JPS63235428A - Manufacture of nonmagnetic material - Google Patents

Manufacture of nonmagnetic material

Info

Publication number
JPS63235428A
JPS63235428A JP6779487A JP6779487A JPS63235428A JP S63235428 A JPS63235428 A JP S63235428A JP 6779487 A JP6779487 A JP 6779487A JP 6779487 A JP6779487 A JP 6779487A JP S63235428 A JPS63235428 A JP S63235428A
Authority
JP
Japan
Prior art keywords
corrosion resistance
final
grain size
steel
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6779487A
Other languages
Japanese (ja)
Inventor
Morinori Kamio
守則 神尾
Tamio Toe
東江 民夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP6779487A priority Critical patent/JPS63235428A/en
Publication of JPS63235428A publication Critical patent/JPS63235428A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Abstract

PURPOSE:To manufacture a nonmagnetic material having high hardness, excellent corrosion resistance and superior press workability, by subjecting a high-Mn steel with a specific composition to hot rolling and then to final cold rolling at a specific draft and regulating crystalline grains by means of final annealing. CONSTITUTION:A steel consisting of, by weight, 0.05-1.0% C, <=1.0% Si, 15-30% Mn, 0.1-30% Ni, 2.0-6.0% Al, <=0.005% S, <=0.05% Ni, <=0.01% O, and the balance Fe with inevitable impurities is hot-rolled and cold-rolled. After the final cold rolling at 25-65% draft, then final annealing is applied so that crystalline grain size is regulated to grain size No.7.0-10.5. Since this steel material is nonmagnetic and has high hardness and superior corrosion resistance, it is useful for manufacturing electron gun parts and guide pins for VTR tape cassettes, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は非磁性で高耐食性が要求されるブラウン管電子
銃用部品又は画像音声記憶装置(VTR)をはじめとす
る磁気装置部品や、VTRテープカセットの案内軸(ガ
イドポール、ガイドピン等)等に用いる材料の製造方法
に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is applicable to components for cathode ray tube electron guns that are non-magnetic and require high corrosion resistance, components for magnetic devices such as video and audio storage devices (VTR), and VTR tapes. This invention relates to a method of manufacturing materials used for guide shafts (guide poles, guide pins, etc.) of cassettes.

[従来の技術] ブラウン管電子銃用部品やVTRテープカセットの案内
軸等の部品は、電子線や磁気テープといった磁気によっ
て影響を受けやすいものを扱う性質上、部品そのものが
非磁性であることが必要である。従って、板や条材から
これらの部品に加工することによって磁性、特に透磁率
が上昇しないことが重要であり、通常70%の加工度で
も透磁率が1.01以下であることが要求されている。
[Prior Art] Parts for cathode ray tube electron guns, guide shafts for VTR tape cassettes, and other parts must be non-magnetic because they handle items that are easily affected by magnetism, such as electron beams and magnetic tape. It is. Therefore, it is important that the magnetism, especially the magnetic permeability, does not increase when processing plates and strips into these parts, and it is usually required that the magnetic permeability is 1.01 or less even at a processing rate of 70%. There is.

また、これらの部品は耐食性が良好なことも必要である
。耐食性が劣る、つまり錆が発生しやすい材料であると
この錆が磁気を帯びて部品の非磁性特性を害する。特に
VTRテープカセットの案内軸の様な部品に用いられる
場合には、磁気テープと接触するために、錆が素地から
剥離して摩耗の起点となりやすい。またこの摩耗が生じ
た場合、ざらにテープに傷をつけることになり著しい欠
陥を生じる。
These parts also need to have good corrosion resistance. If the material has poor corrosion resistance, that is, is prone to rust, the rust will become magnetic and impair the non-magnetic properties of the component. Particularly when used in parts such as guide shafts of VTR tape cassettes, rust tends to peel off from the base material and become a starting point for wear due to contact with the magnetic tape. Furthermore, when this wear occurs, the tape is roughly scratched, resulting in significant defects.

