JPH0430760B2 - - Google Patents

Info

Publication number
JPH0430760B2
JPH0430760B2 JP20823483A JP20823483A JPH0430760B2 JP H0430760 B2 JPH0430760 B2 JP H0430760B2 JP 20823483 A JP20823483 A JP 20823483A JP 20823483 A JP20823483 A JP 20823483A JP H0430760 B2 JPH0430760 B2 JP H0430760B2
Authority
JP
Japan
Prior art keywords
type
semiconductor laser
light
substrate
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20823483A
Other languages
Japanese (ja)
Other versions
JPS60101987A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20823483A priority Critical patent/JPS60101987A/en
Publication of JPS60101987A publication Critical patent/JPS60101987A/en
Publication of JPH0430760B2 publication Critical patent/JPH0430760B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光情報処理用光源等に利用される半導
体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device used as a light source for optical information processing.

(従来例の構成とその問題点) 半導体レーザは小型でかつ効率が高く、駆動電
流による直接変調が可能であるなどの多くの優れ
た特徴を有しており、近年光通信や光情報処理用
の光源として利用されるようになつてきた。
(Conventional structure and its problems) Semiconductor lasers have many excellent features such as being small, highly efficient, and can be directly modulated by drive current, and have recently been used for optical communication and optical information processing. It has come to be used as a light source.

これらの目的に使用するためには、光出力の変
動すなわち光強度雑音が少ないことが必要であ
る。特に光学系との結合において自分自身の光が
反射されて戻された場合の光強度雑音の少ないこ
とが重要である。さらに簡単なレンズ構成によ
り、回折限界まで絞つた微小スポツトを得るため
には、光源としての非点収差の少ないことが要求
される。
In order to use it for these purposes, it is necessary that fluctuations in optical output, that is, optical intensity noise, be small. In particular, it is important that light intensity noise is small when the own light is reflected and returned when coupled with an optical system. Furthermore, in order to obtain a minute spot narrowed down to the diffraction limit with a simple lens configuration, the light source is required to have little astigmatism.

従来の半導体レーザ、例えば第1図に示すよう
なV溝狭ストライプ型と呼ばれている半導体レー
ザでは、注入キヤリヤによつて形成される利得分
布によつて横モードが決定される、いわゆる利得
導波型であるため、発振スペクトルは、多モード
となり、戻り光がある場合においても雑音は小さ
い。ところが、利得導波型レーザでは、共振器内
部での光の等位相面が曲面であるため、非点収差
が生じる。即ち、接合面に平行方向と垂直方向の
ビーム・ウエイストの位置に差が生じ、非点隔差
が数10μmにもなる。なお、、第1図において1は
n型GaAs基板、2はn型AlxGa1-xAsクラツド
層、3はP型AlyGa1-yAs活性層、4はp型Alz
Ga1-zAsクラツド層、5はn型AluGa1-uAs層、
6はn型GaAs層、7はZn拡散領域、8はp側電
極、9はn側電極をそれぞれ示す。
Conventional semiconductor lasers, such as the V-groove narrow stripe type semiconductor laser shown in FIG. Since it is a wave type, the oscillation spectrum becomes multi-mode, and noise is small even when there is return light. However, in a gain waveguide laser, the equiphase surface of light inside the resonator is a curved surface, so astigmatism occurs. That is, a difference occurs in the position of the beam waist in the direction parallel to and perpendicular to the joint surface, and the astigmatism difference becomes several tens of μm. In FIG. 1, 1 is an n-type GaAs substrate, 2 is an n-type Al x Ga 1-x As cladding layer, 3 is a P-type Al y Ga 1-y As active layer, and 4 is a p-type Al z
Ga 1-z As clad layer, 5 is n-type Al u Ga 1-u As layer,
6 is an n-type GaAs layer, 7 is a Zn diffusion region, 8 is a p-side electrode, and 9 is an n-side electrode.

次に第2図に示すようなChanneled Substrate
Planar(CSP)型と呼ばれている半導体レーザで
は、横モードは、溝両側の基板での光の吸収によ
つて形成される実効屈折率分布によつて決定され
る、いわゆる屈折率導波型であるため、共振器内
部での等位相面は平面となり非点隔差は数μm以
内となり、ほとんど問題ない。ところが、発振ス
ペクトルは単一モードとなり、戻り光がある場合
には、雑音が非常に大きくなり、実用上の障害と
なつている。
Next, Channeled Substrate as shown in Figure 2
In a planar (CSP) type semiconductor laser, the transverse mode is determined by the effective refractive index distribution formed by absorption of light in the substrate on both sides of the groove. Therefore, the equal phase plane inside the resonator is a plane, and the astigmatism difference is within a few μm, causing almost no problem. However, the oscillation spectrum becomes a single mode, and when there is return light, the noise becomes extremely large, which is a practical obstacle.

(発明の目的) 本発明は、上記欠点に鑑み、戻り光がある場合
においても低雑音であり、なおかつ非点隔差の小
さい半導体レーザ装置を提供するものである。
(Object of the Invention) In view of the above drawbacks, the present invention provides a semiconductor laser device that has low noise even when there is return light and has a small astigmatism difference.

(発明の構成) この目的を達成するために本発明の半導体レー
ザ装置は、一方の共振器端面からこの端面に垂直
方向に伸び、途中で途切れて平坦部とつながる2
つの平行なリツジを形成したGaAs基板上に、2
つのリツジの間の溝が埋まるようにAlxGa1-xAs
クラツド層を形成し、以下順次少なくともAly
Ga1-yAs活性層、AlzGa1-zAsクラツド層を形成
した構成となつている。
(Structure of the Invention) In order to achieve this object, the semiconductor laser device of the present invention is provided with two parts that extend from one cavity end face in a direction perpendicular to this end face, are interrupted midway, and are connected to a flat part.
Two parallel ridges are formed on a GaAs substrate.
Al x Ga 1-x As to fill the gap between the two ridges.
Form a cladding layer, and then sequentially at least Al y
The structure includes a Ga 1-y As active layer and an Al z Ga 1-z As cladding layer.

この構成によつて共振器の一方は屈折率導波
型、片方で利得導波型となる。このため屈折率導
波型となつている方の端面からは、等位相面が平
面となつた非点収差のないビームが出射される。
スペクトルは、利得導波型部において自然放出光
のレーザ・モードへの混入率が高くなつているた
め、縦多モード発振となり、戻り光が存在しても
光強度変動の小さい低雑音動作が実現されること
になる。
With this configuration, one of the resonators is of the refractive index waveguide type and the other of the resonator is of the gain waveguide type. Therefore, a beam with a flat equiphase surface and no astigmatism is emitted from the index-guided end face.
The spectrum has a high mixing rate of spontaneous emission light into the laser mode in the gain waveguide section, resulting in longitudinal multi-mode oscillation, achieving low-noise operation with small optical intensity fluctuations even in the presence of return light. will be done.

(実施例の説明) 以下本発明の実施例について、図面を参照しな
がら説明する。第3図は、本発明の一実施例にお
ける半導体レーザ装置を構成するためのGaAs基
板を示したもので、1a,1bは基板平面上に形
成した2つの平行なリツジであり、これらのリツ
ジは図示のように基板1の一方の端面からこの端
面に垂直方向に伸び、途中で途切れて平坦部とつ
ながつている。第4図は第3図のGaAs基板上
に、2つのリツジ1a,1b間の溝が埋まるよう
にn型AlxGa1-xAsクラツド層2を形成し、以下
順次p型AlyGa1-yAs活性層3、p型AlzGa1-zAs
クラツド層4、n型GaAs層6を形成し、さらに
p側電極8、およびn側電極9を形成した本発明
の一実施例における半導体レーザを示し、同図a
は基板にリツジがある側における共振器端面に平
行な断面図、、同図bは基板にリツジがない側に
おける共振器端面に平行な断面図をそれぞれ示し
たものである。
(Description of Examples) Examples of the present invention will be described below with reference to the drawings. FIG. 3 shows a GaAs substrate for constructing a semiconductor laser device in an embodiment of the present invention, and 1a and 1b are two parallel ridges formed on the plane of the substrate, and these ridges are As shown in the figure, it extends from one end surface of the substrate 1 in a direction perpendicular to this end surface, and is interrupted in the middle to be connected to a flat portion. FIG. 4 shows that an n-type Al x Ga 1-x As cladding layer 2 is formed on the GaAs substrate shown in FIG. 3 so as to fill the groove between the two ridges 1a and 1b, and then p-type Al y Ga 1 -y As active layer 3, p-type Al z Ga 1-z As
FIG.
1 is a cross-sectional view parallel to the resonator end face on the side where the substrate has a ridge, and FIG.

次に、以上のように構成された半導体レーザ動
作について説明する。p側電極8に接したn型
GaAsキヤツプ層6のZn拡散領域7は、p型とな
つており、ここから電流注入される。共振器端面
側のGaAs基板1に2つの平行なリツジのある部
分では、活性層3で発生した伝ぱんする先は、リ
ツジ部のGaAsで吸収を受け、このためリツジ間
の溝部での伝ぱん光に対する実効屈折率は両側の
リツジ上部よりも高くなり、屈折率導波機構とな
る。従つてこの領域で横モードは安定化されると
ともに、等位相面は平面となり、出射ビームの非
点隔差を数μm以内で、実用上問題のない程度に
なる。一方基板にリツジのない側においては、
GaAs基板は平坦で、、しかもn型AlxGa1-xAsク
ラツド層2を十分厚くしているため、基板による
吸収がなく、横モードは、注入キヤリアによつて
形成された利得分布によつて規定される利得導波
機構となり、自然放出光のレーザモードへの混入
率が大きくなり発振縦モードは多モードとなる。
Next, the operation of the semiconductor laser configured as above will be explained. n-type in contact with p-side electrode 8
The Zn diffusion region 7 of the GaAs cap layer 6 is p-type, and current is injected from there. In the part of the GaAs substrate 1 on the cavity end face side where there are two parallel ridges, the propagation destination generated in the active layer 3 is absorbed by the GaAs in the ridge part, and therefore the propagation occurs in the groove part between the ridges. The effective refractive index for light is higher than the upper portions of the ridges on both sides, forming a refractive index waveguide mechanism. Therefore, in this region, the transverse mode is stabilized, the equiphase plane becomes a plane, and the astigmatism difference of the output beam is within several μm, which is a level that poses no problem in practice. On the other hand, on the side where the board has no ridges,
Since the GaAs substrate is flat and the n-type Al x Ga 1-x As cladding layer 2 is sufficiently thick, there is no absorption by the substrate, and the transverse mode is caused by the gain distribution formed by the injection carriers. As a result, the gain waveguide mechanism is defined as follows, the rate of spontaneous emission light being mixed into the laser mode increases, and the oscillation longitudinal mode becomes multi-mode.

このようにして一つの共振器内において、一方
の光の出射端面近傍で屈折率導波機構をもたせ非
点隔差をなくし、他方の共振器部における利得導
波機構によつて縦モードの多モード化を行ない、
戻り先がある場合にも変動の小さい低雑音動作を
実現することができる。第6図は、本実施例の光
出力3mW時の縦モードスペクトルの一例である。
第6図aは、本実施例の半導体レーザ装置を光出
力を一定(3mW)にし、光の帰還率を0.5%と
し、S/Nの温度変化を測定した結果である。
(雑音周波数2MHz、バンド幅300kHz)第2図に
示した従来例のCSP型レーザの同様の測定結果を
第6図bに示したが、これに比べて著しくS/N
が向上していることがわかる。
In this way, within one resonator, a refractive index waveguide mechanism is provided near the output end face of one light to eliminate the astigmatism difference, and a gain waveguide mechanism in the other resonator section provides multi-mode longitudinal mode. ,
Even when there is a return destination, low-noise operation with small fluctuations can be achieved. FIG. 6 is an example of the longitudinal mode spectrum when the optical output of this example is 3 mW.
FIG. 6a shows the results of measuring changes in S/N with temperature in the semiconductor laser device of this example, with the optical output constant (3 mW) and the light feedback rate set at 0.5%.
(Noise frequency 2MHz, bandwidth 300kHz) Similar measurement results of the conventional CSP type laser shown in Fig. 2 are shown in Fig. 6b, but the S/N is significantly higher than that shown in Fig. 6b.
It can be seen that the results have improved.

(発明の効果) 以上のように本発明は、半導体レーザの基板に
途中で途切れた2つの平行なリツジを設け、その
上に、クラツド層にはさまれた活性層を形成する
ようにしたもので、これにより、非点収差が小さ
くかつ戻り光があつても低雑音動作する半導体レ
ーザを提供することができる。
(Effects of the Invention) As described above, the present invention provides a semiconductor laser substrate with two parallel ridges that are interrupted in the middle, and on which an active layer sandwiched between cladding layers is formed. As a result, it is possible to provide a semiconductor laser that has small astigmatism and operates with low noise even in the presence of return light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はV溝狭ストライプ型半導体レーザの断
面図、第2図はCSP型半導体レーザの断面図、第
3図は本発明における半導体レーザの半導体基板
形状の一例を示す斜視図、第4図は本発明の半導
体レーザ装置の一実施例を示すもので同図aは共
振器端面近傍の共振器端面に平行な断面図、同図
bは共振器中央部の共振器端面に平行な断面図、
第5図は本発明の一実施例の縦モードスペクトル
の例を示す図、第6図は本発明の一実施例のS/
Nの温度変化aおよび従来例のS/Nの温度変化
bを示す図である。 1…n型GaAs基板、1a,1b…リツジ、、
2…n型AlxGa1-xAsクラツド層、3…p型Aly
Ga1-yAs活性層、4…p型AlzGa1-zAsクラツド
層、6…n型GaAs層、7…Zn拡散領域、8…p
側電極、9…n側電極。
FIG. 1 is a sectional view of a V-groove narrow stripe type semiconductor laser, FIG. 2 is a sectional view of a CSP type semiconductor laser, FIG. 3 is a perspective view showing an example of the shape of a semiconductor substrate of a semiconductor laser according to the present invention, and FIG. 4 1 shows an embodiment of the semiconductor laser device of the present invention, in which figure a is a cross-sectional view parallel to the resonator end face near the resonator end face, and figure b is a cross-sectional view parallel to the resonator end face at the center of the resonator. ,
FIG. 5 is a diagram showing an example of a longitudinal mode spectrum of an embodiment of the present invention, and FIG. 6 is a diagram showing an example of a longitudinal mode spectrum of an embodiment of the present invention.
It is a figure which shows the temperature change a of N, and the temperature change b of S/N of a conventional example. 1...n-type GaAs substrate, 1a, 1b...ridge,,
2...n-type Al x Ga 1-x As cladding layer, 3...p-type Al y
Ga 1-y As active layer, 4... p-type Al z Ga 1-z As clad layer, 6... n-type GaAs layer, 7... Zn diffusion region, 8... p
side electrode, 9...n side electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 一方の共振器端面からこの端面に垂直方向に
伸び、途中で途切れて平坦部とつながる2つの平
行なリツジを形成したGaAs基板上に、2つのリ
ツジの間の溝が埋まるように、AlxGa1-xAsクラ
ツド層を形成し、以下順次少なくともAlyGa1-y
As活性層、AlzGa1-zAsクラツド層を形成して成
ることを特徴とする半導体レーザ装置。
1. Al Form a Ga 1-x As cladding layer, and then sequentially at least Al y Ga 1-y
A semiconductor laser device comprising an As active layer and an Al z Ga 1-z As cladding layer.
JP20823483A 1983-11-08 1983-11-08 Semiconductor laser device Granted JPS60101987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20823483A JPS60101987A (en) 1983-11-08 1983-11-08 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20823483A JPS60101987A (en) 1983-11-08 1983-11-08 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS60101987A JPS60101987A (en) 1985-06-06
JPH0430760B2 true JPH0430760B2 (en) 1992-05-22

Family

ID=16552869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20823483A Granted JPS60101987A (en) 1983-11-08 1983-11-08 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS60101987A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815226B2 (en) * 1985-09-04 1996-02-14 株式会社日立製作所 Semiconductor laser device

Also Published As

Publication number Publication date
JPS60101987A (en) 1985-06-06

Similar Documents

Publication Publication Date Title
US4783788A (en) High power semiconductor lasers
JP2692913B2 (en) Grating coupled surface emitting laser device and modulation method thereof
EP0169567B1 (en) Semiconductor laser device
US4573158A (en) Distributed feedback semiconductor laser
US4111521A (en) Semiconductor light reflector/light transmitter
JPH0256837B2 (en)
CA2473396C (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
JPS6343908B2 (en)
JPH05167197A (en) Optical semiconductor device
JP3584508B2 (en) Short wavelength light source
US6865205B2 (en) Semiconductor laser
US5727016A (en) Spatially coherent diode laser with lenslike media and feedback from straight-toothed gratings
US4764936A (en) Semiconductor laser array device
JPH0430760B2 (en)
JPH0430759B2 (en)
JPH0319292A (en) Semiconductor laser
JP2723888B2 (en) Semiconductor laser device
US4764937A (en) Semiconductor laser array device
JPH0223038B2 (en)
JPH0278291A (en) Semiconductor laser element
JPH0671121B2 (en) Semiconductor laser device
JP2565924B2 (en) Semiconductor laser device
JPH0667236A (en) Wavelength conversion element
JPH0218981A (en) Semiconductor laser