JPS63234959A - Ultrasonic remedy apparatus - Google Patents

Ultrasonic remedy apparatus

Info

Publication number
JPS63234959A
JPS63234959A JP62067519A JP6751987A JPS63234959A JP S63234959 A JPS63234959 A JP S63234959A JP 62067519 A JP62067519 A JP 62067519A JP 6751987 A JP6751987 A JP 6751987A JP S63234959 A JPS63234959 A JP S63234959A
Authority
JP
Japan
Prior art keywords
ultrasonic
sound pressure
transmitter
pulse
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62067519A
Other languages
Japanese (ja)
Other versions
JPH0710263B2 (en
Inventor
達夫 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP62067519A priority Critical patent/JPH0710263B2/en
Priority to US07/167,356 priority patent/US4907573A/en
Publication of JPS63234959A publication Critical patent/JPS63234959A/en
Publication of JPH0710263B2 publication Critical patent/JPH0710263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Surgical Instruments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波衝撃波を患部に集中照射することによ
り、例えば腎臓結石等の患部の破壊等を行なって治療す
るための超音波治療装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an ultrasonic treatment device for destroying and treating an affected area, such as a kidney stone, by irradiating the affected area with concentrated ultrasonic shock waves. Regarding.

〔従来の技術〕[Conventional technology]

超音波治療装置の一例としての結石破壊装置は、例えば
特開昭60−145131号公報等において公知である
A stone destruction device as an example of an ultrasonic treatment device is known, for example, in Japanese Patent Application Laid-open No. 145131/1983.

第9図は上記装置における送波器の概略構成を示す断面
図である。図示のように本送波器は、多数の圧電素子1
を球面状をなすようにモザイク状に並べることにより、
衝撃波発生体2を構成し、この衝撃波発生体2を水等の
媒質を充填した液体封入バッグ3を介して生体4に接触
させ、腎臓5内に存在している患部すなわち治療対象物
である結石6に対し、上記多数の圧電素子1からの超音
波衝撃波を集中させて結石6を破壊するものとなってい
る。
FIG. 9 is a sectional view showing a schematic configuration of a transmitter in the above device. As shown in the figure, this transmitter includes a large number of piezoelectric elements 1
By arranging them in a spherical mosaic pattern,
A shock wave generator 2 is configured, and the shock wave generator 2 is brought into contact with a living body 4 via a liquid-sealed bag 3 filled with a medium such as water, and the stone is removed from the affected area in the kidney 5, that is, the object to be treated. 6, the stone 6 is destroyed by concentrating the ultrasonic shock waves from the large number of piezoelectric elements 1.

超音波衝撃波は圧電素子1に対し、図示しない衝撃波発
生回路からのパルス状電圧を印加する事により発生する
。なお結石6の発見および位置確認のために、メカニカ
ルスキャン型の超音波探触子7が衝撃波発生体2の中央
部に装着されており、かつ同探触子7には図示しない超
音波観測装置が接続されるようになっている。  − 〔発明が解決しようとする問題点〕 上記第9図に示すような装置における圧電素子1として
は、通常の場合、変換効率等を考慮してPZT (チタ
ン酸ジルコン酸鉛)等のセラミック振動子が使用される
。ところが、セラミック振動子は一般にQが高い為に、
例えば、パルスで駆動しても発生する超音波の音圧波形
は第10図に示す様に零の音圧レベルを中心として振動
する継続時間の長い波形Wとなる。このような振動波形
を有する信号が、前述したように収束されて生体中に入
ると、負の音圧が大きい時には、生体中でキャビテーシ
ョンが発生し、正常な生体組織を破壊するおそれがある
。また、収束度も通常のパルスの時に比べて悪くなる。
The ultrasonic shock wave is generated by applying a pulse voltage to the piezoelectric element 1 from a shock wave generation circuit (not shown). In order to discover and confirm the location of the calculus 6, a mechanical scanning type ultrasonic probe 7 is attached to the center of the shock wave generator 2, and an ultrasonic observation device (not shown) is attached to the probe 7. is now connected. - [Problems to be Solved by the Invention] The piezoelectric element 1 in the device shown in FIG. child is used. However, since ceramic resonators generally have a high Q,
For example, the sound pressure waveform of an ultrasonic wave generated even when driven by a pulse is a waveform W with a long duration that oscillates around a zero sound pressure level as shown in FIG. 10. When a signal having such a vibration waveform is converged and enters a living body as described above, when the negative sound pressure is large, cavitation may occur in the living body and normal living tissue may be destroyed. In addition, the degree of convergence is also worse than when using normal pulses.