一般に、これらの非磁性材料はプレス成形によって所定
の軸や部品に加工することが多いので、その際の加工性
も必要とされる。この加工性を良好とする主たるものと
して非金属介在物が少ないこと、異方性がないことの2
点が必要である。非金属介在物があると、プレス加工時
、特に絞り加工時に木目状の割れを生じ、製品として致
命的な欠陥となる。又、VTRテープカセットの案内軸
に使用した場合、素地にくらべ、多くの非金属介在物は
非常に硬いため、その部分でテープに傷をつけてしまう
ことになる。異方性も絞り加工時に多く問題になる現象
であり、真円度が出なかったり、著しい耳の発生があっ
たりして加工性悪化の原因となる。
Generally, these non-magnetic materials are often processed into predetermined shafts or parts by press molding, so workability at that time is also required. The two main factors that make this workability good are a small amount of nonmetallic inclusions and no anisotropy.
points are required. If non-metallic inclusions are present, wood grain-like cracks will occur during pressing, especially during drawing, resulting in a fatal defect in the product. Furthermore, when used as a guide shaft for a VTR tape cassette, many of the nonmetallic inclusions are much harder than the base material, so the tape will be damaged by those parts. Anisotropy is also a phenomenon that often causes problems during drawing processing, and causes deterioration of workability due to lack of roundness or the occurrence of significant ears.

従来、これらの用途の材料としては5tlS304L、
5tlS305.30331B、16Cr−14Ni−
Feといったオーステナイトの安定なステンレス鋼が用
いられている。
Conventionally, materials for these applications include 5tlS304L,
5tlS305.30331B, 16Cr-14Ni-
A stable austenitic stainless steel such as Fe is used.

[発明が解決しようとする問題点] 上記従来用いられている材料は、耐食性に優れ、絞り加
工性も良好であるが、加工後も硬さがHV350〜38
0程度にしかならず、また高価なNiを多量に含有して
いるために高コストの材料であり、最近の厳しいコスト
ダウンの要求を満足し得ないものであった。
[Problems to be Solved by the Invention] The conventionally used materials described above have excellent corrosion resistance and good drawing workability, but even after processing, the hardness is HV350-38.
Moreover, it is a high-cost material because it contains a large amount of expensive Ni, and cannot meet the recent strict demands for cost reduction.

本発明者らは、低コストの材料として、まず高Mn鋼に
着目したが、この材料の場合、非磁性特性と、11v4
00以上の高硬度は)qられるが、耐食性が著しく劣り
、電子銃部品やVTRの案内軸に使えるものではないこ
とが分った。またこの材料の場合通常の製造方法では絞
りをはじめとするプレス加工が難しく、製造方法にも問
題があることが分った。
The inventors first focused on high-Mn steel as a low-cost material, but this material has non-magnetic properties and 11v4
Although it has a high hardness of 00 or higher, it has been found to have extremely poor corrosion resistance and cannot be used for electron gun parts or VTR guide shafts. In addition, it was found that this material has problems with the manufacturing method, as it is difficult to perform press processing such as drawing using normal manufacturing methods.

本発明では、高Mn鋼でありながら、高硬度で耐食性の
良い非磁性材料であり、かつ良好なプレス加工性を有す
る材料の製法を確定するものである。
The present invention establishes a manufacturing method for a material that is a high Mn steel, is a non-magnetic material with high hardness and good corrosion resistance, and has good press workability.

[問題点を解決するための手段] 本発明は、重量基準でC: 0.05〜1.0%、Si
 :1.O%以下Mn:15〜30%、Ni:0.1〜
3.0%、AI:2.0〜6.0%、S:0.005%
以下、N:0.05%以下、0:0.01%以下、残部
Fe及び不可避的不純物からなる鋼を熱間圧延後、冷間
圧延と焼鈍をくり返す製造工程において、圧下率25〜
65%の最終冷間圧延後、結晶粒が結晶粒度番号で7.
0〜10.5になる様に最終焼鈍を行うことを特徴とす
る非磁性材料の製造方法である。
[Means for solving the problems] The present invention provides C: 0.05 to 1.0%, Si
:1. 0% or less Mn: 15-30%, Ni: 0.1-
3.0%, AI: 2.0-6.0%, S: 0.005%
Hereinafter, in a manufacturing process in which steel consisting of N: 0.05% or less, 0: 0.01% or less, the balance Fe and unavoidable impurities is hot rolled, cold rolling and annealing are repeated, the rolling reduction is 25~
After final cold rolling of 65%, the grain size is 7.
This is a method for manufacturing a non-magnetic material, characterized by performing final annealing to obtain a magnetic flux of 0 to 10.5.

本発明で用いる鋼の成分範囲の限定理由を述べる。The reason for limiting the composition range of the steel used in the present invention will be described.

C;Cはオーステナイト安定化元素であり、そのために
は0.05%以上必要である。また、1.0%を超えて
含有すると炭化物の析出が著しくプレス加工性を害する
。また耐食性も悪化する。よってその成分範囲を0.0
5〜1.0%とする。
C; C is an austenite stabilizing element, and for this purpose it is required to be present in an amount of 0.05% or more. Moreover, if the content exceeds 1.0%, precipitation of carbides will significantly impair press workability. Corrosion resistance also deteriorates. Therefore, the component range is 0.0
5 to 1.0%.

Si:Siは脱酸目的で添加する。1,0%を超えて含
有するとσ相の析出のおそれがあり、その結果、加工性
を害する。よってその成分範囲を1.0%以下とする。
Si: Si is added for the purpose of deoxidizing. If the content exceeds 1.0%, there is a risk of precipitation of σ phase, which will impair workability. Therefore, its component range is set to 1.0% or less.

Mn :Mnはオースティトを安定にし、非磁性特性を
付与する。そのためには15%以上必要である。また、
30%を超えて含有すると、熱間加工性、冷間加工性が
阻害され割れ発生の原因となる。よってその成分範囲を
15〜30%とする。
Mn: Mn stabilizes austite and imparts non-magnetic properties. For this purpose, 15% or more is required. Also,
If the content exceeds 30%, hot workability and cold workability will be inhibited, causing cracking. Therefore, the component range is set at 15 to 30%.

Ni;Niはオーステナイト安定に必要であり、耐食性
向上にも寄与する。そのためには0.1%以上必要であ
る。また、3.0%を超えて含有しても効果は飽和し、
しかもコストの上昇をまねく。よってその成分範囲を0
.1〜3.0%とする。
Ni: Ni is necessary for stabilizing austenite and also contributes to improving corrosion resistance. For this purpose, 0.1% or more is required. In addition, even if the content exceeds 3.0%, the effect will be saturated,
Moreover, this leads to an increase in costs. Therefore, the component range is 0
.. 1 to 3.0%.

At :Alは耐食性向上のために添加する。十分な耐
食性を1qるには2.0%以上必要である。
At: Al is added to improve corrosion resistance. 2.0% or more is required to achieve sufficient corrosion resistance.

また、6.0%を超えて含有するとフェライト相を形成
し磁性が悪化する。よってその成分範囲を2.0〜6.
0%とする。
Further, if the content exceeds 6.0%, a ferrite phase is formed and the magnetism deteriorates. Therefore, the component range is 2.0 to 6.
Set to 0%.

S;Sは主に介在物の形で材料中に存在する。S: S exists mainly in the form of inclusions in the material.

Sが0.005%より多いと硫化物系介在物が多くなり
、プレス加工において欠陥を生じる。
If S is more than 0.005%, sulfide-based inclusions will increase, causing defects in press working.

よってその成分範囲を0.005%以下とする。Therefore, the range of its components is set to 0.005% or less.

NUNは主にA1との介在物の形で材料中に存在するこ
とか多い。Nが0.05%より多いと窒化物系介在物が
多くなり、プレス加工において欠陥を生じる。また、N
は含有量が増大すると加工によって形成されたマルテン
サイト相の変形能を低下させる。よってその成分範囲を
0.05%以下とする。
NUN often exists in materials mainly in the form of inclusions with A1. If N is more than 0.05%, nitride-based inclusions will increase, causing defects in press working. Also, N
As the content increases, the deformability of the martensitic phase formed by processing decreases. Therefore, the range of its components is set to 0.05% or less.

O;Oは材料中で主に酸化物系介在物として存在する。O: O exists mainly as oxide inclusions in the material.

0.01%を超えて含有すると大型の介在物が著しく増
加し、絞り加工時の割れ原因になる。よってその成分範
囲をo、 oi%以下とする。
If the content exceeds 0.01%, the number of large inclusions will increase significantly, causing cracks during drawing. Therefore, the range of its components is set to below o, oi%.

次に製造工程の説明を行う。Next, the manufacturing process will be explained.

熱間圧延後冷間圧延と焼鈍が適数口くり返されるが、最
終圧延加工での圧下率が25%より小ざい場合、次なる
焼鈍に際し結晶粒の成長が不均一となり、その結果、プ
レス成形時、異方性等の不良の原因となる。一方、圧下
率65%を超えた場合、また強い異方性の原因となる。
After hot rolling, cold rolling and annealing are repeated an appropriate number of times, but if the rolling reduction in the final rolling process is smaller than 25%, the growth of crystal grains will be uneven during the next annealing, and as a result, the pressing It causes defects such as anisotropy during molding. On the other hand, if the rolling reduction exceeds 65%, it also causes strong anisotropy.

よって最終冷間圧延の圧下率は25〜65%とする。Therefore, the reduction ratio in the final cold rolling is set to 25 to 65%.

最終焼鈍において結晶粒が結晶粒度番号で7.0より小
さくした場合、プレス加工時に肌荒れが著しくなり、部
品の外観をそこなう。又、結晶粒番号で10.5より大
きい場合、伸びの回復が十分でなく結果としてプレス加
工時に割れが発生する。よって最終焼鈍による結晶粒度
は粒度番号で7.0〜10.5になる様にする。
If the crystal grain size number is smaller than 7.0 in the final annealing, the surface roughness during press working will be significant and the appearance of the part will be impaired. Further, if the grain number is larger than 10.5, recovery of elongation is not sufficient and as a result, cracks occur during press working. Therefore, the grain size after final annealing is set to be 7.0 to 10.5 in grain size number.

[実施例] 実施例1 第1表に示した組成の鋼を溶製、鋳造後、熱間圧延、酸
洗後、冷間圧延、焼鈍を行い、その後圧下率50%の最
終冷間圧延、最終焼鈍により結晶粒度8.01板厚o、
 5mmの板を得た。
[Example] Example 1 Steel having the composition shown in Table 1 was melted, cast, hot rolled, pickled, cold rolled, and annealed, and then final cold rolled at a rolling reduction of 50%. Grain size 8.01 plate thickness o due to final annealing,
A 5 mm plate was obtained.

この板をビン状に絞り加工し、加工性、硬度、透磁率を
調査した。また、60℃、95%の恒温恒湿槽内で10
0時間保持し、錆の発生の有無を調査した。その結果を
第1表に併記した。
This plate was drawn into a bottle shape and its workability, hardness, and magnetic permeability were investigated. In addition, 10% in a constant temperature and humidity chamber at 60℃ and 95%.
After holding for 0 hours, the presence or absence of rust was investigated. The results are also listed in Table 1.

第1表より明らかな様に本発明例1〜3は加工性も良好
であり、加工後の硬度も高く、また透磁率も十分低く、
耐食性も良好であり電子銃部品用またはVTR用案内軸
用材料として適している。
As is clear from Table 1, Examples 1 to 3 of the present invention have good workability, high hardness after processing, and sufficiently low magnetic permeability.
It also has good corrosion resistance and is suitable as a material for electron gun parts or VTR guide shafts.

一方、比較例4はCが低いため、硬さが不十分であり、
透磁率も悪い。またSが高く、加工時に割れが発生した
。比較例5はMnが低く、加工性が十分ではなく透磁率
が悪い。
On the other hand, Comparative Example 4 has insufficient hardness due to low C.
Magnetic permeability is also poor. In addition, the S content was high and cracks occurred during processing. Comparative Example 5 has low Mn, insufficient workability, and poor magnetic permeability.

比較例6はNiが低いため、オーステナイトが十分安定
ではなく、加工性、透磁率を害し、また耐食性も悪い。
In Comparative Example 6, since the Ni content is low, the austenite is not sufficiently stable, which impairs workability and magnetic permeability, and the corrosion resistance is also poor.

比較例7はA1が低いため耐食性が悪い。比較例8〜9
はそれぞれ01Nが高いため加工時に絞り割れが発生し
た。
Comparative Example 7 has low A1 and therefore has poor corrosion resistance. Comparative examples 8-9
Because the 01N was high, drawing cracks occurred during processing.

比較例10は303316であるが、硬度が不十分であ
り、透磁率も悪い。
Comparative Example 10 is 303316, but has insufficient hardness and poor magnetic permeability.

実施例2 第1表における本発明例1の材料を用い、第2表に示し
た条件で最終冷間圧延、最終力鈍を行い、板厚0.5m
mの板をLその後のフレスによる絞り性を調査した。そ
の結果を身2表に併記する。
Example 2 Using the material of Invention Example 1 in Table 1, final cold rolling and final stress dulling were performed under the conditions shown in Table 2 to obtain a sheet with a thickness of 0.5 m.
The drawability of the sheet L was examined using a press. The results are also listed in Table 2.

第2表より明らかなとおり、本発明例1へ4は絞り加工
性に優れている。一方、比較仔5は最終冷間圧延時の圧
下率が高いため異j性が生じ、比較例6は圧下率が低い
ため混右となり、異方性および肌荒れが生じた。比郭例
7は結晶粒度が大きいく粒度番号が小さく”ために肌荒
れを生じ、比較例8は十分に再村晶していないため割れ
が生じた。
As is clear from Table 2, Examples 1 to 4 of the present invention are excellent in drawing workability. On the other hand, Comparative Example 5 had a high rolling reduction during final cold rolling, resulting in anisotropy, and Comparative Example 6 had a low rolling reduction, resulting in mixed right, resulting in anisotropy and rough skin. Comparison Example 7 had a large crystal grain size and a small grain size number, resulting in rough skin, and Comparative Example 8 had cracks because it was not re-crystallized sufficiently.

第2表 と 「 七 紘) [効 果] 以上の様に本発明は、非磁性、高硬度で耐食性の良い材
料の製造方法を提供するものであり、電子銃部品やVT
Rテープカセット等のガイドピンを製造するに際して極
めて有効である。
Table 2 and "Nanahiro" [Effects] As described above, the present invention provides a method for manufacturing a material that is non-magnetic, has high hardness, and has good corrosion resistance.
It is extremely effective in manufacturing guide pins for R-tape cassettes, etc.

Claims (1)

【特許請求の範囲】[Claims] 重量基準でC:0.05〜1.0%、Si:1.0%以
下Mn:15〜30%、Ni:0.1〜3.0%、Al
:2.0〜6.0%、S:0.005%以下、N:0.
05%以下、O:0.01%以下、残部Fe及び不可避
的不純物からなる鋼を熱間圧延後、冷間圧延と焼鈍をく
り返す製造工程において、圧下率25〜65%の最終冷
間圧延後、結晶粒が結晶粒度番号で7.0〜10.5に
なる様に最終焼鈍を行うことを特徴とする非磁性材料の
製造方法。
Based on weight, C: 0.05-1.0%, Si: 1.0% or less Mn: 15-30%, Ni: 0.1-3.0%, Al
: 2.0 to 6.0%, S: 0.005% or less, N: 0.
After hot rolling steel consisting of O: 0.05% or less, O: 0.01% or less, balance Fe and unavoidable impurities, the final cold rolling at a reduction rate of 25 to 65% is performed in a manufacturing process that repeats cold rolling and annealing. A method for producing a non-magnetic material, which is then subjected to final annealing so that the crystal grains have a grain size number of 7.0 to 10.5.
JP6779487A 1987-03-24 1987-03-24 Manufacture of nonmagnetic material Pending JPS63235428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6779487A JPS63235428A (en) 1987-03-24 1987-03-24 Manufacture of nonmagnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6779487A JPS63235428A (en) 1987-03-24 1987-03-24 Manufacture of nonmagnetic material

Publications (1)

Publication Number Publication Date
JPS63235428A true JPS63235428A (en) 1988-09-30

Family

ID=13355213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6779487A Pending JPS63235428A (en) 1987-03-24 1987-03-24 Manufacture of nonmagnetic material

Country Status (1)

Country Link
JP (1) JPS63235428A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202643A (en) * 1990-11-30 1992-07-23 Nkk Corp Stainless steel having high strength and high toughness and its production
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability
US6761780B2 (en) 1999-01-27 2004-07-13 Jfe Steel Corporation Method of manufacturing a high Mn non-magnetic steel sheet for cryogenic temperature use
EP2431492A2 (en) * 2009-04-28 2012-03-21 Hyundai Steel Company High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same
US11414721B2 (en) 2016-05-24 2022-08-16 Arcelormittal Method for the manufacture of TWIP steel sheet having an austenitic matrix

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202643A (en) * 1990-11-30 1992-07-23 Nkk Corp Stainless steel having high strength and high toughness and its production
US5431753A (en) * 1991-12-30 1995-07-11 Pohang Iron & Steel Co. Ltd. Manufacturing process for austenitic high manganese steel having superior formability, strengths and weldability
US6761780B2 (en) 1999-01-27 2004-07-13 Jfe Steel Corporation Method of manufacturing a high Mn non-magnetic steel sheet for cryogenic temperature use
EP2431492A2 (en) * 2009-04-28 2012-03-21 Hyundai Steel Company High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same
EP2431492A4 (en) * 2009-04-28 2014-01-22 Hyundai Steel Co High manganese nitrogen-containing steel sheet having high strength and high ductility, and method for manufacturing same
US11414721B2 (en) 2016-05-24 2022-08-16 Arcelormittal Method for the manufacture of TWIP steel sheet having an austenitic matrix

Similar Documents

Publication Publication Date Title
JPS62202024A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties
JPS61117215A (en) Manufacture of grain oriented magnetic steel sheet of low iron loss
JPS62185828A (en) Manufacture of frame material for shadow mask
JPS63235428A (en) Manufacture of nonmagnetic material
CN107406936B (en) Orientation electromagnetic steel plate and its manufacturing method
JP3939568B2 (en) Nonmagnetic stainless steel with excellent workability
JPS63235429A (en) Manufacture of nonmagnetic material
JP3375998B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2564994B2 (en) Soft magnetic steel material excellent in direct current magnetization characteristics and corrosion resistance and method for producing the same
Flowers et al. Orientation distributions in primary recrystallized textures of 3% Si-Fe
EP0468819B1 (en) Method for manufacturing an oriented silicon steel sheet having improved magnetic flux density
JPH055126A (en) Production of nonoriented silicon steel sheet
EP4108789A1 (en) Hot-rolled steel sheet for non-oriented electromagnetic steel sheets
JP4132252B2 (en) High-strength cold-rolled steel sheet that is resistant to corrosion and has excellent geomagnetic shielding properties, and a method for producing the same
JPS63195224A (en) Manufacture of nonmagnetic material
JP4180685B2 (en) High strength electroplating plate, electroplated steel plate excellent in geomagnetic shielding and plating adhesion, and manufacturing method thereof
JPS63259026A (en) Manufacture of nonmagnetic material
JP2556599B2 (en) Method for manufacturing corrosion-resistant soft magnetic steel sheet
JP4258163B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JPH0480347A (en) Stainless steel excellent in corrosion resistance
JP2000064000A (en) Soft magnetic stainless steel sheet and its production
JPS60255924A (en) Manufacture of steel plate used for magnetic shielding member
JP3685282B2 (en) Soft magnetic stainless steel with excellent maximum permeability
JP2634801B2 (en) High magnetic flux density directional silicon iron plate with excellent iron loss characteristics