JPS63235449A - High tensile cold rolled steel plate for working and its production - Google Patents

High tensile cold rolled steel plate for working and its production

Info

Publication number
JPS63235449A
JPS63235449A JP6852387A JP6852387A JPS63235449A JP S63235449 A JPS63235449 A JP S63235449A JP 6852387 A JP6852387 A JP 6852387A JP 6852387 A JP6852387 A JP 6852387A JP S63235449 A JPS63235449 A JP S63235449A
Authority
JP
Japan
Prior art keywords
steel
rolled
less
cold
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6852387A
Other languages
Japanese (ja)
Other versions
JPH0830245B2 (en
Inventor
Naomitsu Mizui
直光 水井
Atsuki Okamoto
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62068523A priority Critical patent/JPH0830245B2/en
Publication of JPS63235449A publication Critical patent/JPS63235449A/en
Publication of JPH0830245B2 publication Critical patent/JPH0830245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To stably produce the titled plate at low cost by applying a steel piece having the specific compsn. consisting of C, Mn, P, S, N, Al, Ti, Zr and Fe to specified soaking, hot rolling, cold rolling and continuous annealing. CONSTITUTION:The steel piece consisting of, by weight, 0.008-0.06% C, 0.001-0.20% Mn, 0.025-0.2% P, <=0.01% S, 0.0005-0.0070% N, <=0.1% acid soluble Al, one or more kinds among 0.001-0.085% Ti and Zr except for the oxide and the balance Fe with inevitable impurities and satisfying the conditions of <=0.25% Mn+P 48(N/14+S/32-Mn/220)<=X<=48(N/14+S/32)+0.005 (where X=Ti+48/91Zr and when the value of S/32-Mn/220 comes to negative, it is calculated as zero) is soaked to >=1,000 deg.C, and is thereafter hot rolled at the Ar3 transformation point or above. The rolled plate is then wound at <=720 deg.C and above the temp. expressed by CT( deg.C)=(1+C+1.8Mn)X500. The hot rolled plate is thereafter subjected to descaling, is cold rolled at the draft ratio of 60-95% and is applied to the continuous annealing at the recrystallization temp. - the temp. of the AC3 transformation point.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、種々の形状に加工して使用される加工用高
張力冷延鋼板に関し、更には該加工用銅張力冷延鋼板を
コスト安く安定製造する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a high-strength cold-rolled steel sheet for processing that is processed into various shapes and used, and furthermore, it is possible to reduce the cost of the copper-tensile cold-rolled steel sheet for processing. This invention relates to a method for stable production.

〈従来技術とその問題点〉 従来、加工用高張力冷延鋼板は、強化元素としてP及び
Mnを添加した低炭素A1キルド鋼を箱焼鈍して製造さ
れるのが一般的であったが、近年の生産性向上要求の高
まりに伴って、冷延鋼板の製造にも連続焼鈍が広く採り
入れられるようになってきた。ところが、加工用高張力
冷延鋼板を製造する場合に、箱焼鈍に代えて連続焼鈍を
取り入れることによりその生産性は飛躍的に向上しはし
たものの、今度は素材鋼として“従来の低炭素^lキル
ド鋼”を用いたのでは所望の材料特性を安定して得るの
が極めて困難であるとの問題が指摘されることとなった
のである。
<Prior art and its problems> Conventionally, high-strength cold-rolled steel sheets for processing have generally been manufactured by box annealing low carbon A1 killed steel to which P and Mn are added as reinforcing elements. With the increasing demand for improved productivity in recent years, continuous annealing has come to be widely adopted in the production of cold-rolled steel sheets. However, when manufacturing high-strength cold-rolled steel sheets for processing, productivity has improved dramatically by introducing continuous annealing instead of box annealing, but this time, as material steel, "conventional low carbon^" It has been pointed out that it is extremely difficult to stably obtain the desired material properties when using "l-killed steel."

例えば、近年では加工用高張力冷延鋼板に対しても“絞
り性”が要求されるようになってきたが、低炭素A1キ
ルド鋼を連続焼鈍して絞り性の良い冷延鋼板を製造しよ
うとする場合、熱間圧延工程で圧延完了後の銅帯を高温
でコイルに巻取ってセメンタイトの粗大化及び窒化アル
ミニウムの析出を図る必要がある。このとき、高温巻取
りを行うが故の「コイル先端部は巻取り機の巻取り軸に
接した時に急速に冷却され、他方、後端部は放射によっ
て早く冷えることから上記の目的が十分に達成されず、
そのためこれらの部分の製品特性はコイルの中央部と比
較して劣ることとなって均一性に欠けてしまう」等の問
題を避は得なかった。
For example, in recent years, high-strength cold-rolled steel sheets for processing have come to be required to have "drawability," but low-carbon A1 killed steel can be continuously annealed to produce cold-rolled steel sheets with good drawability. In this case, it is necessary to wind up the copper strip into a coil at high temperature after completion of rolling in the hot rolling process to coarsen the cementite and precipitate aluminum nitride. At this time, due to high-temperature winding, the tip of the coil is rapidly cooled when it comes into contact with the winding shaft of the winder, while the rear end is quickly cooled by radiation, so the above purpose can be fully achieved. not achieved,
Therefore, the product characteristics of these parts are inferior to those of the central part of the coil, resulting in a lack of uniformity.

また、連続焼鈍では冷却速度が箱焼鈍と比較して著しく
速いため、加熱・均熱中に固溶した炭素が冷却過程にお
いて十分に析出できずに鋼板中に残存し、これが歪時効
の原因になるとの問題もある。特に、鋼板中にPやMn
が多く含まれる鋼板は常温においても激しい歪時効を起
こす傾向にある。
In addition, since the cooling rate in continuous annealing is significantly faster than that in box annealing, the carbon dissolved in solid solution during heating and soaking cannot be sufficiently precipitated during the cooling process and remains in the steel sheet, which may cause strain aging. There is also the problem of In particular, P and Mn in steel sheets
Steel sheets that contain a large amount of C tend to undergo severe strain aging even at room temperature.

