JPS63236389A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63236389A
JPS63236389A JP7061787A JP7061787A JPS63236389A JP S63236389 A JPS63236389 A JP S63236389A JP 7061787 A JP7061787 A JP 7061787A JP 7061787 A JP7061787 A JP 7061787A JP S63236389 A JPS63236389 A JP S63236389A
Authority
JP
Japan
Prior art keywords
current
mode
layer
groove
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7061787A
Other languages
Japanese (ja)
Inventor
Masahiro Kume
雅博 粂
Kunio Ito
国雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7061787A priority Critical patent/JPS63236389A/en
Publication of JPS63236389A publication Critical patent/JPS63236389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent noises almost from generating even if a mode hopping occurs by a method wherein a current injection width is made narrower than a confinement width of a lateral mode due to a refractive index. CONSTITUTION:A current, which is injected into an active layer through a V groove 12 provided on a mesa 10, is confined by use of a n-GaAs current block layer 2 on a substrate 1 side. Zn is diffused into a part of an n-GaAs layer 6 other than a part corresponding to the V groove for the formation of a p-type structure and the part not diffused with Zn is only kept in ohmic contact with an electrode 8 to make a current constriction effective. thereby, an oscillator mode spectrum oscillates in plural modes. And when a laser with a refractive index wave guide structure is operated in a gain wave guide manner by controlling a current, a saturable absorber is formed in junction of the active layer, which effect causes a light output to vary by a few GHz in frequency and also render a spectrum wider in each mode. Furthermore, a stable noise property can be obtained without any excess noises.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光情報処理機器に用いられる、半導体レーザ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device used in optical information processing equipment.

従来の技術 半導体レーザ装置は、小型で高効率のため、光情報処理
分野でのレーザ光源として広く用いられている。特に近
年著しく発展している光ディスクにおいては、情報の記
録・再生を行なう光ピツクアップの小型化は半導体レー
ザなくしては不可能となっている。
2. Description of the Related Art Semiconductor laser devices are small and highly efficient, and are therefore widely used as laser light sources in the field of optical information processing. Particularly in the field of optical discs, which have been significantly developed in recent years, miniaturization of optical pickups for recording and reproducing information is impossible without semiconductor lasers.

さて半導体レーザは、GaAs半導体のバンド間遷移に
よる発光現象を利用し、結晶面を使って共振器全形成し
ている。バンド間遷移による発光のスペクトルは広く、
そのピーク波長における共振器モードでレーザ発振が起
こる。ピーク波長はバンド間のエネルギーギャップ差に
相当するため、注入電流の変化や結晶の温度変化によっ
てエネルギーギャップが変化すると、ピーク波長が変わ
るため、レーザ発振波長は異なった共振器モードに移行
する。これをモードホッピングと呼ぶ。光デイスク装置
に半導体レーザを用いる場合、ディスク上にレーザ光を
集光し、ディスクからの反射光(再生信号)の強弱で情
報を読み取るために、半導体レーザ内に自分自身のレー
ザ光が帰還する。
Now, a semiconductor laser takes advantage of the light emission phenomenon caused by band-to-band transition in a GaAs semiconductor, and uses crystal planes to form the entire cavity. The spectrum of emission due to interband transitions is wide;
Laser oscillation occurs in the resonator mode at its peak wavelength. The peak wavelength corresponds to the energy gap difference between bands, so if the energy gap changes due to a change in the injection current or a change in the temperature of the crystal, the peak wavelength changes and the laser oscillation wavelength shifts to a different resonator mode. This is called mode hopping. When a semiconductor laser is used in an optical disk device, the laser beam is focused on the disk and its own laser beam returns to the semiconductor laser in order to read information based on the strength of the reflected light (playback signal) from the disk. .

この現象によっても、ピーク発光波長が変化し、モード
ホッピングが引き起こされる。このモードホッピング現
象に伴ってレーザ発振波長は離散的に変化し、ホッピン
グ時にレーザ光出力は変化する。
This phenomenon also changes the peak emission wavelength and causes mode hopping. Accompanying this mode hopping phenomenon, the laser oscillation wavelength changes discretely, and the laser light output changes during hopping.