そこで、従来の装置においてはセラミック振動子の裏面
にダンピング材を張り合わせ、振動子のQを極端に小さ
くして広帯域化をはかる事により、′!JS11図(a
)(b)に示す様に、同図(a)の駆動パルス波形にほ
ぼ相似で、かつ負の音圧の小さい同図(b)の振動波形
を作り出すといった工夫がなされている。また別の対策
例゛として、第12図に示す様な振動子のインピーダン
ス特性8が共振周波数fc以下のフラットな部分(広帯
域の部分)9を使用してパルス駆動を行ない、理想波形
に近い振動波形を実現させているものもある。
Therefore, in the conventional device, a damping material is pasted on the back side of the ceramic resonator, and the Q of the resonator is extremely reduced in order to widen the band. JS11 diagram (a
) As shown in (b), an attempt has been made to create the vibration waveform shown in (b) in the same figure, which is almost similar to the drive pulse waveform shown in (a) in the same figure and has a small negative sound pressure. As another example of countermeasures, pulse driving is performed using a flat part (broadband part) 9 where the impedance characteristic 8 of the vibrator is below the resonance frequency fc as shown in Fig. Some even realize waveforms.

ところが上記二側のうち、前者においてはダンピング材
を張り合わせることにより広帯域化をはかっている為、
変換効率が非常に悪くなるという問題がある。また後者
においては振動子インピーダンスが高くてかつQの小さ
い領域を使用するものであるため、前者と同様に変換効
率が悪いという問題があった。
However, of the two sides mentioned above, the former aims to widen the band by pasting damping material together, so
There is a problem that the conversion efficiency becomes extremely poor. Further, in the latter case, since a region in which the vibrator impedance is high and Q is small is used, there is a problem of poor conversion efficiency, as in the former case.

そこで本発明は、負の音圧が小さく収束度の高い振動波
形の超音波衝撃波を発生させ得、生体への安全性が高く
かつ適確な治療を施し得る上、変換効率が高く消費電力
が少なくて済む、超音波治療装置を提供することを目的
とする。
Therefore, the present invention can generate an ultrasonic shock wave with a vibration waveform with low negative sound pressure and a high degree of convergence, and can provide highly safe and accurate treatment to living organisms, as well as have high conversion efficiency and low power consumption. The purpose of the present invention is to provide an ultrasonic treatment device that requires less use.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記問題点を解決し目的を達成するたに次のよ
うな手段を講じた。すなわち、超音波送波器を構成する
如く配列された複数の振動子の各共振周波数を、前記超
音波送波器の中心軸からの距離に応じて振動子ごとに異
ならせ、一定周波数範囲に分散配置するようにした。
The present invention has taken the following measures in order to solve the above problems and achieve the objectives. That is, the resonance frequency of each of the plurality of transducers arranged to constitute an ultrasonic transmitter is varied for each transducer according to the distance from the central axis of the ultrasonic transmitter, and the resonant frequency is set within a constant frequency range. It was arranged in a distributed manner.

【作用〕[Effect]

、  このような手段を講じたことにより、振動子のQ
を高く設定して変換効率を高く保ったまま、負の音圧の
小さい振動波形の発生が可能となる。その結果、生体中
でのキャビテーションが発生しにくくなり、生体への安
全性を高める事ができる。
By taking such measures, the Q of the resonator
It is possible to generate a vibration waveform with low negative sound pressure while keeping the conversion efficiency high by setting it high. As a result, cavitation in the living body is less likely to occur, and safety to the living body can be improved.

また、収束点における収束度も高くなり、患部を適確に
治療し得ると共に、治療部以外への影響が低下するため
、更に安全性を高める事ができる。
Furthermore, the degree of convergence at the convergence point is increased, allowing the affected area to be treated accurately and the influence on areas other than the treated area being reduced, making it possible to further improve safety.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す図で超音波送波器10
の正面図である。図示の如くこの超音波送波器10は、
複数のリング状振動子11.12〜が球面状に配列され
たものとなっている。上記各振動子の共振周波数fcは
、第2図に示すように超音波送波器10の中心から外部
方向に向かって距離ノが増大するのに伴って、振動子配
列個数(配列面積)に対応して漸増するように分散配置
されている。この様な構成の送波器10をパルスで励振
させ、超音波衝撃波を生体中において収束させた場合、
収束点における音圧分布は次のようになる。
FIG. 1 is a diagram showing an embodiment of the present invention, and shows an ultrasonic transmitter 10.
FIG. As shown in the figure, this ultrasonic transmitter 10 is
A plurality of ring-shaped vibrators 11 and 12 are arranged in a spherical shape. As shown in FIG. 2, the resonant frequency fc of each vibrator increases as the distance from the center of the ultrasonic transmitter 10 increases toward the outside. They are distributed in a correspondingly increasing manner. When the transmitter 10 having such a configuration is excited with pulses and the ultrasonic shock waves are focused in the living body,
The sound pressure distribution at the convergence point is as follows.