もっとも、この現象を逆利用したものとして、P及びM
nを強化元素とし、良加工性の下に加工した鋼板を塗料
焼付工程で強化する焼付硬化性冷延鋼板の製造方法も提
案されており(特開昭56−119734号)、これに
よって優れた加工性を有する高張力鋼板が得られるとの
説明がなされているが、この方法によって得られる鋼板
は焼付硬化量が6 kgf/am”以上もあって固溶炭
素や固溶窒素による常温歪時効を防ぐことが出来ず、そ
のためプレス成形時にストレッチャーストレインが発生
し成形不良を招くと言う恐れを拭うことは出来なかった
のである。
However, as a reverse use of this phenomenon, P and M
A method for producing bake-hardenable cold-rolled steel sheets has also been proposed (Japanese Patent Application Laid-open No. 119734/1983), in which a steel plate processed to have good formability is strengthened by using n as a reinforcing element (Japanese Unexamined Patent Publication No. 119734/1983). Although it is explained that a high-strength steel plate with workability can be obtained, the steel plate obtained by this method has a bake hardening amount of 6 kgf/am or more and cannot be strain-aged at room temperature due to solid solute carbon or solid solute nitrogen. Therefore, it was not possible to eliminate the possibility that stretcher strain would occur during press molding, leading to molding defects.

く問題点を解決する手段〉 本発明者等は、上述のような観点から、優れた加工性と
適度の焼付硬化性とを具備し、絞り加工用としても十分
に満足し得る特性の均一な加工用冷延鋼板を、連続焼鈍
工程を採用したとしても安定に提供できる手段を見出す
べく鋭意研究を行ったが、特に、連続焼鈍による低炭素
Alキルド冷延鋼板の絞り性並びに耐常温歪時効性に及
ぼす鋼中微量合金成分及び製造条件の影響を調査する過
程で、以下(a)〜(f)に示すような知見を得るに至
ったのである。即ち、 (al  鋼中の炭素量が0.008%以上(以降、成
分割合を表わす%は重量%とする)であったとしても、
鋼中の固溶Mn量が十分に低い場合には、熱延工程にお
いて高温巻取りをしな(でも連続焼鈍により絞り性の良
好な冷延鋼板を製造できること。
Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have developed a material with uniform properties that has excellent workability and appropriate bake hardenability and is sufficiently satisfactory for drawing processing. We conducted extensive research to find a means to stably provide cold-rolled steel sheets for processing even if a continuous annealing process was adopted.In particular, we focused on the drawability and cold-strain aging resistance of low-carbon Al-killed cold-rolled steel sheets by continuous annealing. In the process of investigating the influence of trace alloy components in steel and manufacturing conditions on the properties of steel, they came to the following findings (a) to (f). That is, even if the carbon content in the (al steel) is 0.008% or more (hereinafter, % representing the component ratio is expressed as weight %),
When the amount of solid solute Mn in the steel is sufficiently low, a cold rolled steel sheet with good drawability can be produced by continuous annealing without high temperature winding in the hot rolling process.

即ち、鋼中の固溶Mn量を低減させることによって熱延
工程における巻取り時のセメンタイト粗大化が促進され
、再結晶焼鈍時のセメンタイトの再溶解を遅らせて再結
晶時の固溶炭素量を減少させ、固溶炭素とMnとの相互
作用を小さくして再結晶抑制効果を低減させることが可
能であること。
In other words, by reducing the amount of solid solute Mn in the steel, coarsening of cementite during coiling in the hot rolling process is promoted, and redissolution of cementite during recrystallization annealing is delayed to reduce the amount of solid solute carbon during recrystallization. It is possible to reduce the recrystallization suppressing effect by reducing the interaction between solid solution carbon and Mn.

(b)  低炭素Alキルト鋼をベースとして高張力鋼
を製造する手段としてPの添加が行われているが、鋼中
のPとhとは焼鈍材の焼付硬化量に関して相互に密接な
関係を有しており、従って固溶Mnのみではなく、Mn
とPとの両方の含有量を規制することによって初めて焼
鈍材の焼付硬化量を常温歪時効が生じない範囲に抑える
ことができること。
(b) P is added as a means of manufacturing high-strength steel based on low carbon Al quilt steel, but P and h in steel have a close relationship with each other in terms of the amount of bake hardening of annealed materials. Therefore, not only solid solution Mn but also Mn
By regulating the contents of both P and P, the amount of bake hardening of the annealed material can be suppressed to a range in which room temperature strain aging does not occur.

つまり、固溶炭素とMnとの間には互いに結合使用とす
る傾向があるため、鋼中にMnが多く存在すると連続焼
鈍の過時効処理におけるセメンタイトの析出が遅くなり
、その結果として常温歪時効を生じ易くなる。そして、
固溶炭素とPとの間には前記固溶炭素とMnとの相互作
用とは逆の相互作用があり、Pが多くなると結果的に固
溶炭素とMnの相互作用を強くする結果となること。
In other words, since solute carbon and Mn tend to be used in combination with each other, the presence of a large amount of Mn in steel slows down the precipitation of cementite during overaging treatment during continuous annealing, resulting in cold strain aging. becomes more likely to occur. and,
There is an interaction between solute carbon and P that is opposite to the interaction between solute carbon and Mn, and as P increases, the interaction between solute carbon and Mn becomes stronger. thing.

(C1一方、MnにもMnSを形成することによりre
Sのような低融点硫化物の生成を阻止して鋼の熱間脆性
を防止する有用な作用があるので、Mn含有量はどうし
てもSより多く添加しなければならず、連続焼鈍材の深
絞り性に悪影響を与えない程度にMn量を低減すること
は実際には採用し得ない手段であること。
(C1 On the other hand, by forming MnS on Mn as well, re
Since Mn has a useful effect of inhibiting the formation of low melting point sulfides such as S and preventing hot embrittlement of steel, it is necessary to add Mn in a larger amount than S. Reducing the amount of Mn to an extent that does not adversely affect performance is a measure that cannot be adopted in practice.

(d)  ところが、上述のような低炭素Alキルド鋼
にTiやZrのような硫化物形成元素を厳密な特定範囲
で添加すれば、全面的にMnに幀ることなく熱間脆性を
防止することが可能となること。
(d) However, if sulfide-forming elements such as Ti and Zr are added to the low-carbon Al-killed steel described above in a strictly specified range, hot embrittlement can be prevented without increasing Mn throughout the steel. to be possible.

第1図は、鋼の熱間加工性に及ぼすTi、 Zr及びM
n量の影響を示したグラフである。ここで、熱間加工性
は第1表に示した成分組成の鋼を実験用真空溶解炉で溶
製し、熱間鍛造にて棒鋼とした後切削加工して得た直径
10鶴の棒状試験片について測定したもので、グリ−プ
ル試験機を用いて上記試験片をまず1250℃で10分
間加熱後950℃まで冷却し、その温度で歪速度1se
c−’にて引張り試験して断面収縮率を求め評価した。
Figure 1 shows the effects of Ti, Zr and M on the hot workability of steel.
It is a graph showing the influence of the amount of n. Here, hot workability is determined by a bar test of 10 cranes in diameter obtained by melting steel with the composition shown in Table 1 in an experimental vacuum melting furnace, hot forging it into a bar steel, and cutting it. The above test piece was first heated at 1250°C for 10 minutes using a Grieple tester, then cooled to 950°C, and at that temperature the strain rate was set at 1 se.
A tensile test was carried out at c-', and the cross-sectional shrinkage rate was determined and evaluated.

第1図からも、低Mn鋼であってもTiやZrを適量添
加すれば断面収縮率が50%以上と大きくなって、熱間
圧延時の割れ発生を十分に防止できるようになることが
明らかである。
Figure 1 also shows that even in low-Mn steel, if appropriate amounts of Ti and Zr are added, the cross-sectional shrinkage rate increases to 50% or more, making it possible to sufficiently prevent cracking during hot rolling. it is obvious.

(e)  更に、TiやZrを添加した場合にはTiS
或いはZrSが形成されるよりも先にTiNやZrNが
生成するため、熱間脆性を防止するのに十分なTiやZ
rを添加すると自ずと固t@Nによる再結晶抑制効果も
無くなること。
(e) Furthermore, if Ti or Zr is added, TiS
Alternatively, since TiN and ZrN are formed before ZrS is formed, sufficient Ti and Z to prevent hot embrittlement may be present.
Addition of r naturally eliminates the recrystallization suppressing effect of solid t@N.

(f>  即ち、Mnと同等或いはそれ以上にSと強(
反応して硫化物を形成するTiやZrを適量添加するこ
とによって、鋼の熱間脆性を防止しつつ、鋼中に固溶さ
せるMn量を低下せしめることが可能となり、更にP添
加量をMn量との合計量で制限するようにしながら鋼中
の固溶Mn量低減させれば、所望強度を実現するために
必要なP量を確保したとしても常温歪時効性が十分に抑
えられて、連続焼鈍によっても絞り性と耐常温歪時効性
に優れたコイル全長に亘って均一な特性の高張力鋼板を
安定して製造できるようになること。
(f> In other words, it is as strong as S or stronger than Mn (
By adding appropriate amounts of Ti and Zr, which react to form sulfides, it is possible to prevent hot embrittlement of the steel and reduce the amount of Mn dissolved in the steel. If the amount of solid solute Mn in the steel is reduced while limiting the total amount of Mn, room temperature strain aging can be sufficiently suppressed even if the amount of P necessary to achieve the desired strength is secured. To be able to stably produce high-strength steel sheets with uniform characteristics over the entire length of the coil, which have excellent drawability and room temperature strain aging resistance even through continuous annealing.

この発明は、上記知見に基づいてなされたものであり、 加工用高張力冷延鋼板を、 C: 0.008〜0.06%、  Mn : 0.0
0i 〜0.20%。
This invention was made based on the above knowledge, and a high-strength cold-rolled steel sheet for processing is made of: C: 0.008 to 0.06%, Mn: 0.0
0i ~0.20%.

P : 0.025〜0.2%、  S:0.01%以
下。
P: 0.025-0.2%, S: 0.01% or less.

N : 0.0005〜0.0070%、酸可溶AJ:
0,1%以下。
N: 0.0005-0.0070%, acid soluble AJ:
Less than 0.1%.

Ti及びZrの1種以上(酸化物として含まれるものを
除り);合計で0.001〜0.085%。
One or more of Ti and Zr (excluding those contained as oxides); 0.001 to 0.085% in total.

Pa及び不可避的不純物:残り から成り、かつ Mn量 P : 0.25%以下、 並びに なる条件を満足する成分組成に構成することにより、常
温歪時効性の認められない優れた絞り加工性と適度の焼
付硬化性とを具備せしめた点、に特徴を有し、更には、 c : 0.008〜0.06%、  Mn : 0.
001〜0.20%。
By configuring the composition to satisfy the following conditions: Pa and unavoidable impurities: remaining, and the amount of Mn P: 0.25% or less, excellent drawability and moderate strain aging properties are not observed at room temperature. It has the following characteristics: c: 0.008 to 0.06%, Mn: 0.
001-0.20%.

P : 0.025〜0.2%、  S:0.01%以
下。
P: 0.025-0.2%, S: 0.01% or less.

N : 0.0005〜0.0070%、酸可溶Ag:
011%以下。
N: 0.0005-0.0070%, acid-soluble Ag:
011% or less.

Ti及びZrの1種以上(酸化物として含まれるものを
除り):合計でo、ooi〜0.085%。
One or more of Ti and Zr (excluding those contained as oxides): o, ooi to 0.085% in total.

Fe及び不可避的不純物:残り から成り、かつ 月71+P:0.25%以下、 並びに なる条件を満足する成分組成の鋼片(連続鋳造によって
製造されたスラブ鋳片、或いは造塊法等により得た鋼塊
を分塊圧延した鋼片等の何れであっても良い)を、10
00℃以上に均熱してからAr、変態点以上で熱間圧延
し、次いで720”C以下であって、かつ式 %式% で表わされる温度以上で巻取り、脱スケールの後60〜
95%の圧下率で冷間圧延し、更に再結晶温度以上Ac
、変態点以下の温度域に加熱して連続焼鈍することによ
り、常温歪時効性の認められない優れた絞り加工性と適
度の焼付硬化性とをコイルの全長に亘って均一に示す加
工用高張力冷延鋼板を安定して製造し得るようにした点
、をも特徴とするものである。
Steel slabs (slab slabs produced by continuous casting, or obtained by ingot-forming method, etc.) that consist of Fe and unavoidable impurities: the remainder, and satisfy the following conditions: 71+P: 0.25% or less (It may be any steel billet made by blooming and rolling a steel ingot), 10
After soaking to 00℃ or higher, hot rolling in Ar at a temperature higher than the transformation point, then coiling at a temperature lower than 720"C and higher than the temperature expressed by the formula %, and after descaling 60~
Ac
By heating the coil to a temperature below the transformation point and continuously annealing it, the coil can be heated to a temperature range below the transformation point and then annealed to produce a coil that exhibits excellent drawability without room temperature strain aging and moderate bake hardenability uniformly over the entire length of the coil. Another feature of the present invention is that it enables stable production of tensile cold-rolled steel sheets.

次いで、この発明において、鋼の成分組成並びに鋼板の
製造条件を前記の如くに限定した理由を説明する。
Next, in this invention, the reason why the chemical composition of the steel and the manufacturing conditions of the steel plate are limited as described above will be explained.