発明が解決しようとする問題点 モードホッピングによってレーザ光出力が変化すると、
再生信号に雑音が混入することになり、情報の読出しエ
ラーが発生する。従って光ディスクの再生に半導体レー
ザを用いる場合、モードホッピングによるレーザ光のゆ
らぎ(雑音)が極力小さな半導体レーザ装置を使用しな
ければならない。しかしながら、通常の半導体レーザは
、1個の共振器モードで発振するため、モードホッピン
グ時に極めて大きな雑音を発生する。
Problems to be Solved by the Invention When the laser light output changes due to mode hopping,
Noise will be mixed into the reproduced signal, causing an error in reading information. Therefore, when using a semiconductor laser to reproduce an optical disk, it is necessary to use a semiconductor laser device in which the fluctuation (noise) of the laser light due to mode hopping is as small as possible. However, since a normal semiconductor laser oscillates in one resonator mode, it generates extremely large noise during mode hopping.

問題点を解決するための手段 本発明の半導体レーザ装置は電流注入幅全屈折率による
横モード閉じ込め幅よりも狭くなるように構成されてい
る。
Means for Solving the Problems The semiconductor laser device of the present invention is constructed such that the current injection width is narrower than the transverse mode confinement width due to the total refractive index.

作用 横モードの導波機構が屈折率導波から利得導波に近づく
ために、横モードに高次のモードが介入し、そのために
、複数め共振器モードで発振するようになる。すると、
モードホッピングが起きてもレーザ発振波長は全体とし
て連続的に変化していることと同等になジ雑音は殆んど
発生しなくなる。
Since the waveguide mechanism of the active transverse mode approaches gain waveguide from refractive index waveguide, a higher-order mode intervenes in the transverse mode, which causes oscillation in a plurality of resonator modes. Then,
Even if mode hopping occurs, the laser oscillation wavelength changes continuously as a whole, and almost no noise occurs.

実施例 第1図に、本発明の実施例による半導体レーザ装置の構
造図を示す。活性層4に注入さ詐る電流を閉じ込めるの
に、基板1側ではn−Ga−ムS電流ブロック層2を用
い、メサ1Q上にあけ2v溝12から注入している。ま
たn −GaAs層6には、V溝に対応する位置以外、
Zn f拡散してP型にしており、電極8とは、拡散を
行っていない部分のみオーミック・コンタクトがとれる
ようにして電流の狭窄の効果を上げるようになっている
。すなわち、電流注入幅が屈折率による横モード閉じ込
め幅よりも狭くなっている。
Embodiment FIG. 1 shows a structural diagram of a semiconductor laser device according to an embodiment of the present invention. In order to confine the current injected into the active layer 4, an n-Ga-S current blocking layer 2 is used on the substrate 1 side, and the current is injected from the 2V groove 12 formed on the mesa 1Q. In addition, in the n-GaAs layer 6, there are
The Zn f is diffused to make it P-type, and ohmic contact can be made with the electrode 8 only in the non-diffused portion to increase the effect of current confinement. That is, the current injection width is narrower than the transverse mode confinement width due to the refractive index.

第2図に、共振器モードスペクトルを示す。スペクトル
は複数のモードで発振しているのがわかる。また、屈折
率導波構造全持つレーザで、電流を絞って利得導波的に
すると、活性層の接合に水平方向で、可飽和吸収体が形
成され、この作用によって光出力が数GH2の周波数で
揺らぐ。この効果のため、一本のモードのスペクトル幅
が広がる。
FIG. 2 shows the resonator mode spectrum. It can be seen that the spectrum oscillates in multiple modes. In addition, when a laser with a refractive index waveguide structure is used as a gain waveguide by narrowing down the current, a saturable absorber is formed in the horizontal direction at the junction of the active layer, and this action increases the optical output at a frequency of several GH2. It sways. This effect widens the spectral width of one mode.

第3図に半導体レーザの温度全変化させた時のレーザ光
の相対雑音強度(RIM)の結果を示す。
FIG. 3 shows the relative noise intensity (RIM) of the laser beam when the temperature of the semiconductor laser is completely changed.

過剰雑音の全く発生しない安定な雑音特性が得られてい
るのがわかる。
It can be seen that stable noise characteristics with no excess noise generated are obtained.

