JPH0667236A - Wavelength conversion element - Google Patents

Wavelength conversion element

Info

Publication number
JPH0667236A
JPH0667236A JP24416392A JP24416392A JPH0667236A JP H0667236 A JPH0667236 A JP H0667236A JP 24416392 A JP24416392 A JP 24416392A JP 24416392 A JP24416392 A JP 24416392A JP H0667236 A JPH0667236 A JP H0667236A
Authority
JP
Japan
Prior art keywords
wavelength
active layer
light
harmonic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24416392A
Other languages
Japanese (ja)
Inventor
Ryuichi Katsumi
隆一 勝見
Yuji Hiratani
雄二 平谷
Toshio Kikuta
俊夫 菊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP24416392A priority Critical patent/JPH0667236A/en
Publication of JPH0667236A publication Critical patent/JPH0667236A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the wavelength conversion element which is simple in construction and can be easily produced. CONSTITUTION:An n-Al0.36Ga0.64As clad layer 6, an SCHregion 7, an SQW active layer 8, an SCH- region 10, a P-Al0.36Ga0.64As clad layer 11 and a P-GaAs contact layer 12 are respectively grown and formed on the upper side of an n-GaAs substrate 5. The upper side of the element is formed to a mesa stripe shape. Both upper and lower sides of the element are provided with an N side electrode 13 and a P side electrode 14. Coatings 17 which allow the passage of the incident light of a basic wavelength on the element without reflection are applied on both end faces of the element. The SQW active layer 8 is formed as a gain medium waveguide having a crystal structure of a zinc blended type. The second harmonic wave to the incident light (the light of the basic wavelength) is generated within this SQW active layer 8 and is emitted from an exit end.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基本波を入力すること
によってこの基本波に対する第2高調波を発生出力する
波長変換素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion element for inputting a fundamental wave and generating and outputting a second harmonic of the fundamental wave.

【0002】[0002]

【従来の技術】図3には従来の一般的な波長変換素子の
構造が示されている。同図において、LiNb 3 から
なる基板1の表面側に電子ビーム露光法と熱拡散法を用
いて幅Dが3.2 μmのTi拡散領域2が6.4 μmの周期
間隔L0 を保って複数配列形成されている。そして、基
板1の表面中央には、これらの各Ti拡散領域2に交差
して長手方向に伸張する幅Wが3.0 μmのプロトン交換
領域が導波領域3として形成されている。
2. Description of the Related Art FIG. 3 shows the structure of a conventional general wavelength conversion element. In the figure, a plurality of Ti diffusion regions 2 having a width D of 3.2 μm are arranged on the front surface side of a substrate 1 made of LiN b O 3 using an electron beam exposure method and a thermal diffusion method while maintaining a periodic interval L 0 of 6.4 μm. Has been formed. Then, in the center of the surface of the substrate 1, a proton exchange region having a width W of 3.0 μm and extending in the longitudinal direction so as to intersect these Ti diffusion regions 2 is formed as a waveguide region 3.

【0003】このように構成された導波領域3は前記T
i拡散領域2との交差部分が周期的な分極反転領域とな
ることから、波長が1.064 μmと0.532 μmの異なる波
長の光に対し、そのいずれに対しても等価屈折率が等し
くなり、この二つの異なる波長の光の間で、位相整合条
件が満足される。この結果、波長1.064 μmの光を基本
波、波長0.532 μmの光を第2高調波としたとき、第2
高調波を最大出力で取り出すことができる。すなわち、
導波領域3の入口側にYAGレーザから波長λW が1.06
4 μmの光を基本波として入射させると、この導波領域
3を伝播する間に、その1/2の波長を有する第2高調
波が発生し、導波領域3の出射端側から波長λW が1.06
4 μmの基本波の光と、波長λ2Wが0.532 μmの第2高
調波の光が共に出射し、この導波領域3の出射端側に第
2高調波を通すバンドパスフィルタを設けることによ
り、前記基本波に対する第2高調波が取り出されるので
ある。
The waveguide region 3 thus constructed has the above-mentioned T
Since the intersection with the i-diffusion region 2 is a periodic domain-inverted region, the equivalent refractive index is the same for light of different wavelengths of 1.064 μm and 0.532 μm. The phase matching condition is satisfied between the lights of two different wavelengths. As a result, when the light of wavelength 1.064 μm is the fundamental wave and the light of wavelength 0.532 μm is the second harmonic,
Harmonics can be extracted at maximum output. That is,
The wavelength λ W from the YAG laser is 1.06 at the entrance side of the waveguide region 3.
When light of 4 μm is incident as a fundamental wave, a second harmonic having a wavelength of ½ of the fundamental wave is generated while propagating in the waveguide region 3, and a wavelength λ from the emission end side of the waveguide region 3 is generated. W is 1.06
By providing both a 4 μm fundamental wave light and a 2nd harmonic wave with a wavelength λ 2W of 0.532 μm, and providing a bandpass filter that passes the 2nd harmonic wave on the exit end side of this waveguide region 3. The second harmonic of the fundamental wave is extracted.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、従来の
LiNb 3 の基板1を用いたSHG(Second Harmoni
c Generation)素子(第2高調波発生素子)は、基本波
と発生した第2高調波の間で位相整合を取るために、T
i拡散領域2を規則正しい所定の間隔で精度良く配列形
成するものであるため、その素子構造が非常に複雑にな
り、その製造に手間隙がかかり、素子コストも高価にな
るという問題があった。
However, the SHG (Second Harmoni) using the conventional substrate 1 of LiN b O 3 is used.
c Generation) element (second harmonic generation element) is used to obtain phase matching between the fundamental wave and the generated second harmonic wave.
Since the i-diffusion regions 2 are formed in a highly precise array at regular intervals, the device structure becomes very complicated, and it takes time to manufacture the device, and the device cost becomes high.

【0005】本発明は上記従来の課題を解決するために
なされたものであり、その目的は、素子構造が簡易で、
製造の容易な波長変換素子を提供することにある。
The present invention has been made to solve the above-mentioned conventional problems, and an object thereof is to provide a simple element structure,
It is to provide a wavelength conversion element that is easy to manufacture.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、次のように構成されている。すなわち、本
発明は、利得媒質活性層を含む導波路構造を備えた波長
変換素子であって、前記利得媒質活性層は閃亜鉛鉱型の
半導体結晶層によって構成され、該半導体結晶層の少な
くとも一方端は得ようとする波長の2倍の長さの波長に
対する無反射コーティングが施されていることを特徴と
して構成されている。
In order to achieve the above object, the present invention is constructed as follows. That is, the present invention is a wavelength conversion element having a waveguide structure including a gain medium active layer, wherein the gain medium active layer is composed of a zinc blende type semiconductor crystal layer, and at least one of the semiconductor crystal layers. The edges are characterized in that they are provided with an antireflection coating for a wavelength which is twice as long as the wavelength to be obtained.

【0007】[0007]

【作用】本発明の波長変換素子の入射端側に例えば波長
が1.48μmの基本波の光を入射すると、その光は閃亜鉛
鉱型の半導体結晶層を伝播して出射端に至る。この閃亜
鉛鉱型の半導体結晶層は、基本波に対する第2高調波を
発生させる。そして、この第2高調波は前記閃亜鉛鉱型
の半導体結晶層(利得媒質活性層)の入出射両端間で反
射を繰り返し正帰還がかかって第2高調波の定在波のレ
ーザ発振が行われ、閃亜鉛鉱型の半導体結晶層の出射端
側からレーザ発振光である波長が0.74μmの第2高調波
と波長が1.48μmの基本波が共に出射する。この波長変
換素子の出射端側に第2高調波を通すバンドパスフィル
タを設けることにより、目的とする第2高調波が取り出
される。
When light of a fundamental wave having a wavelength of 1.48 μm is incident on the incident end side of the wavelength conversion element of the present invention, the light propagates through the zinc blende type semiconductor crystal layer and reaches the emission end. This zinc blende type semiconductor crystal layer generates a second harmonic of the fundamental wave. Then, this second harmonic is repeatedly reflected between the input and output ends of the zinc blende type semiconductor crystal layer (gain medium active layer) and positive feedback is applied to cause laser oscillation of the standing wave of the second harmonic. That is, both the second harmonic having a wavelength of 0.74 μm and the fundamental wave having a wavelength of 1.48 μm, which are laser oscillation lights, are emitted from the emission end side of the zinc blende type semiconductor crystal layer. By providing a bandpass filter that passes the second harmonic on the emission end side of this wavelength conversion element, the target second harmonic can be extracted.

【0008】[0008]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1には本発明に係る波長変換素子の一実施例の
構成が示されている。同図において、n−GaAs基板
5上に、n−Al0.36Ga0.64Asクラッド層6と、層
厚が600 Åのドーパント成分のないAl0.28Ga0.72
sからなるSCH−領域(光閉じ込め層)7と、層厚が
100 Åのドーパント成分のないAl0.20Ga0.80As
(バンドギャップ波長λg=0.74μm)からなるSQW
活性層8と、層厚が600 Åのドーパント成分のないAl
0.28Ga0.72AsからなるSCH−領域(光閉じ込め
層)10と、P−Al0.36Ga0.64Asクラッド層11と、
P−GaAsコンタクト層12とを順に成長形成し、表面
のP−GaAsコンタクト層12からSCH−領域10の一
部分にかけて積層半導体の左右両側をエッチングで除去
して幅Sがほぼ2μmのメサ・ストライプ形状とし、基
板1の下面側にはN側電極13を、P−GaAsコンタク
ト層12の上面側にはP側電極14を形成している。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of an embodiment of the wavelength conversion element according to the present invention. In the figure, an n-Al 0.36 Ga 0.64 As cladding layer 6 and an Al 0.28 Ga 0.72 A layer having a layer thickness of 600 Å and having no dopant component are formed on an n-GaAs substrate 5.
SCH-region (light confinement layer) 7 composed of s and layer thickness
Al 0.20 Ga 0.80 As without 100Å dopant component
SQW consisting of (bandgap wavelength λg = 0.74 μm)
Active layer 8 and Al with a layer thickness of 600Å without dopant components
An SCH-region (optical confinement layer) 10 made of 0.28 Ga 0.72 As, a P-Al 0.36 Ga 0.64 As clad layer 11,
A P-GaAs contact layer 12 is grown in order, and the left and right sides of the laminated semiconductor are removed by etching from the P-GaAs contact layer 12 on the surface to a part of the SCH-region 10 to form a mesa stripe shape having a width S of about 2 μm. An N-side electrode 13 is formed on the lower surface side of the substrate 1, and a P-side electrode 14 is formed on the upper surface side of the P-GaAs contact layer 12.

【0009】この素子の前後両端面15,16はへき開面と
なっており、この両端面15,16に厚さ2000ÅのSiN4
膜17がコーティングされている。このSiN4 膜17は波
長1.48μmの光に対して無反射コーティングとして機能
し、波長0.74μmの光に対しては高反射コーティングと
して機能している。かかる構成のもとで、利得媒質活性
層としてのSQW活性層8は基本波の波長1.48μmの光
に対しては無反射で透過する光導波路となり、この基本
波に対して第2高調波となる0.74μmの波長の光に対し
てはファブリペロー共振器として機能し、本実施例の波
長変換素子は通常の半導体レーザに近い構造となってい
る。
The front and rear end surfaces 15 and 16 of this element are cleaved surfaces, and SiN 4 having a thickness of 2000 Å is formed on both end surfaces 15 and 16.
Membrane 17 is coated. The SiN 4 film 17 functions as a non-reflective coating with respect to light having a wavelength of 1.48 μm and as a high-reflection coating with respect to light having a wavelength of 0.74 μm. With this configuration, the SQW active layer 8 as the gain medium active layer serves as an optical waveguide that transmits the fundamental wave with a wavelength of 1.48 μm in a non-reflective manner. It functions as a Fabry-Perot resonator for light having a wavelength of 0.74 μm, and the wavelength conversion element of this embodiment has a structure similar to that of a normal semiconductor laser.

【0010】本実施例の波長変換素子は上記のように構
成されており、次にその動作を説明する。まず、本実施
例の波長変換素子がファブリペロー型のレーザーダイオ
ードとして発振するに至るしきい値電流の0.95倍の大き
さの電流がP側電極14からN側電極13に向けてバイアス
電流として加えられる。この電流印加状態では、印加電
流がしきい値電流に至っていないので、SQW活性層8
内でのレーザ発振は生じていない。
The wavelength conversion element of this embodiment is constructed as described above, and its operation will be described below. First, a current having a magnitude 0.95 times the threshold current that causes the wavelength conversion element of this embodiment to oscillate as a Fabry-Perot type laser diode is applied as a bias current from the P-side electrode 14 to the N-side electrode 13. To be In this current applied state, the applied current does not reach the threshold current, so the SQW active layer 8
No internal laser oscillation occurred.