八) 成分組成 1)C Cは鋼中に必然的に随伴される元素であるが、その含有
量が0.06%を超えるとセメンタイトの体積率が大き
過ぎて加工用冷延鋼板に必要な延性が得られず、一方、
その含有量がo、oos%未溝の場合には、連続焼鈍の
適用では更に0.003%未満の領域にまで極低炭化し
ない限り常温歪時効を実用上問題の無い程度にまで抑制
することができず、工業的に非常な不利を招くことにな
る。従って、C含有量は0.008〜0.06%と定め
たが、好ましくハ0.008〜0.02%に調整するの
が良い。
8) Composition 1) C C is an element that is inevitably accompanied in steel, but if its content exceeds 0.06%, the volume percentage of cementite is too large and it is not necessary for cold rolled steel sheets for processing. On the other hand, ductility cannot be obtained.
When the content is o, oos% ungrooved, continuous annealing is applied to suppress room temperature strain aging to a level that poses no practical problem unless carbonization is further reduced to an extremely low level of less than 0.003%. This will result in a severe industrial disadvantage. Therefore, although the C content is determined to be 0.008 to 0.06%, it is preferably adjusted to 0.008 to 0.02%.

ii)Mn Mn含有量はこの発明における重要な要素の1つであり
、出来るだけ低い方が好ましい。しがしながら、その含
有量を安定かつ安価に0.001%未満とすることは現
在の製鋼技術では極めて困難なことである。一方、Mn
含有量が0.20%を超えると熱延工程における巻取り
時のセメンタイト粗大化促進効果が得られず、しかも固
溶炭素と共存することにより再結晶抑制効果が大きくな
って、絞り性に好ましい再結晶集合組織を容易に得られ
なくなる。従って、Mn含有量は0.001〜0.20
%と限定した。
ii) Mn Mn content is one of the important factors in this invention, and is preferably as low as possible. However, it is extremely difficult to stably and inexpensively reduce the content to less than 0.001% using current steelmaking technology. On the other hand, Mn
If the content exceeds 0.20%, the effect of promoting cementite coarsening during winding in the hot rolling process cannot be obtained, and furthermore, coexistence with solid solution carbon increases the recrystallization suppressing effect, which is favorable for drawability. It becomes difficult to obtain recrystallized texture. Therefore, the Mn content is 0.001-0.20
%.

1ii)P Pには鋼を強化する作用があるが、その含有量が0.0
25%未満では所望の強化が達成できず、一方、0.2
%を超えて含有させると鋼板が固くなり過ぎ、しかもP
含有量がMn量との合計で0.25%を超えると鋼板の
常温歪時効性が顕著となって加工用冷延鋼板に適さなく
なる。従って、P含有量は0.025〜0.2%で、か
つPとMnとの合計含有量が0.25%以下の値と定め
た。
1ii) P P has the effect of strengthening steel, but its content is 0.0
Below 25%, the desired reinforcement cannot be achieved, while 0.2%
If the content exceeds P.
If the content exceeds 0.25% in total with the Mn amount, the strain aging property of the steel sheet becomes significant, making it unsuitable for cold-rolled steel sheets for processing. Therefore, the P content was determined to be 0.025 to 0.2%, and the total content of P and Mn was determined to be 0.25% or less.

なお、第2図は、この発明で規定するMnとPの含有量
範囲を模式化したグラフである。
Note that FIG. 2 is a graph schematically showing the content ranges of Mn and P defined in the present invention.

1v)S Sは鋼中に随伴される不可避的不純物の1つであるが、
MnよりもTiJ?:jZrと結合する傾向が強く、従
ってS含有量の増加はTiやZrの添加量増加を招くこ
とから、許容し得る範囲である0、01%以下にその含
有量を限定した。
1v) S S is one of the inevitable impurities that accompany steel,
TiJ than Mn? :j has a strong tendency to bond with Zr, and therefore an increase in S content leads to an increase in the amount of Ti and Zr added, so its content was limited to 0.01% or less, which is an acceptable range.

v) N NtI鋼中に必然的に随伴される不純物であって、現在
の製鋼技術では容易かつ安定して0.0005%未満に
抑えることは出来ない。そして、N含有量が0.007
0%を超えると、やはりTi或いはZrの添加量が増大
して鋼板の製造コストを上昇することとなるので、N含
有量は0.0005〜0.0070%と限定したが、好
ましくは0.0030%以下に調整するのが良い。
v) N An impurity that inevitably accompanies NtI steel, and cannot be easily and stably suppressed to less than 0.0005% using current steelmaking technology. And the N content is 0.007
If it exceeds 0%, the amount of Ti or Zr added will increase and the manufacturing cost of the steel plate will increase. Therefore, the N content is limited to 0.0005 to 0.0070%, but preferably 0.00%. It is best to adjust it to 0.030% or less.

vi)酸可溶AI 酸可溶Aj2は、溶鋼を真空脱ガス処理した後Ti或い
はZrを添加するに際し、Ti及びZrの歩留りを向上
させるために予め脱酸剤として添加するものであり、微
量でも存在していれば脱酸が完全に行われていることを
意味するので十分である。しかしながら、その含有量が
0.1%を超えると鋼が硬質化して延性低下を招くこと
から、酸可溶Al含有量は0.1%以下と定めた。
vi) Acid-soluble AI Acid-soluble Aj2 is added as a deoxidizing agent in advance to improve the yield of Ti and Zr when adding Ti or Zr after vacuum degassing the molten steel. However, its presence is sufficient because it means that deoxidation has been completed. However, if the content exceeds 0.1%, the steel becomes hard and ductility decreases, so the acid-soluble Al content is set at 0.1% or less.

vii)Ti、及びZr これらの成分には、何れも、鋼中のSと結合して鋼の熱
間脆性を防止すると共に、鋼中のNとも結合して再結晶
抑制効果を消失させる作用があり、結果としてMn含有
量を低減してP添加量を増加することを可能とする効果
が生じるが、これらの含有量が酸化物として含まれるも
のを除いた合計量でo、ooi%未満であると上記作用
に所望の効果が得られず、一方、合計で0.085%を
超えて含有させると、TiCやZrCが多く析出してこ
れらによる再結晶抑制効果が現われて加工用鋼板として
好ましくない結果を招く。従って、Ti及びZr含有量
は合計量で0.001〜0.085%と限定した。
vii) Ti and Zr These components both combine with S in the steel to prevent hot embrittlement of the steel, and also combine with N in the steel to eliminate the recrystallization suppressing effect. As a result, the effect of reducing the Mn content and increasing the amount of P added is produced, but if the total amount excluding those contained as oxides is less than o, ooi%. If the content exceeds 0.085% in total, a large amount of TiC and ZrC will precipitate and the effect of suppressing recrystallization will appear, making it preferable as a working steel sheet. result in no results. Therefore, the total content of Ti and Zr was limited to 0.001 to 0.085%.

更に、Ti及びZr含有量は、 X=Ti+−Zr とした場合に、 その理由は次の通りである。即ち、前記Xの値が上記式
の下限値未満であるとMnともTiやZrとも結合しな
いSが存在することとなってFeSが形成され、鋼の熱
間脆性が問題となり、またXの値が0%未満になると鋼
中ONの一部はAINとして固定せざるを得なくなって
、高温巻取りをしないと絞り性が得られなくなる。一方
、Xの値が上記式の上限値を超えると、やはりTiC’
1PZrCが多く析出してこれらによる再結晶抑制効果
が現われて加工用鋼板として好ましくない結果を招く。
Furthermore, when the Ti and Zr contents are set as X=Ti+-Zr, the reason is as follows. That is, if the value of X is less than the lower limit of the above formula, S, which does not bond with Mn, Ti, or Zr, will be present and FeS will be formed, causing a problem of hot embrittlement of the steel, and the value of If it becomes less than 0%, a part of the ON in the steel has to be fixed as AIN, and drawability cannot be obtained unless high-temperature winding is performed. On the other hand, if the value of X exceeds the upper limit of the above formula, TiC'
A large amount of 1PZrC precipitates, and the effect of suppressing recrystallization appears, resulting in an unfavorable result as a steel sheet for processing.

なお、第3図は、0.008%のSと0.0020%の
Nとを含有する鋼について、この発明で規定するTi及
びZrとMnの含有量範囲を模式化したグラフである。
Note that FIG. 3 is a graph schematically showing the content ranges of Ti, Zr, and Mn defined in the present invention for steel containing 0.008% S and 0.0020% N.

B) 鋼板の製造条件 この発明に係る加工用高張力冷延鋼板は前記の如き成分
組成に構成されたものであるが、該鋼板を製造する場合
には、上記成分組成の鋼片を1000℃以上に均熱して
からArs変態点以上で熱間圧延し、次いで720℃以
下であって、かつ式%式% で表わされる温度以上で巻取り、脱スケールの後60〜
95%の圧下率で冷間圧延し、更に再結晶温度以上Ac
、変態点以下の温度域に加熱して連続焼鈍する条件を採
用するのが良い、その理由は次の通りである。
B) Manufacturing conditions of steel plate The high-strength cold-rolled steel plate for working according to the present invention has the above-mentioned composition. When manufacturing the steel plate, the steel plate having the above-mentioned composition is heated to 1000°C. After soaking to the above temperature, hot rolling is carried out at a temperature above the Ars transformation point, then coiling is carried out at a temperature below 720°C and above the temperature expressed by the formula %, and after descaling, 60 to
Ac
The reason why it is preferable to adopt conditions of continuous annealing by heating to a temperature range below the transformation point is as follows.

i)鋼片(スラブ)加熱温度 加熱温度が1000℃未満では加熱鋼片に温度ムラが生
じ易くなり、かつAr、変態点以上で熱間圧延を完了す
ることが困難になることから、鋼片の加熱温度は100
0℃以上と定めたが、好ましくは1100〜1200℃
に加熱するのが良い。
i) Heating temperature of steel slab (slab) If the heating temperature is less than 1000°C, temperature unevenness will easily occur in the heated slab, and it will be difficult to complete hot rolling at Ar or above the transformation point. The heating temperature is 100
It is set as 0℃ or higher, but preferably 1100 to 1200℃
It is best to heat it up.

ii )熱間圧延仕上げ温度 熱間圧延仕上げ温度がAr3変態点よりも低くなると鋼
はα+γ域或いはα域で熱間圧延されることとなり、通
常はγ→α変態に伴って消失していた熱間圧延集合組織
が熱延板中に残存することになって、絞り性に好ましい
再結晶集合組織の発達を妨げてしまう。
ii) Hot rolling finishing temperature When the hot rolling finishing temperature is lower than the Ar3 transformation point, the steel will be hot rolled in the α+γ region or α region, and the heat that would normally be lost during the γ→α transformation will be removed. The inter-rolling texture remains in the hot-rolled sheet, hindering the development of a recrystallized texture favorable for drawability.

iii )巻取り温度 巻取り温度(CT)が式 %式% よりも低いと、低Mn鋼といえどもセメンタイトの粗大
化が不十分であり、一方、720℃を超える温度域で巻
取ると、巻取り時にスケールの厚みが厚くなって脱スケ
ール性が劣化すると共に、異常粒成長が生じて粗大粒が
発生することとなる。
iii) Coiling temperature If the coiling temperature (CT) is lower than the formula % formula %, cementite coarsening will be insufficient even in low Mn steel. During winding, the thickness of the scale increases, descaling performance deteriorates, and abnormal grain growth occurs, resulting in the generation of coarse grains.

なお、低温巻取りでも絞り性の良い冷延鋼板を製造し得
ることもこの発明の特徴の1つであるが、出来れば60
0〜6・50℃の温度域で巻取るのが好ましい。
Note that one of the features of this invention is that it is possible to produce cold rolled steel sheets with good drawability even when rolled at low temperatures.
It is preferable to wind it in a temperature range of 0 to 6.50°C.

なお、第4図は、この発明で規定するMn含有量と巻取
り温度との範囲を模式化したグラフである。
Note that FIG. 4 is a graph schematically showing the range of Mn content and winding temperature defined in the present invention.

iv)冷間圧延の圧下率 冷間圧延の圧下率が60%未満では絞り性に好ましい再
結晶集合m織が発達しないので、圧下率は高い方が好ま
しいが、95%超える圧下率では逆に絞り性が劣化する
ようになる。従って、冷間圧延の圧下率は60〜95%
と定めた。
iv) Reduction ratio of cold rolling If the reduction ratio of cold rolling is less than 60%, the recrystallized aggregate m weave, which is favorable for drawability, will not develop, so a higher reduction ratio is preferable, but if the reduction ratio exceeds 95%, the opposite is true. Squeezability begins to deteriorate. Therefore, the reduction ratio of cold rolling is 60-95%.
It was determined that

■)焼鈍温度 この焼鈍は再結晶焼鈍であるから再結晶温度異常に加熱
する必要があることは言うまでもないが、Ac=変態点
を超える温度域にまで加熱すると、α−+7−αと変態
することにより再結晶過程で形成させた“絞り性に好ま
しい再結晶集合組織゛を消してしまうことになるので、
焼鈍温度はAc、変態点以下に抑える必要がある。
■) Annealing temperature Since this annealing is recrystallization annealing, it goes without saying that it is necessary to heat it to an abnormal recrystallization temperature, but if it is heated to a temperature range exceeding the Ac = transformation point, it will transform to α-+7-α. As a result, the "recrystallization texture favorable for drawability" formed during the recrystallization process will be erased.
The annealing temperature must be kept below Ac, the transformation point.

なお、連続焼鈍のヒートパターンについては、再結晶温
度以上でかつAc3変態点以下に加熱後、その温度で5
秒以上保持してから550〜700℃の温度域にまで冷
却速度:5℃/see以下で冷却し、その温度から更に
300〜500℃の温度域にまで冷却速度;20〜b か、必要な場合には加熱した後350〜550℃の温度
域から350℃まで2分以上かけて徐冷し、更に350
℃から250℃以下の温度域にまで5”C/sec以下
の冷却速度で冷却することが好ましい。
Regarding the heat pattern of continuous annealing, after heating above the recrystallization temperature and below the Ac3 transformation point, 5
After holding for more than 2 seconds, cool down to a temperature range of 550 to 700 °C at a cooling rate of 5 °C/see or less, and then cool from that temperature to a temperature range of 300 to 500 °C; In case, after heating, it is slowly cooled from the temperature range of 350 to 550℃ to 350℃ over 2 minutes or more, and then further heated to 350℃.
It is preferable to cool down from 0.degree. C. to 250.degree. C. or less at a cooling rate of 5"C/sec or less.

このようにして製造される鋼板は、焼鈍後調質圧延され
て出荷されることは言うまでもない。
It goes without saying that the steel plate manufactured in this manner is annealed, then skin-pass rolled, and then shipped.

続いて、この発明を実施例により比較例と対比しながら
説明するが、この実施例は本発明の1例を単に示したに
過ぎないものであり、これによって本発明が不当に制限
されるものでないことは当然である。
Next, this invention will be explained using examples and comparing with comparative examples, but these examples merely show one example of the present invention, and the present invention should not be unduly limited thereby. Of course not.

〈実施例〉 実施例 l まず、常法によって第2表に示す如き成分組成の鋼を溶
製した後、熱間鍛造により厚さ30Mの実験用スラブと
した。
<Example> Example 1 First, steel having the composition shown in Table 2 was melted by a conventional method, and then hot forged into a slab for experiment with a thickness of 30M.

次いで、これらを1250℃に30分加熱した後、11
50〜900℃の温度域で板厚3鶴まで熱間圧延した。
Next, after heating these to 1250°C for 30 minutes, 11
It was hot rolled in a temperature range of 50 to 900°C to a thickness of 3 cranes.

このとき、巻取りシュミレーションとして、熱延後直ち
に700℃、600℃及び520℃まで急冷し、各々の
温度に保った電気炉に挿入して30分保持した後、冷却
速度:20℃/sinで炉冷する処理を施した。
At this time, as a winding simulation, immediately after hot rolling, the material was rapidly cooled to 700°C, 600°C, and 520°C, and after being inserted into an electric furnace maintained at each temperature for 30 minutes, the cooling rate was 20°C/sin. Furnace cooling treatment was performed.

次に、得られた熱延鋼板を酸洗した後、圧下率73%で
冷間圧延し、赤外線加熱式の連続焼鈍シュミレータ−に
よって連続焼鈍した。
Next, the obtained hot rolled steel sheet was pickled, cold rolled at a rolling reduction of 73%, and continuously annealed using an infrared heating type continuous annealing simulator.

この焼鈍の際のヒートサイクルは、第5図に示した如く
、冷却速度10℃/secで820℃まで加熱してその
温度で40秒保持した後、650℃までは冷却速度3℃
/secで、更に400℃までは冷却速度100℃/s
ecで冷却し、その後400℃から350℃の間を冷却
速度=16℃/lll1nで徐冷して約3分間の過時効
処理を施し、250℃まで冷却速度:3℃/secで冷
却した後水冷する過程をたどった。
As shown in Figure 5, the heat cycle during this annealing is as follows: heating to 820°C at a cooling rate of 10°C/sec, holding at that temperature for 40 seconds, and then cooling at a rate of 3°C to 650°C.
/sec, and further cooling rate is 100℃/s up to 400℃
EC, then slowly cooled from 400°C to 350°C at a cooling rate of 16°C/lll1n, over-aged for about 3 minutes, and cooled to 250°C at a cooling rate of 3°C/sec. I followed the water cooling process.

このようにして得られた冷延鋼板を伸び率:1.2%で
調質圧延した後、JIS S号試験片に成形して引張試
験を行い、機械的性質及・び焼付硬化量を測定した。な
お、焼付硬化量は、第6図に示した如く、2%の予歪を
引張りによって付加した後に再び引張ったときの降伏点
の上昇量と定義した。
The cold-rolled steel sheet thus obtained was temper-rolled at an elongation rate of 1.2%, then formed into JIS No. S test pieces and subjected to a tensile test to measure mechanical properties and amount of bake hardening. did. As shown in FIG. 6, the amount of bake hardening was defined as the amount of increase in yield point when 2% prestrain was applied by tension and then tension was applied again.

この結果を第7乃至10図に示す。The results are shown in FIGS. 7 to 10.

第7図は、0.09%p−o、is%Mn材を700℃
巻取りした場合の、焼鈍材の機械的性質に及ぼす鋼中炭
素量の影響に関する結果を示しているが、第7図からは
、鋼中炭素量が0.008%未満では焼付硬化量が6 
kgf/■II2以下にはならず、また0、06%を超
えていると所望の延性が得られないことが分かる。
Figure 7 shows the temperature of 0.09%po, is%Mn material at 700°C.
Figure 7 shows the effect of the carbon content in the steel on the mechanical properties of the annealed material when it is rolled up.
It can be seen that the desired ductility cannot be obtained if it does not fall below kgf/■II2 and exceeds 0.06%.

また、第8図は、0.09%P−0,15%Mn材を7
00℃巻取りした場合の、焼鈍材の機械的性質に及ぼす
P含有量の影響に関する結果を示しているが、第8図か
らは、P含有量が0.2%を超えると鋼が硬すぎて加工
に不適当であることか分かる。
In addition, Fig. 8 shows 0.09%P-0,15%Mn material at 7
Figure 8 shows the effect of P content on the mechanical properties of the annealed material when coiled at 00°C. From Figure 8, it is clear that if the P content exceeds 0.2%, the steel is too hard. It can be seen that it is unsuitable for processing.

そして、第9図は、0.012%C材を700℃巻取り
した場合の、焼鈍材の焼付硬化量に及ぼすMn含有量及
びP含有量の影響に関する結果を示しているが、第9図
からは、Mn含を量及びP含有量が本発明で規定する条
件から外れると焼付硬化量を6 kgf/area”以
下に出来ないことが分かる。なお、第9図中の数値は焼
付硬化量(kgf/1mm”)である。
FIG. 9 shows the results regarding the influence of Mn content and P content on the bake hardening amount of annealed material when 0.012% C material is wound at 700°C. It can be seen from the figure that if the Mn content and P content deviate from the conditions specified in the present invention, the bake hardening amount cannot be reduced to less than 6 kgf/area.The numerical values in Fig. 9 indicate the bake hardening amount. (kgf/1mm”).

更に、第10図は、0.012%C−0,09%P材を
700℃巻取りした場合の、焼鈍材のr値に及ぼすMn
含有量と巻取り温度との影響に関する結果を示している
が、第10図からは、Mn含有量と巻取り温度とが本発
明で規定する条件から外れると良好なr値が得られない
ことが分かる。なお、第10図中の数値はr値である。
Furthermore, Figure 10 shows the effect of Mn on the r value of the annealed material when the 0.012%C-0.09%P material is wound at 700°C.
Although the results regarding the influence of the Mn content and the winding temperature are shown, it is clear from FIG. 10 that a good r value cannot be obtained if the Mn content and the winding temperature deviate from the conditions specified in the present invention. I understand. Note that the numerical values in FIG. 10 are r values.

実施例 2 第3表に示す成分組成の鋼を転炉で溶製し、一部に真空
脱ガス処理を施してから連続鋳造して得たスラブを、1
200℃に加熱した後熱間圧延して650℃で巻取った
Example 2 A slab obtained by melting steel having the composition shown in Table 3 in a converter, subjecting a portion to vacuum degassing treatment, and then continuously casting the steel was 1
After heating to 200°C, it was hot rolled and wound at 650°C.

続いて、得られた熱延調板を酸洗してから圧下率=75
%で冷間圧延し、板厚0.8mの冷延板を製造した後、
760℃での40秒の保持と400℃で3.5分の過時
効処理とからなる連続焼鈍を施し、更に伸び率:1.0
%の調質圧延を行って冷延鋼板製品とした。
Subsequently, the obtained hot-rolled conditioned plate was pickled and then rolled at a rolling reduction rate of 75.
% to produce a cold-rolled plate with a thickness of 0.8 m,
Continuous annealing consisting of holding at 760°C for 40 seconds and overaging treatment at 400°C for 3.5 minutes was performed, and the elongation rate was further increased to 1.0.
% temper rolling to produce cold rolled steel sheet products.

得られた冷延鋼板製品の特性値を第4表に示す。Table 4 shows the characteristic values of the obtained cold rolled steel sheet product.

この第4表からも、本発明の条件通りに製造された冷延
鋼板製品は加工用高張力冷延鋼板として優れた特性を示
すのに対して、製造条件が本発明の規定から外れたもの
は所望特性を満たさないことが明らかである。
This Table 4 also shows that cold-rolled steel sheet products manufactured under the conditions of the present invention exhibit excellent properties as high-strength cold-rolled steel sheets for processing, while those manufactured under conditions that deviate from the provisions of the present invention. clearly does not satisfy the desired properties.

く効果の総括〉 以上に説明した如(、この発明によれば、絞り性と耐常
温時効性に優れた高張力冷延鋼板を連続焼鈍によっても
安定に得ることが可能となるなど、工業上有用な効果が
もたらされるのである。
Summary of Effects> As explained above, according to the present invention, it is possible to stably obtain high-strength cold-rolled steel sheets with excellent drawability and room-temperature aging resistance even by continuous annealing. It brings about useful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋼の熱間延性に及ぼすTi、 Zr及びMn
含有量の影響を示すグラフ、 第2図は、この発明で規定するMnとPの含有量範囲を
模式化したグラフ、 第3図は、この発明で規定するTi及びZrとMnの含
有量範囲を模式化したグラフ、 第4図は、この発明で規定するMn含有量と巻取り温度
との範囲を模式化したグラフ、 第5図は、連続焼鈍のシュミレートのためのヒートサイ
クルを示す線図、 第6図は、焼付硬化量の定義を説明した図面、第7図は
、0.09%P−0,15%Mn材を700℃巻取りし
た場合の、焼鈍材の機械的性質に及ぼす鋼中炭素量の影
響に関する結果を示したグラフ、第8図は、0.09%
P−0,15%Mn材を700℃巻取りした場合の、焼
鈍材の機械的性質に及ぼすP含有量の影響に関する結果
を示したグラフ、第9図は、0.012%C材を700
℃巻取りした場合の、焼鈍材の焼付硬化量に及ぼすMn
含有量及びP含有量の影響に関する結果を示したグラフ
、第10図は、0.012%C−0,09%P材を70
0℃巻取りした場合の、焼鈍材のr値に及ぼすMn含有
量と巻取り温度との影響に関する結果を示したグラフで
ある。
Figure 1 shows the effects of Ti, Zr and Mn on hot ductility of steel.
A graph showing the influence of the content. FIG. 2 is a graph schematizing the content range of Mn and P specified in this invention. FIG. 3 is a graph showing the content range of Ti, Zr, and Mn specified in this invention. FIG. 4 is a graph schematically illustrating the range of Mn content and coiling temperature defined in this invention. FIG. 5 is a diagram illustrating a heat cycle for simulating continuous annealing. , Figure 6 is a drawing explaining the definition of the amount of bake hardening, and Figure 7 is a diagram showing the effect on the mechanical properties of the annealed material when 0.09%P-0,15%Mn material is wound at 700℃. The graph shown in Figure 8 showing the results regarding the influence of carbon content in steel is 0.09%.
Figure 9 is a graph showing the effect of P content on the mechanical properties of the annealed material when the P-0.15%Mn material is rolled up at 700°C.
Effect of Mn on the amount of bake hardening of annealed material when coiled at °C
Figure 10, a graph showing the results regarding the influence of P content and P content, shows that 0.012%C-0.09%P material was
It is a graph showing the results regarding the influence of the Mn content and the winding temperature on the r value of the annealed material when the material is wound at 0°C.

