JPH0710263B2 - Ultrasonic therapy equipment - Google Patents

Ultrasonic therapy equipment

Info

Publication number
JPH0710263B2
JPH0710263B2 JP62067519A JP6751987A JPH0710263B2 JP H0710263 B2 JPH0710263 B2 JP H0710263B2 JP 62067519 A JP62067519 A JP 62067519A JP 6751987 A JP6751987 A JP 6751987A JP H0710263 B2 JPH0710263 B2 JP H0710263B2
Authority
JP
Japan
Prior art keywords
ultrasonic
sound pressure
pulse
central axis
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62067519A
Other languages
Japanese (ja)
Other versions
JPS63234959A (en
Inventor
達夫 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optic Co Ltd filed Critical Olympus Optic Co Ltd
Priority to JP62067519A priority Critical patent/JPH0710263B2/en
Priority to US07/167,356 priority patent/US4907573A/en
Publication of JPS63234959A publication Critical patent/JPS63234959A/en
Publication of JPH0710263B2 publication Critical patent/JPH0710263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超音波衝撃波を患部に集中照射することによ
り、例えば腎臓結石等の患部の破壊等を行なって治療す
るための超音波治療装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to an ultrasonic treatment apparatus for intensively irradiating an affected area with an ultrasonic shock wave to destroy and treat an affected area such as a kidney stone. Regarding

〔従来の技術〕[Conventional technology]

超音波治療装置の一例としての結石破壊装置は、例えば
特開昭60−145131号公報等において公知である。
A calculus breaking device as an example of an ultrasonic therapy device is known in, for example, Japanese Patent Application Laid-Open No. 60-145131.

第9図は上記装置における送波器の概略構成を示す断面
図である。図示のように本送波器は、多数の圧電素子1
を球面状をなすようにモザイク状に並べることにより、
衝撃波発生体2を構成し、この衝撃波発生体2を水等の
媒質を充填した液体封入バック3を介して生体4に接触
させ、腎臓5内に存在している患部すなわち治療対象物
である結石6に対し、上記多数の圧電素子1からの超音
波衝撃波を集中させて結石6を破壊するものとなってい
る。
FIG. 9 is a sectional view showing a schematic configuration of a wave transmitter in the above apparatus. As shown in the figure, this transmitter has a large number of piezoelectric elements 1.
By arranging in a mosaic shape to form a spherical surface,
A shock wave generator 2 is formed, and the shock wave generator 2 is brought into contact with a living body 4 via a liquid-filled bag 3 filled with a medium such as water, and a diseased part existing in the kidney 5, that is, a stone to be treated. 6, the ultrasonic shock waves from the large number of piezoelectric elements 1 are concentrated to destroy the calculus 6.

超音波衝撃波は圧電素子1に対し、図示しない衝撃波発
生回路からのパルス状電圧を印加する事により発生す
る。なお結石6の発見および位置確認のために、メカニ
カルスキャン型の超音波探触子7が衝撃波発生体2の中
央部に装着されており、かつ同探触子7には図示しない
超音波観測装置が接続されるようになっている。
The ultrasonic shock wave is generated by applying a pulsed voltage from a shock wave generating circuit (not shown) to the piezoelectric element 1. A mechanical scan type ultrasonic probe 7 is attached to the central portion of the shock wave generator 2 in order to find and confirm the position of the calculus 6, and the ultrasonic wave observation device (not shown) is attached to the probe 7. Are connected.

〔発明が解決しようとする問題点〕 上記第9図に示すような装置における圧電素子1として
は、通常の場合、変換効率等を考慮してPZT(チタン酸
ジルコン酸鉛)等のセラミック振動子が使用される。と
ころが、セラミック振動子は一般にQが高い為に、例え
ば、パルスで駆動しても発生する超音波の音圧波形は第
10図に示す様に零の音圧レベルを中心として振動する継
続時間の長い波形Wとなる。このような振動波形を有す
る信号が、前述したように収束されて生体中に入ると、
負の音圧が大きい時には、生体中でキャビテーションが
発生し、正常な生体組織を破壊するおそれがある。ま
た、収束度も通常のパルスの時に比べて悪くなる。
[Problems to be Solved by the Invention] As the piezoelectric element 1 in the device shown in FIG. 9, a ceramic vibrator such as PZT (lead zirconate titanate) is usually used in consideration of conversion efficiency. Is used. However, since a ceramic vibrator generally has a high Q, for example, even if it is driven by a pulse, the sound pressure waveform of the ultrasonic wave generated is
As shown in FIG. 10, the waveform W has a long duration that oscillates around the sound pressure level of zero. When a signal having such an oscillating waveform is converged into the living body as described above,
When the negative sound pressure is large, cavitation may occur in the living body and destroy normal living tissue. Also, the degree of convergence is worse than that of the normal pulse.