第3図は超音波衝撃波の収束点における音圧分布を考察
するために示した装置の概略図である。
FIG. 3 is a schematic diagram of an apparatus shown for examining the sound pressure distribution at the convergence point of ultrasonic shock waves.

なお説明を簡単にする為に、第3図においては振動子1
1.12〜が一次元的に配列されているものとする。図
中の符号13はパルス発生器であり、14は発生した超
音波の位相が収束点で一致する様に微調整を行なう為の
遅延線である。
In order to simplify the explanation, in Fig. 3, the oscillator 1 is
1.12~ are arranged one-dimensionally. Reference numeral 13 in the figure is a pulse generator, and 14 is a delay line for making fine adjustments so that the phases of the generated ultrasonic waves coincide at the convergence point.

今、送波器10の中心軸15、すなわち振動子11、 
11−から発生させられる超音波パルスの中心軸の方向
の空間周波数成分子Aが第4図に示す様に、直線ステッ
プ状にn個分布しているとすると、収束点における中心
軸15の方向の音圧分布P (x)は、 sin n  yrΔrt sln 、Δrt″5ln2π(fL+−Δf)xで示
される。なおfLはステップ周波数のうち最も低い周波
数を示し、Δfは周波数のステラ・ブ幅を示す。
Now, the central axis 15 of the transmitter 10, that is, the vibrator 11,
Assuming that n spatial frequency component elements A in the direction of the central axis of the ultrasonic pulse generated from 11- are distributed in a linear step shape as shown in FIG. 4, the direction of the central axis 15 at the convergence point is The sound pressure distribution P (x) is expressed as sin n yrΔrt sln , Δrt″5ln2π(fL+−Δf)x. Note that fL indicates the lowest frequency among the step frequencies, and Δf indicates the stellar width of the frequency. show.

上式によると、収束点の音圧分布は第5図に示す様なも
のとなる。すなわち負の音圧が小さい上、パルス幅が比
較的小さく収束度が高いものとなる。
According to the above equation, the sound pressure distribution at the convergence point is as shown in FIG. In other words, the negative sound pressure is small, the pulse width is relatively small, and the degree of convergence is high.

次に中心軸15と垂直な方向、つまり方位方向の音圧分
布について考察する。振動子11.12〜から発生させ
られる超音波パルスの方位方向における空間周波数成分
子Bは、近似的に第6図に示す様な直線ステップ状の周
波数にて表わされる。
Next, the sound pressure distribution in the direction perpendicular to the central axis 15, that is, in the azimuth direction will be considered. The spatial frequency component B in the azimuth direction of the ultrasonic pulses generated from the transducers 11, 12, etc. is approximately represented by a linear step frequency as shown in FIG.

第6図に示すように、送波器10の中心にある振動子の
方位方向の空間周波数成分子oは零となる。
As shown in FIG. 6, the spatial frequency component o in the azimuth direction of the vibrator located at the center of the transmitter 10 is zero.

つまり、収束点における方位方向の音圧分布は上式にf
 L−0を代入したものとなる。これを図で表わすと第
7図の様になる。すなわち負の音圧がやはり小さく、パ
ルス幅も狭いものとなる。
In other words, the sound pressure distribution in the azimuth direction at the convergence point is expressed as f
This is obtained by substituting L-0. This can be expressed graphically as shown in Figure 7. That is, the negative sound pressure is still small and the pulse width is also narrow.

なお各振動子11.12〜の共振周波数を分散配置する
場合において、励振パルスの振幅や振動子の配列個数に
重みづけをする事により、超音波振動波形の負の音圧を
更に減少させる事ができる。
In addition, when distributing the resonant frequencies of each transducer 11, 12, etc., the negative sound pressure of the ultrasonic vibration waveform can be further reduced by weighting the amplitude of the excitation pulse and the number of arranged transducers. Can be done.