【0011】この状態で、図2に示すように、素子の入
射端側に波長が1.48μmの基本波のレーザ光を入射する
と、SQW活性層8は閃亜鉛鉱型の結晶構造を有してい
るため、このSQW活性層8に光が導波すると、導波光
に対して第2高調波が発生する。この図の例では、SQ
W活性層8に波長1.48μmの基本波が導波するので、波
長0.74μmの第2高調波が発生する。
In this state, as shown in FIG. 2, when a fundamental laser beam having a wavelength of 1.48 μm is incident on the incident end side of the device, the SQW active layer 8 has a zinc blende type crystal structure. Therefore, when light is guided through the SQW active layer 8, a second harmonic wave is generated with respect to the guided light. In the example in this figure, SQ
Since the fundamental wave having a wavelength of 1.48 μm is guided to the W active layer 8, a second harmonic wave having a wavelength of 0.74 μm is generated.

【0012】通常、半導体中に発生する第2高調波は非
常に微弱であるが、本実施例の場合は、導波路であるS
QW活性層8は閃亜鉛鉱型の結晶構造を有して利得媒質
となっているため、このSQW活性層8に発生した第2
高調波は誘導放出によって増幅される。この第2高調波
はSQW活性層8の入出射両端間で反射して定在波を発
生させ、波長1.48μmの入射光の強度を十分に強くする
と、波長0.74μm光の定在波の増幅に正帰還がかかって
ファブリペロー共振器としてのレーザ発振が行われ、こ
のレーザ発振光、つまり、波長0.74μmの前記基本波に
対する第2高調波がSQW活性層8の出射端から出射す
る。
Normally, the second harmonic generated in the semiconductor is very weak, but in the case of this embodiment, the second harmonic wave S
The QW active layer 8 has a zinc blende type crystal structure and serves as a gain medium.
The harmonics are amplified by stimulated emission. This second harmonic is reflected between the entrance and exit ends of the SQW active layer 8 to generate a standing wave, and if the intensity of incident light with a wavelength of 1.48 μm is made sufficiently strong, amplification of the standing wave with a wavelength of 0.74 μm is amplified. A positive feedback is applied to the laser to cause laser oscillation as a Fabry-Perot resonator, and this laser oscillation light, that is, the second harmonic of the fundamental wave having a wavelength of 0.74 μm, is emitted from the emission end of the SQW active layer 8.

【0013】一方、素子両端側のSiN4 膜17では基本
波である波長が1.48μmのレーザ光に対しては無反射膜
として機能するので、基本波は前記の如く第2高調波を
発生しながら無反射状態でSQW活性層8の出射端から
出射する。つまり、素子の入射端側に波長1.48μmの基
本波のレーザ光を入射することにより、素子の出射端か
らその基本波の光と、第2高調波の光とが共に出射され
る。したがって、この素子の出射端側に第2高調波のみ
を通すバンドパスフィルタ18を設けることにより、波長
0.74μmの第2高調波のレーザ光を取り出すことが可能
となる。
On the other hand, since the SiN 4 film 17 on both sides of the element functions as a non-reflective film with respect to laser light having a fundamental wavelength of 1.48 μm, the fundamental wave generates the second harmonic as described above. However, the light is emitted from the emission end of the SQW active layer 8 in a non-reflection state. That is, when the fundamental wave laser light having a wavelength of 1.48 μm is incident on the incident end side of the element, both the fundamental wave light and the second harmonic light are emitted from the exit end of the element. Therefore, by providing a bandpass filter 18 that passes only the second harmonic on the emission end side of this element,
It is possible to extract the 0.74 μm second harmonic laser light.

【0014】本実施例では、波長1.48μmの基本波はS
QW活性層8の導波路を無反射で通過して行くため、基
本波と第2高調波の間で位相整合を取る必要がなく、こ
のため、この位相整合を取る必要のある従来例の構造に
比べ、素子構造が極めて簡易となる。
In this embodiment, the fundamental wave having a wavelength of 1.48 μm is S
Since it passes through the waveguide of the QW active layer 8 without reflection, it is not necessary to perform phase matching between the fundamental wave and the second harmonic, and therefore the structure of the conventional example in which this phase matching needs to be achieved. The element structure is much simpler than that of.

【0015】なお、本発明は上記実施例に限定されるこ
とはなく、様々な実施の態様を採り得る。例えば、上記
実施例ではAlGaAs材料を用いて作製したリッジ導
波型の素子構造の波長変換素子を対象にして波長1.48μ
m光の基本波を波長0.74μm光の第2高調波に変換する
場合について説明したが、本発明の波長変換素子は本実
施例以外の他の材料および素子構造にして本実施例以外
の波長領域の波長変換を行うことが可能である。例え
ば、SQW活性層8をGaAlInPとGaInPの合
成系の材料を用いて閃亜鉛鉱型の結晶構造を有する利得
導波路として構成し、その両端面に波長1.3 μm用の無
反射コーティングを施すことによって、波長1.3 μm光
の基本波を入射させてこれを0.65μmの第2高調波に変
換して取り出すことができる。また、SQW活性層8と
して、ZnSeとZnSの合成系の材料を用いて同様に
閃亜鉛鉱型結晶構造を有する利得導波路を形成し、この
両端面に波長0.98μm用の無反射コーティングを施すこ
とによって、波長0.98μm光を基本波とし、これを波長
0.49μm光の第2高調波に変換して取り出すことができ
る。
The present invention is not limited to the above-mentioned embodiments, and various embodiments can be adopted. For example, in the above embodiment, the wavelength conversion element having the ridge waveguide type element structure manufactured by using the AlGaAs material has a wavelength of 1.48 μm.
The case where the fundamental wave of m light is converted to the second harmonic of light having a wavelength of 0.74 μm has been described. However, the wavelength conversion element of the present invention has a material and an element structure other than that of the present embodiment and a wavelength other than that of the present embodiment. It is possible to perform wavelength conversion of a region. For example, the SQW active layer 8 is formed as a gain waveguide having a zinc blende type crystal structure by using a synthetic material of GaAlInP and GaInP, and antireflection coating for a wavelength of 1.3 μm is applied to both end faces thereof. , A fundamental wave having a wavelength of 1.3 μm can be incident and converted into a second harmonic of 0.65 μm for extraction. Further, as the SQW active layer 8, a gain waveguide similarly having a zinc blende type crystal structure is formed by using a synthetic material of ZnSe and ZnS, and antireflection coating for a wavelength of 0.98 μm is applied to both end faces thereof. Therefore, the 0.98 μm wavelength light is used as the fundamental wave,
It can be extracted by converting it to the second harmonic of 0.49 μm light.

【0016】さらに、上記実施例では基本波の無反射膜
を素子の両端側に設けたが、これを片面側に設けてもよ
い。
Further, in the above-mentioned embodiment, the non-reflecting film of the fundamental wave is provided on both ends of the element, but it may be provided on one side.

【0017】[0017]

【発明の効果】本発明は、素子の利得媒質活性層を閃亜
鉛鉱型の半導体結晶層によって構成し、かつ、この半導
体結晶層の少なくとも一方端側に、得ようとする波長の
2倍の長さの波長に対する無反射コーティングを施した
ものであるから、この無反射コーティングの波長の基本
波の光を入射することにより、この基本波に対する第2
高調波を素子出射端から出射することができる。しか
も、この波長変換に際し、基本波と利得媒質活性層に発
生する第2高調波との位相整合が不要となることから、
素子構造も従来例に比べ極めて簡易なものとなり、した
がって、素子の製造も極めて容易となり、本発明の波長
変換素子を安価に提供することが可能となる。
According to the present invention, the gain medium active layer of the device is composed of a zinc blende type semiconductor crystal layer, and at least one end side of the semiconductor crystal layer has a wavelength twice the wavelength to be obtained. Since the antireflection coating for the wavelength of the length is applied, the second wave for the fundamental wave can be generated by injecting the light of the fundamental wave of the wavelength of the antireflection coating.
Higher harmonics can be emitted from the element emission end. Moreover, in this wavelength conversion, the phase matching between the fundamental wave and the second harmonic generated in the gain medium active layer becomes unnecessary,
The element structure is also much simpler than that of the conventional example, and therefore, the element can be manufactured very easily, and the wavelength conversion element of the present invention can be provided at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る波長変換素子の一実施例を示す斜
視構成図である。
FIG. 1 is a perspective configuration diagram showing an embodiment of a wavelength conversion element according to the present invention.

【図2】同実施例の素子の波長変換動作を示す説明図で
ある。
FIG. 2 is an explanatory diagram showing a wavelength conversion operation of the element of the example.

【図3】従来の波長変換素子の説明図である。FIG. 3 is an explanatory diagram of a conventional wavelength conversion element.

【符号の説明】[Explanation of symbols]

5 n−GaAs基板 6 n−Al0.36Ga0.64Asクラッド層 7,10 SCH−領域 8 SQW活性層 11 P−Al0.36Ga0.64Asクラッド層 12 P−GaAsコンタクト層 13 N側電極 14 P側電極 17 SiN4 5 n-GaAs substrate 6 n-Al 0.36 Ga 0.64 As clad layer 7,10 SCH-region 8 SQW active layer 11 P-Al 0.36 Ga 0.64 As clad layer 12 P-GaAs contact layer 13 N-side electrode 14 P-side electrode 17 SiN 4 film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 利得媒質活性層を含む導波路構造を備え
た波長変換素子であって、前記利得媒質活性層は閃亜鉛
鉱型の半導体結晶層によって構成され、該半導体結晶層
の少なくとも一方端は得ようとする波長の2倍の長さの
波長に対する無反射コーティングが施されている波長変
換素子。
1. A wavelength conversion element having a waveguide structure including a gain medium active layer, wherein the gain medium active layer is composed of a zinc blende type semiconductor crystal layer, and at least one end of the semiconductor crystal layer. Is a wavelength conversion element coated with an antireflection coating for a wavelength twice as long as the wavelength to be obtained.
JP24416392A 1992-08-20 1992-08-20 Wavelength conversion element Pending JPH0667236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24416392A JPH0667236A (en) 1992-08-20 1992-08-20 Wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24416392A JPH0667236A (en) 1992-08-20 1992-08-20 Wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH0667236A true JPH0667236A (en) 1994-03-11

Family

ID=17114710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24416392A Pending JPH0667236A (en) 1992-08-20 1992-08-20 Wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH0667236A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368790B1 (en) * 2001-01-11 2003-01-24 한국과학기술연구원 Method for optical wavelength converter based on laterally coupled semiconductor optical amplifier with semiconductor laser
US8215462B2 (en) 2006-04-07 2012-07-10 Fico Cables, S.A Actuation system for a parking brake

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100368790B1 (en) * 2001-01-11 2003-01-24 한국과학기술연구원 Method for optical wavelength converter based on laterally coupled semiconductor optical amplifier with semiconductor laser
US8215462B2 (en) 2006-04-07 2012-07-10 Fico Cables, S.A Actuation system for a parking brake

Similar Documents

Publication Publication Date Title
US7457340B2 (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
US6075801A (en) Semiconductor laser with wide side of tapered light gain region
US20010012307A1 (en) Laser apparatus including surface-emitting semiconductor excited with semiconductor laser element, and directly modulated
CA2149156C (en) Semiconductor laser having integrated waveguiding lens
CA2473396C (en) High coherent power, two-dimensional surface-emitting semiconductor diode array laser
US5914977A (en) Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor
JPH09167873A (en) Semiconductor laser device
JP3584508B2 (en) Short wavelength light source
JPH0667236A (en) Wavelength conversion element
JPH0319292A (en) Semiconductor laser
JP3037111B2 (en) Semiconductor lasers and composite semiconductor lasers
JPS63150981A (en) Semiconductor laser
JP2671317B2 (en) Semiconductor laser
JPH10321953A (en) Second higher harmonics generating device
JP2003218462A (en) Distributed feedback semiconductor laser device
JPH0278291A (en) Semiconductor laser element
JPH04209583A (en) Cycle gain type semiconductor laser element
JPH05275800A (en) Distortion quantum well semiconductor laser
JPH07111363A (en) Semiconductor laser device
JP2584607B2 (en) Semiconductor laser
JP2000252583A (en) Semiconductor laser and light wavelength converter
JP3967134B2 (en) Semiconductor laser device
JPH0271573A (en) Distributed feedback type semiconductor array laser
JPS59184585A (en) Semiconductor laser of single axial mode
JPH0430759B2 (en)