そこで、従来の装置においてはセラミック振動子の裏面
にダンピング材を張り合わせ、振動子のQを極端に小さ
くして広帯域化をはかる事により、第11図(a)(b)
に示す様に、同図(a)の駆動パルス波形にほぼ相似
で、かつ負の音圧の小さい同図(b)の振動波形を作り
出すといった工夫がなされている。また別の対策例とし
て、第12図に示す様な振動子のインピーダンス特性8が
共振周波数fc以下のフラットな部分(広帯域の部分)9
を使用してパルス駆動を行ない、理想波形に近い振動波
形を実現させているものもある。
Therefore, in the conventional device, a damping material is attached to the back surface of the ceramic vibrator to make the Q of the vibrator extremely small to achieve a wide band, and thus, FIG. 11 (a) (b).
As shown in FIG. 7, the device is devised so as to produce a vibration waveform of FIG. 9B which is substantially similar to the drive pulse waveform of FIG. 9A and has a small negative sound pressure. As another countermeasure example, the impedance characteristic 8 of the vibrator as shown in FIG. 12 has a flat portion (wideband portion) 9 below the resonance frequency fc.
There is also one that realizes a vibration waveform close to an ideal waveform by performing pulse drive using.

ところが上記二例のうち、前者においてはダンピング材
を張り合わせることにより広帯域化をはかっている為、
変換効率が非常に悪くなるという問題がある。また後者
においては振動子インピーダンスが高くてかつQの小さ
い領域を使用するものであるため、前者と同様に変換効
率が悪いという問題があった。
However, of the above two examples, in the former case, the band is widened by bonding damping materials,
There is a problem that the conversion efficiency becomes very poor. Further, in the latter case, since a region where the oscillator impedance is high and Q is small is used, there is a problem that the conversion efficiency is low as in the former case.

そこで本発明は、負の音圧が小さく収束度の高い振動波
形の超音波衝撃波を発生させ得、生体への安全性が高く
かつ適確な治療を施し得る上、変換効率が高く消費電力
が少なくて済む、超音波治療装置を提供することを目的
とする。
Therefore, the present invention can generate an ultrasonic shock wave of a vibration waveform having a low negative sound pressure and a high degree of convergence, and can perform highly safe and accurate treatment on a living body, and also has high conversion efficiency and power consumption. It is an object of the present invention to provide an ultrasonic therapy device that requires less.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記問題点を解決し目的を達成するために次の
ような手段を講じた。すなわち、超音波送波器を構成す
る如く配列された複数の振動子の各共振周波数を、前記
超音波送波器の中心軸からの距離に応じて振動子ごとに
異ならせ、一定周波数範囲に分散配置するようにした。
The present invention takes the following means in order to solve the above problems and achieve the object. That is, each resonance frequency of a plurality of transducers arranged so as to form an ultrasonic wave transmitter is made to differ for each transducer according to the distance from the central axis of the ultrasonic wave transmitter, and within a certain frequency range. It was arranged to be distributed.

〔作用〕[Action]