例えば、第8図(a)に示す様に、低い周波、数成分の
振幅を大きくすると、同図(b−)のようにパルス幅は
広くなるが、負の音圧が更に抑制された振動波形を得る
ことができる。
For example, as shown in Figure 8(a), if the amplitude of the low frequency and several components is increased, the pulse width will become wider as shown in Figure 8(b-), but the negative sound pressure will be further suppressed. Waveforms can be obtained.

なお本発明は前記実施例に限定されるものではなく、本
発明の要旨を逸脱しない範囲で種々変形実施可能である
のは勿論である。
Note that the present invention is not limited to the embodiments described above, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば次のような効果を奏する。 According to the present invention, the following effects are achieved.

■収束点における超音波衝撃波の振動波形が、負の音圧
の小さいものとなる為、生体中でのキャビテーションの
発生がなくなり、生体への安全性が高まる。
■Since the vibration waveform of the ultrasonic shock wave at the convergence point has a small negative sound pressure, cavitation does not occur in the living body, increasing safety for the living body.

■収束点における超音波衝撃波の振動波形がパルス幅の
狭いものとなるので、超音波衝撃波の治療部への収束度
が高くなり、適確な治療を施し得る上、他の生体組織へ
の安全性が高まる。
■The vibration waveform of the ultrasonic shock wave at the convergence point has a narrow pulse width, so the degree of convergence of the ultrasonic shock wave to the treatment area is high, allowing for accurate treatment and safety for other living tissues. Sexuality increases.

■Qの高い振動子が使用できるので変換効率が良く、低
消費電力となり、装置が簡単になる。
■Since a high-Q resonator can be used, conversion efficiency is high, power consumption is low, and the device is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図(a)(b)は本発明の一実施例を示す
図で、第1図は超音波送波器の正面図、第2図は各振動
子の共振周波数の分散配置状態を示す図、第3図は超音
波衝撃波の収束点における音圧分布を考察するために示
した装置の概略図、第4図は超音波パルスの中心軸方向
の空間周波数成分の分布状態を示す図、第5図は第4図
に対応した収束点の音圧分布を示す図、第6図は超音波
パルスの中心軸とは垂直な方位方向の空間周波数成分の
分布状態を示す図、第7図は第6図に対応した収束点の
音圧分布を示す図、第8図(a)(b)は低周波数帯域
の振幅を大きく変調させた場合の超音波振動波形を示す
図である。第9図〜第12図は従来技術を示す図で、第
9図は超音波送波器の断面図、第10図〜第12図は従
来技術の欠点を説明するための図である。 10・・・超音波送波器、11.12〜・・・複数のリ
ング状振動子、13・・・パルス発生器、14・・・遅
延線、15・・・送波器の中心軸、fc・・・共振周波
数、fA・・・中心軸方向の空間周波数成分、fB・・
・方位方向の空間周波数成分、fL・・・最低周波数、
ノ・・・送波器中心からの距離。 出願人代理人 弁理士 坪井  淳 第1図     第2図 1ム 第 7 図 第 9 図 第10図 第11図 第、12図 手続ネ甫正書 昭和6有4°i0日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 特願昭62−67519号 2、発明の名称 超音波治療装置 3、補正をする者 事件との関係 特許出願人 (037)オリンパス光学工業株式会社4、代理人 東京都千代田区霞が関3丁目7番2号tj&Eビル〒1
00  電話<)3(502> 3181 (大代表)
6、補正の対象 明りIl書全文 7、補正の内容
Figures 1 to 8 (a) and (b) are diagrams showing one embodiment of the present invention. Figure 1 is a front view of an ultrasonic transmitter, and Figure 2 is a dispersion of the resonant frequency of each vibrator. Figure 3 is a schematic diagram of the device for considering the sound pressure distribution at the convergence point of the ultrasonic shock wave, and Figure 4 is the distribution of spatial frequency components in the central axis direction of the ultrasonic pulse. Figure 5 is a diagram showing the sound pressure distribution at the convergence point corresponding to Figure 4. Figure 6 is a diagram showing the distribution of spatial frequency components in the azimuth direction perpendicular to the central axis of the ultrasonic pulse. , Fig. 7 is a diagram showing the sound pressure distribution at the convergence point corresponding to Fig. 6, and Fig. 8 (a) and (b) are diagrams showing the ultrasonic vibration waveform when the amplitude of the low frequency band is greatly modulated. It is. 9 to 12 are diagrams showing the prior art. FIG. 9 is a sectional view of an ultrasonic transmitter, and FIGS. 10 to 12 are diagrams for explaining the drawbacks of the prior art. DESCRIPTION OF SYMBOLS 10... Ultrasonic wave transmitter, 11. 12... Plural ring-shaped transducers, 13... Pulse generator, 14... Delay line, 15... Central axis of transmitter, fc...resonance frequency, fA...spatial frequency component in the central axis direction, fB...
・Spatial frequency component in the azimuth direction, fL...lowest frequency,
No...Distance from the center of the transmitter. Applicant's representative Patent attorney Atsushi Tsuboi Figure 1 Figure 2 Figure 1 Mo Figure 7 Figure 9 Figure 10 Figure 11, Figure 12 Procedures Book 1939 4° i 0 Commissioner of the Patent Office Black 1) Yu Akira 1, Indication of the case Patent Application No. 62-67519 2, Name of the invention Ultrasonic treatment device 3, Person making the amendment Relationship to the case Patent applicant (037) Olympus Optical Industry Co., Ltd. 4, Agent Tokyo TJ&E Building 1, 3-7-2 Kasumigaseki, Chiyoda-ku, Miyako
00 Telephone<)3(502>3181 (main representative)
6. Illustrated text of the amendment 7. Contents of the amendment

Claims (1)

【特許請求の範囲】[Claims] 超音波送波器を構成する如く配列された複数の振動子の
各共振周波数を、前記超音波送波器の中心軸からの距離
に応じて各振動子ごとに異ならせ、一定周波数範囲に分
散配置したことを特徴とする超音波治療装置。
The resonant frequencies of the plurality of transducers arranged to form an ultrasonic transmitter are varied for each transducer according to the distance from the central axis of the ultrasonic transmitter, and distributed over a constant frequency range. An ultrasonic treatment device characterized in that:
JP62067519A 1987-03-21 1987-03-21 Ultrasonic therapy equipment Expired - Fee Related JPH0710263B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62067519A JPH0710263B2 (en) 1987-03-21 1987-03-21 Ultrasonic therapy equipment
US07/167,356 US4907573A (en) 1987-03-21 1988-03-14 Ultrasonic lithotresis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067519A JPH0710263B2 (en) 1987-03-21 1987-03-21 Ultrasonic therapy equipment

Publications (2)

Publication Number Publication Date
JPS63234959A true JPS63234959A (en) 1988-09-30
JPH0710263B2 JPH0710263B2 (en) 1995-02-08

Family

ID=13347306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067519A Expired - Fee Related JPH0710263B2 (en) 1987-03-21 1987-03-21 Ultrasonic therapy equipment

Country Status (1)

Country Link
JP (1) JPH0710263B2 (en)

Also Published As

Publication number Publication date
JPH0710263B2 (en) 1995-02-08

Similar Documents

Publication Publication Date Title
US4907573A (en) Ultrasonic lithotresis apparatus
US3198489A (en) Compound ultrasonic transducer and mounting means therefor
RU2201169C2 (en) Ultrasonic device for carrying out neurosurgical treatment
US6626833B2 (en) Ultrasonic diagnosis system
US4991151A (en) Elastic pulse generator having a desired predetermined wave form
US6292435B1 (en) Circuit and method for exciting a micro-machined transducer to have low second order harmonic transmit energy
JP2004510514A (en) Ultrasound diagnostic imaging of non-linear intermodulation components and harmonic components
JPS62236540A (en) Shock wave source
US5317229A (en) Pressure pulse source operable according to the traveling wave principle
JPS63234959A (en) Ultrasonic remedy apparatus
US4840166A (en) Shock wave source with increased degree of effectiveness
JPS6125436B2 (en)
US3019661A (en) Ultrasonic transducer and impedance matching device therefor
SU931236A1 (en) Method of exciting high-frequency elastic oscillations in structures
JP3352632B2 (en) Ultrasonic irradiation device
JPH02215453A (en) Ultrasonic treating device
SU1630854A1 (en) Ultrasonic focusing device
JP3558494B2 (en) Acoustic transducer for living body
JP2004312394A (en) Parametric speaker and electroacoustic transducer therefor
SU449713A1 (en) Bone phone for hearing and hearing aid
JPH0614977A (en) Ultrasonic sterilizing method and device therefor
JPS63260548A (en) Ultrasonic treatment apparatus
JP4547580B2 (en) Ultrasonic irradiation device
JP3918966B2 (en) Cavitation detection method
JPH10201768A (en) Ultrasonic treatment device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees