687A JPS63236388A (en) 1987-03-25 1987-03-25 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63236388A true JPS63236388A (en) 1988-10-03

Family

ID=13436714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7061687A Pending JPS63236388A (en) 1987-03-25 1987-03-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63236388A (en)

Similar Documents

Publication Publication Date Title
Lang et al. Theory of grating-confined broad-area lasers
US3999146A (en) Semiconductor laser device
JPS63244783A (en) Wavelength conversion element
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JPS63236388A (en) Semiconductor laser device
JP2889626B2 (en) Semiconductor laser
JPS63236389A (en) Semiconductor laser device
US4764937A (en) Semiconductor laser array device
JPH01262683A (en) Method for driving semiconductor laser
JPH01143382A (en) Optical amplifier
Di Forte et al. Tunable optically pumped GaAs-GaAlAs distributed-feedback lasers
JP2955877B2 (en) Semiconductor laser
JPH03201495A (en) Broad area laser
KR100287756B1 (en) 2 stage optical recorder
JP3768267B2 (en) Semiconductor laser device and manufacturing method thereof
JPS60154337A (en) Optical pickup device
JP3344084B2 (en) Semiconductor laser device
JPH0936482A (en) Semiconductor laser element and fabrication thereof
JPS6237899B2 (en)
JPH045879A (en) Semiconductor laser device
JPS6052078A (en) Semiconductor laser device
JPS61161786A (en) Semiconductor laser device
JPH0936492A (en) Semiconductor laser element and fabrication thereof
JPH01175282A (en) Semiconductor laser device
JPS5961984A (en) Semiconductor laser device