Claims (2)

【特許請求の範囲】[Claims] (1)重量割合にて C:0.008〜0.06%、Mn:0.001〜0.
20%、P:0.025〜0.2%、S:0.01%以
下、N:0.0005〜0.0070%、酸可溶Al:
0.1%以下、Ti及びZrの1種以上(酸化物として
含まれるものを除く):合計で0.001〜0.085
%、Fe及び不可避的不純物:残り から成り、かつ Mn+P:0.25%以下、 並びに 48(N/14+S/32−Mn/220)≦X≦48
(N/14+S/32)+0.005[但し、X=Ti
+(48/91)Zrであり、S/32−Mn/220
の値が負になる場合には0として計算する。]なる条件
を満足する成分組成に構成されたことを特徴とする、加
工用高張力冷延鋼板。
(1) Weight percentage: C: 0.008-0.06%, Mn: 0.001-0.
20%, P: 0.025-0.2%, S: 0.01% or less, N: 0.0005-0.0070%, acid-soluble Al:
0.1% or less, one or more of Ti and Zr (excluding those included as oxides): 0.001 to 0.085 in total
%, Fe and unavoidable impurities: the remainder, and Mn+P: 0.25% or less, and 48 (N/14+S/32-Mn/220)≦X≦48
(N/14+S/32)+0.005 [However, X=Ti
+(48/91)Zr, S/32-Mn/220
If the value of is negative, it is calculated as 0. A high-tensile cold-rolled steel sheet for processing, characterized in that it has a composition that satisfies the following conditions.
(2)重量割合にて C:0.008〜0.06%、Mn:0.001〜0.
20%、P:0.025〜0.2%、S:0.01%以
下、N:0.0005〜0.0070%、酸可溶Al:
0.1%以下、Ti及びZrの1種以上(酸化物として
含まれるものを除く):合計で0.001〜0.085
%、Fe及び不可避的不純物:残り から成り、かつ Mn+P:0.25%以下、 並びに 48(N/14+S/32−(4/55)Mn)≦X≦
48(N/14+S/32)+0.005[但し、X=
Ti+(48/91)Zrであり、S/32−(4/5
5)Mnの値は負になる場合には0として計算する。]
なる条件を満足する成分組成の鋼片を、1000℃以上
に均熱してからAr_3変態点以上で熱間圧延し、次い
で720℃以下であって、かつ式 CT(℃)={1+C(wt%)+1.8×Mn(wt
%)}×500で表わされる温度以上で巻取り、脱スケ
ールの後60〜95%の圧下率で冷間圧延し、更に再結
晶温度以上Ac_3変態点以下の温度域に加熱して連続
焼鈍することを特徴とする、加工用高張力冷延鋼板の製
造方法。
(2) Weight percentage: C: 0.008-0.06%, Mn: 0.001-0.
20%, P: 0.025-0.2%, S: 0.01% or less, N: 0.0005-0.0070%, acid-soluble Al:
0.1% or less, one or more of Ti and Zr (excluding those included as oxides): 0.001 to 0.085 in total
%, Fe and unavoidable impurities: remaining, and Mn+P: 0.25% or less, and 48 (N/14+S/32-(4/55)Mn)≦X≦
48(N/14+S/32)+0.005 [However, X=
Ti+(48/91)Zr, S/32-(4/5
5) If the value of Mn is negative, it is calculated as 0. ]
A steel billet having a composition satisfying the following conditions is soaked at 1000°C or higher, then hot rolled at Ar_3 transformation point or higher, and then heated to 720°C or lower, and with the formula CT(°C)={1+C(wt%) )+1.8×Mn(wt
%)}×500, and after descaling, it is cold rolled at a reduction rate of 60 to 95%, and then continuously annealed by heating to a temperature range from the recrystallization temperature to the Ac_3 transformation point. A method for manufacturing a high-strength cold-rolled steel sheet for processing, characterized by:
JP62068523A 1987-03-23 1987-03-23 High-strength cold-rolled steel sheet for processing and its manufacturing method Expired - Lifetime JPH0830245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068523A JPH0830245B2 (en) 1987-03-23 1987-03-23 High-strength cold-rolled steel sheet for processing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068523A JPH0830245B2 (en) 1987-03-23 1987-03-23 High-strength cold-rolled steel sheet for processing and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS63235449A true JPS63235449A (en) 1988-09-30
JPH0830245B2 JPH0830245B2 (en) 1996-03-27

Family

ID=13376168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068523A Expired - Lifetime JPH0830245B2 (en) 1987-03-23 1987-03-23 High-strength cold-rolled steel sheet for processing and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0830245B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819442A (en) * 1981-07-27 1983-02-04 Nippon Kokan Kk <Nkk> Manufacture of high strength cold rolled steel plate for working by continuous annealing
JPS5852441A (en) * 1981-09-22 1983-03-28 Sumitomo Metal Ind Ltd Production of high strength cold rolled steel plate having good press formability
JPS62112731A (en) * 1985-11-11 1987-05-23 Kawasaki Steel Corp Manufacture of steel sheet hardenable by baking and having superior deep drawability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5819442A (en) * 1981-07-27 1983-02-04 Nippon Kokan Kk <Nkk> Manufacture of high strength cold rolled steel plate for working by continuous annealing
JPS5852441A (en) * 1981-09-22 1983-03-28 Sumitomo Metal Ind Ltd Production of high strength cold rolled steel plate having good press formability
JPS62112731A (en) * 1985-11-11 1987-05-23 Kawasaki Steel Corp Manufacture of steel sheet hardenable by baking and having superior deep drawability

Also Published As

Publication number Publication date
JPH0830245B2 (en) 1996-03-27

Similar Documents

Publication Publication Date Title
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP3292671B2 (en) Hot-rolled steel strip for cold-rolled steel sheet with good deep drawability and aging resistance
JPH024657B2 (en)
US7699947B2 (en) Ultrahigh strength hot-rolled steel and method of producing bands
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JPH08176735A (en) Steel sheet for can and production thereof
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPH03170618A (en) Highly efficient production of cold-rolled steel sheet extremely excellent in workability
JP3293424B2 (en) Manufacturing method of non-age steel non-aging ultra low carbon cold rolled steel sheet
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JPS63235449A (en) High tensile cold rolled steel plate for working and its production
JPH06256901A (en) High tensile strength cold rolled steel sheet for deep drawing and its production
JPH0452229A (en) Highly efficient production of cold rolled steel sheet extremely excellent in workability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPH10152728A (en) Production of cold rolled steel sheet excellent in workability and surface property
KR100325707B1 (en) The hot rolled steel with good drawability and ductility and a method of manufacturing thereof
JP3443220B2 (en) Hot rolled steel sheet excellent in deep drawability and method for producing the same
JP3150188B2 (en) Method for manufacturing high-strength cold-rolled steel sheet with excellent deep drawability
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same
JPS63235434A (en) Manufacture of cold-rolled steel sheet for working
JPH0699759B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JPH03199312A (en) Production of high-tensile cold rolled steel sheet for deep drawing
JPS5976827A (en) Production of cold rolled high tensile steel sheet for drawing by continuous annealing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term