発明の効果 本発明によれば、モードホッピングによる雑音が全く発
生しない半導体レーザ装置が実現でき、光ディスク等の
応用に際して大なる効果を有する。
Effects of the Invention According to the present invention, a semiconductor laser device that does not generate any noise due to mode hopping can be realized, and has great effects when applied to optical discs and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ装置の構造図、第2図は
スペクトルを示す図、第3図は雑音特性を示す図である
。 1・・・・・・P −GaAs基板、2・・・・・・n
−GaムS電電流−172層3・・・・・・P −Ga
人lASクラッド層、4・・・・・・GaA/JAs活
性層、5・・・・・・n−Ga五人1ksラッド層、6
・・・・・・n−(raムSコンタクト層、7・・・・
・・Znn拡散型反転領域(斜線部)、8・・・・・・
ムuGeNi電極、9・・・・・・人uZn電極、10
・・・・・・メサ、11・・・・・・リッジ、12・・
・・・・V溝。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/ 
−−−P −Cra、AS基板 ?、 1−71.− cra、AS屑 3−F−Qa、、AlAs贋 4−−− cra−AIA s層 a −−−Au−cretvi琶極 q−−−ハLLz九覧極 /Z−V溝 第2図 うλ安−Jヒ(り1り7t) 第3図 Oπ 406θ :2L度(′C)
FIG. 1 is a structural diagram of a semiconductor laser device of the present invention, FIG. 2 is a diagram showing a spectrum, and FIG. 3 is a diagram showing noise characteristics. 1...P-GaAs substrate, 2...n
-Ga S electric current -172 layer 3...P -Ga
1AS cladding layer, 4...GaA/JAs active layer, 5...n-Ga 5-layer 1ks rad layer, 6
......n-(ram S contact layer, 7...
...Znn diffusion type inversion region (hatched area), 8...
MuuGeNi electrode, 9...Human uZn electrode, 10
...Mesa, 11...Ridge, 12...
...V groove. Name of agent: Patent attorney Toshio Nakao and 1 other person/
---P -Cra, AS board? , 1-71. - cra, AS scrap 3-F-Qa, AlAs fake 4--- cra-AIA s layer a --- Au-cretvi 琶pole q---Ha LLz Kuran pole/Z-V groove 2nd figure λAn - Jhi (Ri 1ri 7t) Fig. 3 Oπ 406θ: 2L degrees ('C)

Claims (1)

【特許請求の範囲】[Claims] 凸状のメサを有する一導電型の半導体基板上に、前記一
導電型とは反対の導電型の半導体層があり、前記半導体
層に層には前記メサの直上の位置に溝が形成されて、そ
の両側にリッジがあり、前記半導体層の上に、P−nヘ
テロ接合があり、最上層は前記溝に対応する位置が前記
反対導電型で、その他の部分は前記一導電型であること
を特徴とする半導体レーザ装置。
A semiconductor layer of a conductivity type opposite to the one conductivity type is provided on a semiconductor substrate of one conductivity type having a convex mesa, and a groove is formed in the semiconductor layer at a position directly above the mesa. , there are ridges on both sides thereof, a P-n heterojunction is provided on the semiconductor layer, and the top layer has the opposite conductivity type at a position corresponding to the groove, and the other part has the one conductivity type. A semiconductor laser device characterized by:
JP7061787A 1987-03-25 1987-03-25 Semiconductor laser device Pending JPS63236389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7061787A JPS63236389A (en) 1987-03-25 1987-03-25 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7061787A JPS63236389A (en) 1987-03-25 1987-03-25 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63236389A true JPS63236389A (en) 1988-10-03

Family

ID=13436742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7061787A Pending JPS63236389A (en) 1987-03-25 1987-03-25 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63236389A (en)

Similar Documents

Publication Publication Date Title
Lang et al. Theory of grating-confined broad-area lasers
JPS63244783A (en) Wavelength conversion element
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JPS63236389A (en) Semiconductor laser device
JP2889626B2 (en) Semiconductor laser
JP2643276B2 (en) Driving method of semiconductor laser
JPS63236388A (en) Semiconductor laser device
JPS6384086A (en) Semiconductor laser array element
JP2777447B2 (en) Semiconductor laser
JPS6052078A (en) Semiconductor laser device
JPH0824207B2 (en) Semiconductor laser device
JPS6237899B2 (en)
KR100261241B1 (en) Laser diode device
JPH09283842A (en) Semiconductor laser element
JP3768267B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0510374Y2 (en)
JPH0936482A (en) Semiconductor laser element and fabrication thereof
JPH01282883A (en) Semiconductor laser device
JPH01183189A (en) Semiconductor laser
JPH0997938A (en) Driving of semiconductor laser
JPS6024084A (en) Semiconductor laser element
JPH02257691A (en) Integrated type semiconductor laser
JPS61161786A (en) Semiconductor laser device
JPH0936492A (en) Semiconductor laser element and fabrication thereof
JPH0430760B2 (en)