このような手段を講じたことにより、振動子のQを高く
設定して変換効率を高く保ったまま、負の音圧の小さい
振動波形の発生が可能となる。その結果、生体中でのキ
ャビテーションが発生しにくくなり、生体への安全性を
高める事ができる。また、収束点における収束度も高く
なり、患部を適確に治療し得ると共に、治療部以外への
影響が低下するため、更に安全性を高める事ができる。
By taking such a measure, it is possible to generate a vibration waveform with a small negative sound pressure while setting the Q of the vibrator to be high and keeping the conversion efficiency high. As a result, cavitation in the living body is less likely to occur, and safety to the living body can be enhanced. In addition, the degree of convergence at the convergence point is increased, the affected area can be treated appropriately, and the influence on the area other than the treated area is reduced, so that the safety can be further enhanced.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す図で超音波送波器10の
正面図である。図示の如くこの超音波送波器10は、複数
のリング状振動子11,12〜が球面状に配列されたものと
なっている。上記各振動子の共振周波数fcは、第2図に
示すように超音波送波器10の中心から外部方向に向かっ
て距離lが増大するのに伴って、振動子配列個数(配列
面積)に対応して漸増するように分散配置されている。
この様な構成の送波器10をパルスで励振させ、超音波衝
撃波を生体中において収束させた場合、収束点における
音圧分布は次のようになる。
FIG. 1 shows an embodiment of the present invention and is a front view of an ultrasonic wave transmitter 10. As shown in the figure, this ultrasonic wave transmitter 10 has a plurality of ring-shaped transducers 11, 12-arranged in a spherical shape. As shown in FIG. 2, the resonance frequency fc of each of the above-mentioned transducers is set to the number of transducers arranged (arrangement area) as the distance 1 increases from the center of the ultrasonic wave transmitter 10 toward the outside. Correspondingly distributed so as to increase gradually.
When the wave transmitter 10 having such a configuration is excited by a pulse and the ultrasonic shock wave is converged in the living body, the sound pressure distribution at the convergence point is as follows.

第3図は超音波衝撃波の収束点における音圧分布を考察
するために示した装置の概略図である。なお説明を簡単
にする為に、第3図においては振動子11,12〜が一次元
的に配列されているものとする。図中の符号13はパルス
発生器であり、14は発生した超音波の位相が収束点で一
致する様に微調整を行なう為の遅延線である。
FIG. 3 is a schematic diagram of an apparatus shown for considering the sound pressure distribution at the convergence point of ultrasonic shock waves. For simplification of explanation, it is assumed in FIG. 3 that the transducers 11 and 12 are arranged one-dimensionally. Reference numeral 13 in the drawing is a pulse generator, and 14 is a delay line for fine adjustment so that the phases of the generated ultrasonic waves match at the convergence point.

今、送波器10の中心軸15、すなわち振動子11,12〜から
発生させられる超音波パルスの中心軸の方向の空間周波
数成分fAが第4図に示す様に、直線ステップ状に2個分
布しているとすると、収束点における中心軸15の方向の
音圧分布P(x)は、 で示される。なおfLはステップ周波数のうち最も低い周
波数を示し、Δfは周波数のステップ幅を示す。
Now, as shown in FIG. 4, the spatial frequency component fA in the direction of the central axis 15 of the transmitter 10, that is, the central axis of the ultrasonic pulse generated from the oscillators 11 and 12 is two in a linear step shape. If distributed, the sound pressure distribution P (x) in the direction of the central axis 15 at the convergence point is Indicated by. Note that fL represents the lowest frequency among the step frequencies, and Δf represents the frequency step width.

上式によると、収束点の音圧分布は第5図に示す様なも
のとなる。すなわち負の音圧が小さい上、パルス幅が比
較的小さく収束度が高いものとなる。
According to the above formula, the sound pressure distribution at the convergence point is as shown in FIG. That is, the negative sound pressure is small, the pulse width is relatively small, and the degree of convergence is high.

次に中心軸15と垂直な方向、つまり方位方向の音圧分布
について考察する。振動子11,12〜から発生させられる
超音波パルスの方位方向における空間周波数成分fBは、
近似的に第6図に示す様な直線ステップ状の周波数にて
表わされる。第6図に示すように、送波器10の中心にあ
る振動子の方位方向の空間周波数成分f0は零となる。つ
まり、収束点における方位方向の音圧分布は上式にfL=
0を代入したものとなる。これを図で表わすと第7図の
様になる。すなわち負の音圧がやはり小さく、パルス幅
も狭いものとなる。
Next, the sound pressure distribution in the direction perpendicular to the central axis 15, that is, in the azimuth direction will be considered. The spatial frequency component fB in the azimuth direction of the ultrasonic pulse generated from the oscillators 11 and 12 is
It is approximately represented by a linear stepped frequency as shown in FIG. As shown in FIG. 6, the spatial frequency component f 0 in the azimuth direction of the oscillator at the center of the transmitter 10 becomes zero. In other words, the sound pressure distribution in the azimuth direction at the convergence point is fL =
It is the one with 0 substituted. This is shown in FIG. 7 as a diagram. That is, the negative sound pressure is still small and the pulse width is also narrow.

なお各振動子11,12〜の共振周波数を分散配置する場合
において、励振パルスの振幅や振動子の配列個数に重み
づけをする事により、超音波振動波形の負の音圧を更に
減少させる事ができる。例えば、第8図(a)に示す様
に、低い周波数成分の振幅を大きくすると、同図(b)
のようにパルス幅は広くなるが、負の音圧が更に抑制さ
れた振動波形を得ることができる。
When the resonance frequencies of the transducers 11 and 12 are distributed, the negative sound pressure of the ultrasonic vibration waveform can be further reduced by weighting the amplitude of the excitation pulse and the number of transducers arranged. You can For example, if the amplitude of the low frequency component is increased as shown in FIG.
As described above, the pulse width is wide, but a vibration waveform in which the negative sound pressure is further suppressed can be obtained.

なお本発明は前記実施例に限定されるものではなく、本
発明の要旨を逸脱しない範囲で種々変形実施可能である
のは勿論である。
It should be noted that the present invention is not limited to the above-mentioned embodiments, and various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔The invention's effect〕

本発明によれば次のような効果を奏する。 The present invention has the following effects.

収束点における超音波衝撃波の振動波形が、負の音圧
の小さいものとなる為、生体中でのキャビテーションの
発生がなくなり、生体への安全性が高まる。
Since the vibration waveform of the ultrasonic shock wave at the convergence point has a small negative sound pressure, cavitation does not occur in the living body, and the safety to the living body is improved.

収束点における超音波衝撃波の振動波形がパルス幅の
狭いものとなるので、超音波衝撃波の治療部への収束度
が高くなり、適確な治療を施し得る上、他の生体組織へ
の安全性が高まる。
Since the vibration waveform of the ultrasonic shock wave at the convergence point has a narrow pulse width, the degree of convergence of the ultrasonic shock wave to the treatment part is high, and accurate treatment can be performed, and it is safe for other living tissues. Will increase.

Qの高い振動子が使用できるので変換効率が良く、低
消費電力となり、装置が簡単になる。
Since a high Q oscillator can be used, the conversion efficiency is good, the power consumption is low, and the device is simple.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第8図(a)(b)は本発明の一実施例を示す
図で、第1図は超音波送波器の正面図、第2図は各振動
子の共振周波数の分散配置状態を示す図、第3図は超音
波衝撃波の収束点における音圧分布を考察するために示
した装置の概略図、第4図は超音波パルスの中心軸方向
の空間周波数成分の分布状態を示す図、第5図は第4図
に対応した収束点の音圧分布を示す図、第6図は超音波
パルスの中心軸とは垂直な方位方向の空間周波数成分の
分布状態を示す図、第7図は第6図に対応した収束点の
音圧分布を示す図、第8図(a)(b)は低周波数帯域
の振幅を大きく変調させた場合の超音波振動波形を示す
図である。第9図〜第12図は従来技術を示す図で、第9
図は超音波送波器の断面図、第10図〜第12図は従来技術
の欠点を説明するための図である。 10……超音波送波器、11,12〜……複数のリング状振動
子、13……パルス発生器、14……遅延線、15……送波器
の中心軸、fc……共振周波数、fA……中心軸方向の空間
周波数成分、fB……方位方向の空間周波数成分、fL……
最低周波数、l……送波器中心からの距離。
1 to 8 (a) and (b) are views showing an embodiment of the present invention. FIG. 1 is a front view of an ultrasonic wave transmitter, and FIG. 2 is a dispersion of resonance frequencies of respective transducers. Fig. 3 is a diagram showing the arrangement state, Fig. 3 is a schematic diagram of the device shown for considering the sound pressure distribution at the converging point of the ultrasonic shock wave, and Fig. 4 is a distribution state of spatial frequency components in the central axis direction of the ultrasonic pulse. FIG. 5, FIG. 5 is a diagram showing a sound pressure distribution at a convergence point corresponding to FIG. 4, and FIG. 6 is a diagram showing a distribution state of spatial frequency components in an azimuth direction perpendicular to the central axis of the ultrasonic pulse. , FIG. 7 is a diagram showing a sound pressure distribution at a convergence point corresponding to FIG. 6, and FIGS. 8 (a) and 8 (b) are diagrams showing ultrasonic vibration waveforms when the amplitude of a low frequency band is largely modulated. Is. 9 to 12 are views showing a conventional technique.
The figure is a cross-sectional view of an ultrasonic wave transmitter, and FIGS. 10 to 12 are views for explaining the drawbacks of the prior art. 10 …… Ultrasonic wave transmitter, 11,12 ~ …… Multiple ring transducers, 13 …… Pulse generator, 14 …… Delay line, 15 …… Central axis of wave transmitter, fc …… Resonance frequency , FA …… Spatial frequency component in the central axis direction, fB …… Spatial frequency component in the azimuth direction, fL ……
Lowest frequency, l ... Distance from the center of the transmitter.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超音波送波器を構成する如く配列された複
数の振動子の各共振周波数を、前記超音波送波器の中心
軸からの距離に応じて各振動子ごとに異ならせ、一定周
波数範囲に分散配置したことを特徴とする超音波治療装
置。
1. Resonant frequencies of a plurality of transducers arranged to form an ultrasonic wave transmitter are made different for each transducer according to a distance from a central axis of the ultrasonic wave transmitter, An ultrasonic therapy device characterized by being distributed and arranged in a certain frequency range.
JP62067519A 1987-03-21 1987-03-21 Ultrasonic therapy equipment Expired - Fee Related JPH0710263B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62067519A JPH0710263B2 (en) 1987-03-21 1987-03-21 Ultrasonic therapy equipment
US07/167,356 US4907573A (en) 1987-03-21 1988-03-14 Ultrasonic lithotresis apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62067519A JPH0710263B2 (en) 1987-03-21 1987-03-21 Ultrasonic therapy equipment

Publications (2)

Publication Number Publication Date
JPS63234959A JPS63234959A (en) 1988-09-30
JPH0710263B2 true JPH0710263B2 (en) 1995-02-08

Family

ID=13347306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62067519A Expired - Fee Related JPH0710263B2 (en) 1987-03-21 1987-03-21 Ultrasonic therapy equipment

Country Status (1)

Country Link
JP (1) JPH0710263B2 (en)

Also Published As

Publication number Publication date
JPS63234959A (en) 1988-09-30

Similar Documents

Publication Publication Date Title
US4907573A (en) Ultrasonic lithotresis apparatus
US5526815A (en) Therapy apparatus for locating and treating a zone located in the body of a life form with acoustic waves
US4991151A (en) Elastic pulse generator having a desired predetermined wave form
US8466605B2 (en) Patterned ultrasonic transducers
JP7178156B2 (en) Image processing device with piezoelectric transceiver
US6292435B1 (en) Circuit and method for exciting a micro-machined transducer to have low second order harmonic transmit energy
JPH01111476A (en) Piezoelectric apparatus wherein negative waves are decreased and destruction of particular construction or extermal crushed stone
WO2005032374A1 (en) Ultrasonic probe, ultrasonogrphic device, and ultrasonographic method
JPH07121158B2 (en) Ultrasonic probe
JP2001258879A (en) Ultrasonic transducer system and ultrasonic transducer
US20110213248A1 (en) Ultrasonic treatment apparatus
JPS62236540A (en) Shock wave source
JPH0710263B2 (en) Ultrasonic therapy equipment
JPS6294140A (en) Ultrasonic diagnostic method and apparatus
JP3972610B2 (en) Ultrasonic beauty device
JPH08140984A (en) Ultrasonic treatment device
JPH02177957A (en) Ultrasonic therapeutic appliance using convergence/oscillation piezoelectric ceramic
WO2019167592A1 (en) Focusing-type sound wave therapy device using planar-shape element
JPH05309096A (en) Impulse wave generating source
JP2007288396A (en) Ultrasonic probe
JP4419774B2 (en) Ultrasonic beauty equipment
JP2702990B2 (en) Ultrasonic transducer
JP2005110792A (en) Ultrasonic transducer array and ultrasonic transmitter-receiver
JP2013055564A (en) Piezoelectric device and ultrasonic probe
JPH10201768A (en) Ultrasonic treatment device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees