JPS63234166A - Current detector - Google Patents

Current detector

Info

Publication number
JPS63234166A
JPS63234166A JP6861187A JP6861187A JPS63234166A JP S63234166 A JPS63234166 A JP S63234166A JP 6861187 A JP6861187 A JP 6861187A JP 6861187 A JP6861187 A JP 6861187A JP S63234166 A JPS63234166 A JP S63234166A
Authority
JP
Japan
Prior art keywords
current
resistors
resistance
resistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6861187A
Other languages
Japanese (ja)
Other versions
JP2611214B2 (en
Inventor
Shigeki Furuta
茂樹 古田
Masami Yamaoka
山岡 正美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62068611A priority Critical patent/JP2611214B2/en
Publication of JPS63234166A publication Critical patent/JPS63234166A/en
Application granted granted Critical
Publication of JP2611214B2 publication Critical patent/JP2611214B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PURPOSE:To accurately detect current by forming one of a couple of resistances by using a material which has negative resistance temperature characteristics, varying the resistance value of one resistance according to negative resistance characteristics even if the temperature of the other varies, and maintaining a detected voltage at a proper value. CONSTITUTION:This detector consists of flash lamps 10a-10f, an oscillation control circuit 20, a changeover switch 30, and a semiconductor chip E. Further, the device is formed of the chip E, a longitudinal power MOSFET 40, and a voltage dividing circuit 50, and boron, etc., is implanted in polycrystalline silicon to give one resistance 51 of the circuit 50 the negative resistance temperature characteristics. Consequently, even if the breaking of a wire occurs to the lamp 10a, etc. when the temperature of the CHIP E is high, variations in resistance values of the resistances 51 and 52 cancel each other and a detection voltage from the circuit 50 has no error. Therefore, the state of a load current is accurately detected from the detection voltage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電流検出装置に係り、特に、MO8型電界効果
ト2ンノスタ(以下、MOSFETという)を採用した
電流検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a current detection device, and particularly to a current detection device employing an MO8 type field effect transistor (hereinafter referred to as MOSFET).

(従来技術) 従来、この種の電流検出装置においては、米国特許第4
553084号公報に示されているように、単一のセル
を有する副MO8FETと、互いに並列接続した複数(
例えば、2000個)のセルを有する主MO8FETと
、極小抵抗値を有する検出抵抗とを採用し、両MO3F
ETの導通時に、負荷電流の大部分を主MO8FETに
流入させるとともに負荷電流の残余の部分をljMO8
FETを介し検出抵抗に流入させて、この検出抵抗の端
子電圧をコンパレータによって基準電圧と比較すること
により、負荷電流が許容値以下か否かを検出するように
したものがある。
(Prior Art) Conventionally, in this type of current detection device, U.S. Pat.
As shown in Japanese Patent No. 553084, a sub MO8FET having a single cell and a plurality of MO8FETs connected in parallel to each other (
For example, a main MO8FET with 2,000 cells and a detection resistor with an extremely small resistance value are adopted, and both MO3F
When ET conducts, most of the load current flows into the main MO8FET and the remaining part of the load current flows into ljMO8
There is a system in which it is detected whether the load current is below a permissible value by allowing the current to flow into a detection resistor via a FET and comparing the terminal voltage of the detection resistor with a reference voltage using a comparator.

(発明が解決しようとする問題点) ところで、このような構成においては、上述のごとく、
検出抵抗の抵抗値が極小なため、周囲温度が変化しても
、rMMO3FETの導通時における内部抵抗の変化が
検出抵抗の端子電圧に誤差として与える影響を非常に小
さく抑制できる。しかしながら、検出抵抗の端子電圧も
自ら小さいために、コンパレータによる比較にあたって
は、検出抵抗の端子電圧を増幅する増幅器が余分に必要
となるのは勿論のこと、同増幅器及びコンパレータとし
て高精度のものが要求されるという不具合がある。
(Problems to be solved by the invention) By the way, in such a configuration, as mentioned above,
Since the resistance value of the detection resistor is extremely small, even if the ambient temperature changes, the influence of a change in internal resistance when the rMMO3FET is turned on as an error on the terminal voltage of the detection resistor can be suppressed to a very small level. However, since the terminal voltage of the detection resistor is also small by itself, comparison using a comparator requires an extra amplifier to amplify the terminal voltage of the detection resistor, as well as a highly accurate amplifier and comparator. There is a problem with being requested.

これに対処するためには、検出抵抗の抵抗値を大きくす
ることが考えられるが、かかる場合には、上述した周囲
温度の変化に応じた副MO8FETの導通時の内部抵抗
の変化、及び同周囲温度の変化に応じた両MO8FET
の導通時の各内部抵抗の差の変化に伴う負荷電流の各M
OSFETへの分流比の変化が、検出抵抗の端子電圧に
対し、誤差として大きな悪影響を与えるという不具合が
生じる。
In order to deal with this, it is conceivable to increase the resistance value of the detection resistor, but in such a case, the change in internal resistance when the sub MO8FET becomes conductive in accordance with the change in ambient temperature, and the Both MO8FETs respond to temperature changes
Each M of the load current due to the change in the difference of each internal resistance when conducting
A problem arises in that a change in the shunt ratio to the OSFET has a large adverse effect as an error on the terminal voltage of the detection resistor.

そこで、本発明は、上述のような各不具合に対処すべく
、電流検出装置において、増幅器等の不必要な素子を用
いることなく、温度変化に対して正確に電流の検出を行
うようにしようとするものである。
Therefore, in order to deal with the above-mentioned problems, the present invention attempts to accurately detect current in response to temperature changes in a current detection device without using unnecessary elements such as an amplifier. It is something to do.

(問題点を解決するための手段) かかる問題の解決にあたり、本発明の構成上の特徴は、
一対の抵抗(51,52)と、制御端子(43)、抵抗
(51)の一端に接続された入力端子(41)、及び抵
抗(52)の他端に接続された出力端子(42)を有す
るMOSFET(40)とを備え、このMOSFET(
40)がその制御端子(43)にて制御信号発生手段(
20)から一連の制御信号を受けて導通したとき負荷に
流入する負荷電流の一部がMOSFET(40)にその
入力端子(41)から流入しその出力端子(42)から
流出するとともに、前記負荷電流の残余の部分が一対の
抵抗(51,52)を通して流れ、かつこれらの抵抗(
51゜52)の一方がその流入電流を検出し他方の抵抗
との共通端から検出電圧を発生し、さらにこの検出電圧
に基き前記負荷電流の状態を検出するようにした電流検
出装置においで、一対の抵抗(51゜52)の一方を、
負の抵抗温度特性を有する材料により形成するようにし
たことにある。
(Means for solving the problem) In solving the problem, the structural features of the present invention are as follows:
A pair of resistors (51, 52), a control terminal (43), an input terminal (41) connected to one end of the resistor (51), and an output terminal (42) connected to the other end of the resistor (52). This MOSFET (40) is equipped with a MOSFET (40) having
40) has a control signal generating means (
A part of the load current that flows into the load when it receives a series of control signals from the MOSFET (40) flows into the MOSFET (40) from its input terminal (41) and flows out from its output terminal (42), The remaining part of the current flows through the pair of resistors (51, 52) and these resistors (
In the current detection device, one of the resistors 51 and 52) detects the inflow current, generates a detection voltage from a common terminal with the other resistor, and further detects the state of the load current based on this detection voltage, One of the pair of resistors (51°52),
The reason is that it is made of a material having negative resistance-temperature characteristics.

(作用効果) しかして、このように本発明を構成したことにより、M
OSFET(40)及び一対の抵抗(51゜52)の一
方の各温度が共に同様に変化しても、MOSFET(4
0)の内部抵抗値の温度に応じた変化を打消すように一
対の抵抗(51,52)の一方の抵抗値がその負の抵抗
温度特性に応じ変化するので、一対の抵抗(51,52
)の一方からの検出電圧を前記温度の変化とはかかわり
なく適正な同一の値に維持することができ、その結果、
増幅器のごとき不必要な回路素子を採用することなく、
前記検出電圧に基き前記負荷電流の状態を常に精度よく
検出できる。
(Operation and Effect) By configuring the present invention in this way, M
Even if the temperatures of the OSFET (40) and one of the pair of resistors (51°52) change in the same way, the MOSFET (40)
Since the resistance value of one of the pair of resistors (51, 52) changes according to its negative resistance temperature characteristic so as to cancel the change according to the temperature in the internal resistance value of the pair of resistors (51, 52)
) can be maintained at the same appropriate value regardless of the temperature change, and as a result,
without adopting unnecessary circuit elements such as amplifiers.
The state of the load current can always be detected accurately based on the detected voltage.

また、一対の抵抗(51,52)の一方を、多結晶シリ
コ゛ン抵抗材料にボロン又はリンをイオン注入して形成
するようにした場合には、一対の抵抗(51,52)の
一方を、MOSFET(40)の内部抵抗値の温度変化
を打消すに必要な負の抵抗温度特性をもつP形又はN形
の半導体抵抗素子として容易に実現できる。かかる場合
、ボロンの方がリンよりも負の抵抗温度係数を大きくす
るような特性を有するため、ボロンを採用した場合には
、リンを採用した場合よりも一対の抵抗(51,52>
の一方の抵抗値及び体積を小さくできる。
Furthermore, when one of the pair of resistors (51, 52) is formed by ion-implanting boron or phosphorus into a polycrystalline silicon resistance material, one of the pair of resistors (51, 52) is formed by MOSFET. (40) It can be easily realized as a P-type or N-type semiconductor resistance element having a negative resistance temperature characteristic necessary to cancel the temperature change in the internal resistance value. In such a case, since boron has the property of having a larger negative temperature coefficient of resistance than phosphorus, when boron is used, the resistance of the pair of resistors (51, 52>
The resistance value and volume of one of the two can be reduced.

また、一対の抵抗(51,52)の各抵抗値の比率がほ
ぼ一定値となるように前記ボロン又はリンのイオン注入
濃度を定めた場合には、一対の抵抗(51,52)の一
方の電流感度が、生産ロッド毎、正確には製品毎にバラ
ツクこととなるが、その製品においで電流感度が温度に
より変動しないためには、一対の抵抗<51.52)の
一方の負の抵抗温度特性を全製品に亘りほぼ同一にする
ことが許されるため、前記ボロン或いはリンの注入濃度
をほぼ同一にすることができ、その結果、この種装置を
、量産性の高いものとして提供できる。一対の抵抗(5
1,52)の他方の抵抗値を、前記比率がより一層前記
一定値に近ずくようトリミング調整すれば、各製品毎に
MOSFET(40)の内部抵抗値の温度変化に基づく
検出電圧の誤差を精度よく容易に打消すようにすること
ができる。
Furthermore, when the boron or phosphorus ion implantation concentration is determined so that the ratio of the resistance values of the pair of resistors (51, 52) is approximately constant, one of the pair of resistors (51, 52) The current sensitivity will vary from production rod to production rod, more precisely from product to product, but in order for the current sensitivity of a product to not fluctuate due to temperature, the negative resistance of one of the pair of resistors (<51.52) must be Since it is possible to make the characteristics substantially the same for all products, the boron or phosphorus implantation concentration can be made substantially the same, and as a result, this type of device can be provided with high mass productivity. A pair of resistors (5
By trimming and adjusting the other resistance value of 1 and 52) so that the ratio approaches the constant value, the error in the detected voltage due to temperature changes in the internal resistance value of the MOSFET (40) can be reduced for each product. It can be easily canceled out with high accuracy.

(実施例) 以下、本発明の一実施例を図面により説明すると、第1
図は、本発明が車両用方向指示装置に適用された例を示
している。方向指示装置は、当該車両の左折時に点滅す
るように並列接続した一組の7ラフシヤランプ10a、
 10b、  10eと、当該車両の右折時に点滅する
ように並列接続した一組の7ラツシヤランプ10d、 
 10e、  10fと、当M車両のイグニッションス
イッチIGを介し直流電源BI:接続した公知の発振制
御回路20と、この発振制御回路20と各7ラフシヤラ
ンプ10a〜10f との間に接続した切換スイッチ3
0(ターンシグナルスイッチ)とを備えており、この切
換スイッチ30は、その固定接点31にて、各7ラツシ
ヤランプ10a〜10cを介し接地され、その固定接点
32にて、各7ラツシヤランプ10d〜 10fを介し
接地されている。また、切換スイッチ30の切換接点3
3は、その中立位置にて両回定接点31.32から遮断
され、その左折方向く又は右折方向)への切換時に固定
接点31 (又は32)に投入される。なお、左側と右
側の各々−組のランプは同一のワット数のランプとして
あるので、各7ラツシヤランプ10a〜10Fの内部抵
抗値は互いに同一である。
(Example) Hereinafter, one example of the present invention will be described with reference to the drawings.
The figure shows an example in which the present invention is applied to a direction indicating device for a vehicle. The direction indicating device includes a set of 7 rough shear lamps 10a connected in parallel so as to blink when the vehicle turns left;
10b, 10e, and a set of 7 lash lamps 10d connected in parallel so as to blink when the vehicle turns right.
10e, 10f, a known oscillation control circuit 20 connected to the DC power supply BI via the ignition switch IG of the M vehicle, and a changeover switch 3 connected between this oscillation control circuit 20 and each of the seven rough shear lamps 10a to 10f.
0 (turn signal switch), this changeover switch 30 is grounded via each of the seven lash lamps 10a to 10c at its fixed contact 31, and connected to each of the seven lash lamps 10d to 10f at its fixed contact 32. It is grounded through. In addition, the changeover contact 3 of the changeover switch 30
3 is cut off from both rotating contacts 31 and 32 in its neutral position, and is closed to the fixed contact 31 (or 32) when switching to the left or right turn direction. It should be noted that since the left and right sets of lamps have the same wattage, the internal resistance values of the seven lash lamps 10a to 10F are the same.

発振制御回路20は、イグニッションスイッチIGを介
し直流電源Bから給電されて作動状態となるもので、こ
の発振制御回路20の起動端子21は切換スイッチ30
の切換接点33に接続されでいる。しかして、発振制御
回路20は、切換スイッチ30の切換接点33の固定接
点31 (又は32)への投入に応答してその発振制御
作用を開始し、所定レベル及び所定周波数を有する一連
の制御パルス信号を出力端子22から発生する。また、
発振制御回路20は、本発明の要部を構成する半導体子
ツブEから後述のごと(生じる検出電圧を入力端子23
にて受け、同検出電圧を基準電圧と比較して各7ラフシ
ヤランプ10a〜10「の異常の有無を報知する。
The oscillation control circuit 20 is activated by being supplied with power from the DC power supply B via the ignition switch IG, and the starting terminal 21 of the oscillation control circuit 20 is connected to the changeover switch 30
It is connected to the switching contact 33 of. Thus, the oscillation control circuit 20 starts its oscillation control action in response to the switching contact 33 of the changeover switch 30 being connected to the fixed contact 31 (or 32), and generates a series of control pulses having a predetermined level and a predetermined frequency. A signal is generated from output terminal 22. Also,
The oscillation control circuit 20 receives a detected voltage generated from the semiconductor tube E constituting the main part of the present invention (as described later) at an input terminal 23.
The detected voltage is compared with a reference voltage to notify the presence or absence of an abnormality in each of the seven rough shear lamps 10a to 10''.

半導体チップEは、縦形パワーMO8FET40と、分
圧回路50とをMO8I造に形成してなるもので、MO
8FET40はそのソース41にてイグニッションスイ
ッチIGを介し直流電源Bに接続されでいる。また、こ
のMO3FET40のドレイン42は切換スイッチ30
の切換接点33に接続されており、同MO3FET40
のゲート43は発振制御回路20の出力端子22に接続
されている。しかして、このMO8FET40は、その
デート43にて、発振制御回路20の出力端子22から
一連の制御パルス信号を受けて間欠的に導通する。
The semiconductor chip E is formed by forming a vertical power MO8FET 40 and a voltage dividing circuit 50 in an MO8I structure.
The 8FET 40 has its source 41 connected to a DC power supply B via an ignition switch IG. In addition, the drain 42 of this MO3FET 40 is connected to the selector switch 30.
It is connected to the switching contact 33 of the same MO3FET40.
The gate 43 of is connected to the output terminal 22 of the oscillation control circuit 20. Thus, on date 43, this MO8FET 40 receives a series of control pulse signals from the output terminal 22 of the oscillation control circuit 20 and becomes intermittently conductive.

分圧回路50は、互いに直列接続した一対の抵抗51.
52を有しており、抵抗51は、その一端にて、パフ−
MO8FET40のソース41に接続され、一方、その
他端にて、抵抗52を介しパワーMO8FET40のド
レイン42に接続されている。しかして、分圧回路50
は、パワーMO3FET40のソース41とドレイン4
2との闇に生じる電圧を、両抵抗51.52により分圧
し、この分圧電圧を検出電圧として両抵抗51.52の
共通端子(以下、出力端子53という)から発生し発振
制御回路20の入力端子23に付与する。但し、抵抗5
1は、多結晶シリコンにボロンを所定濃度にて一様にイ
オン注入(ドーピング)してP形半導体抵抗として形成
されている。かかる場合、前記ボロンの所定濃度は、−
0,148C%/’C)でもって、抵抗51に負の抵抗
温度特性を与えるべ(,1,0X10”〜1,3X10
鵞g(個/cff+’)内の濃度となっている。
The voltage divider circuit 50 includes a pair of resistors 51 .
52, and the resistor 51 has a puff at one end.
It is connected to the source 41 of the MO8FET 40, while the other end is connected to the drain 42 of the power MO8FET 40 via a resistor 52. Therefore, the voltage dividing circuit 50
are the source 41 and drain 4 of the power MO3FET 40
The voltage generated between the resistors 51. It is applied to the input terminal 23. However, resistance 5
1 is formed as a P-type semiconductor resistor by uniformly ion-implanting (doping) boron into polycrystalline silicon at a predetermined concentration. In such a case, the predetermined concentration of boron is -
0,148C%/'C) to give the resistor 51 a negative resistance temperature characteristic (,1,0X10"~1,3X10"
The concentration is within the range of g (numbers/cff+').

ところで、半導体チップEの抵抗51におけるボロンの
注入濃度の定め方について以下に説明する。半導体チッ
プEに流入する直流電流なIとし、分圧回路50に流入
する分流電流をIoとし、抵抗51の抵抗値をRsとし
、かつ抵抗52の抵抗値をR(温度に対し不変とする)
とし、さらにパワーMO8FET40の導通時内部抵抗
値(以下、ON抵抗値という)をRonとすると、 l
o(R8+R)=(I−Io)Ron故に、 が成立する。但し、Rs+R>>Ronとする。
By the way, how to determine the implantation concentration of boron in the resistor 51 of the semiconductor chip E will be explained below. Let I be the direct current flowing into the semiconductor chip E, Io be the shunt current flowing into the voltage dividing circuit 50, Rs be the resistance value of the resistor 51, and R be the resistance value of the resistor 52 (assumed to be unchangeable with respect to temperature).
Further, if the internal resistance value of the power MO8FET 40 when conducting (hereinafter referred to as ON resistance value) is Ron, then l
o(R8+R)=(I-Io)Ron Therefore, the following holds true. However, Rs+R>>Ron.

また、抵抗51の端子電圧をVsとすると、また、パワ
ーMO3FET40のON抵抗Ranは、半導体チップ
Eの濃度(以下、チップ温度t(”C)という)の変化
に伴って、第2図に示すごとく一定の変化率で変化する
二次ItIl#iXのように正の温度係数をもって変化
することが知られている。
Further, if the terminal voltage of the resistor 51 is Vs, the ON resistance Ran of the power MO3FET 40 changes as shown in FIG. It is known that it changes with a positive temperature coefficient, such as the secondary ItIl#iX, which changes at a constant rate of change.

従って、チップ温度tの変化にもかかわらず、(2)式
における■の係数、即ち電流感度aを一定とするために
は、換言すれば、■を一定としたとき、端子電圧Vsを
同一の値に維持するためには、(2)式において、抵抗
値Rsが少なくとも負の抵抗温度特性(温度係数)を有
さなければならないことが理解゛される。つまり、Ro
nの正の温度係数による変化をRsの負の温度係数で打
ち消す必要のあることが理解される。
Therefore, in order to keep the coefficient of ■ in equation (2), that is, the current sensitivity a, constant despite changes in the chip temperature t, in other words, when ■ is constant, the terminal voltage Vs must be kept constant. It is understood that in order to maintain the value Rs in equation (2), the resistance value Rs must have at least a negative resistance temperature characteristic (temperature coefficient). In other words, Ro
It is understood that the change due to the positive temperature coefficient of n needs to be canceled out by the negative temperature coefficient of Rs.

然るに、ON抵抗値Ronのある温度における抵抗値は
、チップ温度tが同一であっても、生産条件の微妙な、
相違によって生産ロッド毎にバラツキがあるため、二次
曲線Xが第2図にて図示矢印方向に生産ロッド毎に移動
する。但し、ロットとは略同−条件で製造された製品の
束を意味し、同一ロット内での個々の製品間のバラツキ
は無視できる。そこで、電流感度aの一定下にて、端子
電圧Vsを、チップ温度tの変化とはかかわりなく、同
一の値に維持するに必要な抵抗51の抵抗値R8の変化
範囲を、チップ温度tとの関係において調べたところ、
第3図に示すごとく、両曲線Yu。
However, even if the chip temperature t is the same, the resistance value of the ON resistance value Ron at a certain temperature depends on delicate production conditions.
Since there are variations from production rod to production rod due to differences, the quadratic curve X moves from production rod to production rod in the direction of the arrow shown in FIG. However, a lot means a bundle of products manufactured under substantially the same conditions, and variations between individual products within the same lot can be ignored. Therefore, under a constant current sensitivity a, the range of change in the resistance value R8 of the resistor 51 necessary to maintain the terminal voltage Vs at the same value regardless of the change in the chip temperature t is determined by the change in the chip temperature t. When investigated in relation to
As shown in FIG. 3, both curves Yu.

YI!闇の領域内にて抵抗値Rsを変化させなければな
らないことが分った。つ*9、第3図のYuとY!で囲
まれた領域内のRsの値をチップ温度との関係で任意に
設定できれば、Ronがロッド毎に、かつ温度によって
変化しても、αの値をロッド間で一定にできるのである
。このことは、a=しかしながら、第3図から理解され
るように、各曲線Yu、YRのチップ温度に対する変化
率が異なるため、電流感度a を一定にすべく抵抗値R
sを決定するにあたっては、抵抗値Rsの基準チップ温
度(ある所定温度、例えば25℃)における基準値Rs
o及び抵抗値Rsの負の抵抗温度特性の双方を生産ロッ
ド毎に異ならしめるようにしなければならない、換言す
れば、生産ロッド毎に、上述したボロンの注入濃度を変
え基準値Rsoをトリミング等で変えなければならず、
このようなことは、半導体チップEの量産にはなじまな
いことといえる。
YI! It was found that the resistance value Rs must be changed within the dark region. *9, Yu and Y in Figure 3! If the value of Rs in the region surrounded by can be arbitrarily set in relation to the chip temperature, the value of α can be made constant between rods even if Ron changes from rod to rod and depending on the temperature. This means that a=However, as can be understood from FIG.
In determining s, the reference value Rs of the resistance value Rs at the reference chip temperature (certain predetermined temperature, for example 25°C)
o and the negative resistance temperature characteristic of the resistance value Rs must be made different for each production rod.In other words, the above-mentioned boron implantation concentration may be changed for each production rod, and the reference value Rso may be trimmed, etc. have to change,
It can be said that such a situation is not suitable for mass production of semiconductor chips E.

そこで、以上のような検討結果に基き大のことを見出し
た。
Therefore, based on the above study results, we discovered something important.

(1)、基準値Rsoの調整は、当然のことながら、ト
リミングにより容易に行なえる。また、かかる調整は、
抵抗52の抵抗値Rのシリミング調整によっても行なえ
る。
(1) It goes without saying that the reference value Rso can be easily adjusted by trimming. In addition, such adjustments are
This can also be done by adjusting the resistance value R of the resistor 52 by shimming.

(2) 電゛流感度aは、ロッド間で一定である必要は
なく、ロッド間で’It”2t・・・の如く異なってい
るとしても、これらal、α2.・・・自体が温度によ
って変化しない。つまり、温度特性をもたないようにし
さえすれば、発振制御回路20内での電流判定レベルを
ロッド毎(製品毎)に11!i!することで、所定電流
が流れているかどうかの判定にはさしつかえない。
(2) The current sensitivity a does not need to be constant between rods, and even if it differs between rods, such as 'It'2t..., these al, α2... themselves vary depending on the temperature. In other words, as long as it does not have temperature characteristics, by setting the current judgment level in the oscillation control circuit 20 to 11!i! for each rod (for each product), it can be determined whether a predetermined current is flowing or not. It does not interfere with the judgment.

(3)、電流感度aが生産ロッド毎にバラツクことを許
容すれば、パワーMO8FET40のON抵抗値Ron
がチップ温度tの変化に応じどのように変化しても、パ
ワーMO8FET40のドレイン・ソース間電圧に対す
る抵抗51の抵抗52とによる分割比、即ち、(Rs/
 R)=1 / (N−1)を一定にしてやれば、抵抗
51へのボロンの注入濃度、即ち、抵抗51の負の抵抗
温度特性を全生産口γトに対しほぼ同一にしつつ端子電
圧Vsを同一の値に維持し得ることを発見した。そして
、このように、ボロン注入濃度な071間で一定にでき
れば、製造がきわめで容易になる。
(3) If it is allowed that the current sensitivity a varies from production rod to production rod, the ON resistance value Ron of the power MO8FET40
No matter how it changes in accordance with the change in chip temperature t, the division ratio of the resistor 51 to the resistor 52 with respect to the drain-source voltage of the power MO8FET 40, that is, (Rs/
If R)=1/(N-1) is kept constant, the concentration of boron implanted into the resistor 51, that is, the negative resistance temperature characteristic of the resistor 51, can be made almost the same for all production ports γ, and the terminal voltage Vs can be kept constant. It was discovered that it is possible to maintain the same value. If the boron implantation concentration can be made constant between 071 and 071 in this way, manufacturing becomes extremely easy.

因みに、(2)式にRs/R= 1 /(N−1)を代
入してみると、 Vs=    RonI=ffI     ・・・=−
(3)が得られる。ここで、aを一定にするためには、
Ronの変化につれsNsつまQRsを変えてやればよ
い。従って、温度によってそのロッドのaが変化しない
ようにして端子電圧Vsの検出誤差をなくすためには、
基準チップ温度(例えば25℃)におけるON抵抗値R
onの値をRonoとすれば、その25℃のときの感度
atSは次の(4)式となり、このaSSが温度により
変らぬようにRsの方を変えればよい。
Incidentally, if we substitute Rs/R= 1/(N-1) into equation (2), we get Vs= RonI=ffI...=-
(3) is obtained. Here, in order to keep a constant,
Just change sNs or QRs as Ron changes. Therefore, in order to prevent the a of the rod from changing due to temperature and eliminate the detection error of the terminal voltage Vs,
ON resistance value R at standard chip temperature (e.g. 25°C)
If the value of on is Rono, the sensitivity atS at 25° C. is expressed by the following equation (4), and Rs may be changed so that aSS does not change depending on the temperature.

1          1RonRs RonoI =           =a2.■  
・−・−・・(4)N            Rs+
R つまり、 RRon。
1 1RonRs RonoI = =a2. ■
・−・−・・(4)NRs+
R In other words, RRon.

R11=                 ・・・・
・・(5)NRon−Ron。
R11=...
...(5)NRon-Ron.

が成立するようにすればよい。そこで、この(5)式に
基きNをパラメータとして、つまり、Nを変えて、Rs
とtとの関係を調べたところ、第4図に示すごと(、N
=3のとき■線Zuが得られ、またN=2めとき曲Il
!ZIIが得られた。この第4図の意味するところは、
チップ温度の変化及びNの変化につれてRsの値を第4
図から選べば、そのロッドの電流感度aを温度にかかわ
らず一定にできることである。また、曲線Z u@ Z
 gは同じ負の温度特性をもっており、ボロン注入濃度
は一定でよいことが判明した。なお、Nが大きい程、精
度は向上するが感度が小さくなるため、要求精度の許容
範囲で、できるだけNを小さくすればよい。
All you have to do is make sure that it holds true. Therefore, based on this equation (5), by setting N as a parameter, that is, by changing N, Rs
When we investigated the relationship between and t, we found that (, N
When = 3, the ■ line Zu is obtained, and when N = 2, the song Il
! ZII was obtained. What this figure 4 means is:
As the chip temperature changes and N changes, the value of Rs changes to the fourth value.
If we choose from the figure, the current sensitivity a of the rod can be made constant regardless of the temperature. Also, the curve Z u @ Z
g has the same negative temperature characteristics, and it was found that the boron implantation concentration can be kept constant. Note that the larger N is, the higher the accuracy is, but the sensitivity is lower. Therefore, N should be made as small as possible within the allowable range of the required accuracy.

また、第4図において、各直線Za、Zbは、各面11
1Zus Zsを、同一の負の抵抗温度係数にでそれぞ
れ直線近似したものであり、実際のボロン注入による抵
抗Rsの温度特性は、この直線特性となり、斜線分だけ
誤差があるが、無視できるものである。
In addition, in FIG. 4, each straight line Za, Zb is
1Zus Zs is linearly approximated to the same negative resistance temperature coefficient, and the temperature characteristics of the resistance Rs due to actual boron implantation are this linear characteristic, and there is an error by the diagonal line, but it can be ignored. be.

以上の説明から理解されるように、半導体チップEの抵
抗51へのボロン注入×にあたっては、電流感度aが生
産ロッド毎にバラツクことを許容した上で、Rs/Rを
一定にすることにより、全生産ロッドにおいてボロン注
入濃度をほぼ同一にすることができ量産性が達成され得
る。また、抵抗値Rsの基準値Rso及び抵抗値Rは、
Ronに対する分割比、即ちN=一定となるように容易
にトリミング調整できる。
As can be understood from the above explanation, when implanting boron into the resistor 51 of the semiconductor chip E, by allowing the current sensitivity a to vary from production rod to production rod and keeping Rs/R constant, The boron implantation concentration can be made almost the same in all production rods, and mass productivity can be achieved. In addition, the reference value Rso and the resistance value R of the resistance value Rs are:
Trimming can be easily adjusted so that the division ratio with respect to Ron, that is, N=constant.

これによって、生産ロッド毎に、その製品の電流感度自
体はバラバラになるが、これはユーザ側の判定レベルを
調整することにより、なんら支障はな(なる。そして、
その製品の電流感度が温度変化によって変動しないため
、正確な電流検出、電流判定が可能となる。
As a result, the current sensitivity of the product itself varies depending on the produced rod, but this does not pose any problem by adjusting the judgment level on the user side.
Since the current sensitivity of this product does not change due to temperature changes, accurate current detection and current judgment are possible.

以上のように構成した本実施例において、イグニッショ
ンスイッチIQのrR戊下にて当該車両が直進走行状態
にあれば、発振制御回路20が直流電源Bから給電され
て作動状態にあり、q換スイッチ30が、切換接点33
を中立位置に維持して、半導体チップEを各7ラフシヤ
ランプ10a〜10rから遮断状態に維持する。従って
、直流電源BからイグニッションスイッチIGを介し半
導体チップEに給電されていても、;くワ−MO8FE
T40及び分圧回路50が非接地状態に維持されてこれ
らパワーMO3FET40及び分圧回路50に不必要な
電流が流れることはない。
In this embodiment configured as described above, if the vehicle is running straight with the ignition switch IQ set to rR, the oscillation control circuit 20 is supplied with power from the DC power source B and is in an operating state, and the q exchange switch is activated. 30 is a switching contact 33
is maintained in a neutral position, and the semiconductor chip E is maintained in a state of being cut off from each of the seven rough shear lamps 10a to 10r. Therefore, even if power is supplied from the DC power supply B to the semiconductor chip E via the ignition switch IG,
Since T40 and the voltage divider circuit 50 are maintained in an ungrounded state, unnecessary current does not flow through the power MO3FET 40 and the voltage divider circuit 50.

かかる状態にて、当該車両の左折時に切換スイッチ30
の切換接点33を固定接点31に投入すると、発振制御
回路20が起動端子21にて各7ラツシヤランプ10a
〜10cを介し接地されて発振制御作用を開始し出力端
子22から一連の制御パルス信号を発生しパワーMO3
FET40のゲートに順次付与する。しかして、パワー
MO8FET40が当該各制御パルス信号に応答して間
欠的に導通すると、直流電源Bからの直流電流の一部が
間欠的電流、としてパワーMO3FET40に流入する
とともに、前記直流電流の残余の部分が分圧回路50の
各抵抗51.52に順次流入し、パワーMO3FET4
0から流出する間欠的電流及び抵抗52から流出する電
流が合流し切換スイッチ30を通り各7ラツシヤランプ
10a〜10cに流入する。
In this state, when the vehicle turns left, the changeover switch 30
When the switching contact 33 of
~10c is grounded to start the oscillation control action and generate a series of control pulse signals from the output terminal 22.
It is sequentially applied to the gates of FET40. When the power MO8FET 40 is intermittently turned on in response to each control pulse signal, part of the DC current from the DC power source B flows into the power MO3FET 40 as an intermittent current, and the remaining DC current flows into the power MO3FET 40 as an intermittent current. portion sequentially flows into each resistor 51 and 52 of the voltage dividing circuit 50, and the power MO3FET4
The intermittent current flowing out from the resistor 52 and the intermittent current flowing out from the resistor 52 are combined and flow through the changeover switch 30 into each of the seven lash lamps 10a to 10c.

しかして、各7ラフシヤランプ10a〜10eが前記間
欠的合流電流に応じて点滅し当該車両の左折を指示する
。このとき、分圧回路50がその流入電流を検出電圧V
sとして出力端子53から発生するが、各7ラツシヤラ
ンプ10a〜10cが共に断線していないため、発振制
御回路20が、分圧回路50からの検出電圧及び前記基
準電圧に基き、各7ラツシヤランプ10a〜10cが正
常である口報知する。なお、前記基準電圧は、抵抗52
の抵抗値及び各7ラフシヤランプ10a〜10aの並列
合成内部抵抗値の和に基き適切に定められでいる。
Thus, each of the seven rough shear lamps 10a to 10e blinks in response to the intermittent merging current, instructing the vehicle to turn left. At this time, the voltage dividing circuit 50 converts the inflow current into a detection voltage V
s from the output terminal 53, but since none of the seven latsier lamps 10a to 10c are disconnected, the oscillation control circuit 20 generates each of the seven latsier lamps 10a to 10c based on the detected voltage from the voltage dividing circuit 50 and the reference voltage. 10c is normal. Note that the reference voltage is applied to the resistor 52.
and the sum of the parallel combined internal resistance values of each of the seven rough shear lamps 10a to 10a.

このような状態にて、各7ラツシヤランプ10a〜10
eのいずれかが断線すると、前記並列合成内部抵抗値が
増大し、分圧回路50からの検出電圧が前記基準電圧を
m元で上昇し、この異常電圧を検出した発振制御回路2
0が公知のごとく各7ラツシヤランプ10a〜10cの
異常を点滅回数の変化で報知する。また、上述のような
各7ラツシヤランプ10a〜10cのいずれかの断線が
半導体チップEのチップ温度の高いとき或いは低いとき
に生じたとしても、上述のごとく、抵抗51へのボロン
注゛入濃度の設定、両抵抗51.52の各抵抗値のトリ
ミング調整が、パワーMO8FET40のチップ温度t
に対するON抵抗値の変化を精度よ(打消すようになさ
れているので、分圧回路50からの検出電圧がチップ温
度tの変化により誤差を生じることはない。
In such a state, each of the seven lash lamps 10a to 10
When any one of e is disconnected, the parallel combined internal resistance value increases, the detected voltage from the voltage divider circuit 50 increases by m yuan above the reference voltage, and the oscillation control circuit 2 which detected this abnormal voltage
As is well known, abnormality in each of the seven lash lamps 10a to 10c is notified by a change in the number of blinks. Furthermore, even if the breakage of any one of the seven lash lamps 10a to 10c as described above occurs when the chip temperature of the semiconductor chip E is high or low, the concentration of boron implanted into the resistor 51 will be reduced as described above. The setting and trimming adjustment of each resistance value of both resistors 51 and 52 are based on the chip temperature t of power MO8FET40.
Since the change in the ON resistance value is canceled out accurately, the detected voltage from the voltage dividing circuit 50 does not produce an error due to a change in the chip temperature t.

なお、前記作用説明においては、当該車両の左折時の場
合について説明したが、これに限らず、当該車両の右折
時の場合にも、左折時と実質的に同様の作用効果を達成
し得る。
In addition, in the explanation of the operation, the case where the vehicle turns left is explained, but the present invention is not limited to this, and substantially the same operation and effect as when turning left can be achieved also when the vehicle turns right.

また、本発明の実施にあだっては、分割比、即ちN(>
1)は必要に応じ適宜変更して実施してもよく、また、
前記ボロンの注入濃度は、1.0×10”−1,3X1
011(個/C−コ)内にで適宜変更して実施してもよ
く、同注入濃度が低い程、負の抵抗温度特性が着しい傾
向を示す。
Furthermore, in carrying out the present invention, the division ratio, that is, N(>
1) may be modified and implemented as necessary, and
The implantation concentration of boron is 1.0×10”-1.3×1
The implantation may be carried out with appropriate changes within 0.011 (pieces/C-co), and the lower the implantation concentration, the more negative the resistance-temperature characteristic tends to be.

また、前記実施例においては、抵抗51への注入材料を
ボロンとした例について説明したが、これに代えて、リ
ンを注入材料として採用し抵抗51をP形半導体抵抗素
子として形成するようにしてもよい。
Further, in the above embodiment, an example was explained in which boron was used as the implantation material for the resistor 51, but instead of this, phosphorus could be used as the implantation material and the resistor 51 could be formed as a P-type semiconductor resistance element. Good too.

また、本発明の実施にあたっては、抵抗51に代えて、
抵抗52に負の抵抗温度特性をもたせるように実施して
もよい。
Furthermore, in implementing the present invention, instead of the resistor 51,
The resistor 52 may be provided with a negative resistance temperature characteristic.

また、前記実施例においては、各7ラフシヤランプ10
a〜10fの異常検出にあたり本発明が適用された例に
ついで述べたが、これに限らず、モータの断続的駆動制
御等のような各種電気的負荷の間欠的制御における電流
検出に本発明を適用して実施してもよい。
In addition, in the embodiment, each of the 7 rough shear lamps 10
An example in which the present invention is applied to abnormality detection of a to 10f has been described, but the present invention is not limited to this, and the present invention can be applied to current detection in intermittent control of various electrical loads such as intermittent drive control of a motor. It may be applied and implemented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した車両用方向指示装置の電気回
路図、第2図はON抵抗値Ronのチップ温度tとの関
係を示すグラフ、ttS3図は電流感度を全ロッドに頁
り一定にするための抵抗値Rsのチップ温度tとの関係
を示すグラフ、及び第4図は、各ロッドの分割比(Rs
/R)を一定としたときの抵抗値Rsのチップ温度tと
の関係を示すグラフである。 符号の説明 10゛a〜10f・・・7ラツンヤランプ、20・・・
発振制御回路(制御信号発生手段)、40・・・パワー
MO8FET。 41・・・ソース(入力端子)、 42・・・ドレイン(出力端子)、 43・・・デート(制御端子)、 50・・・分圧回路、 51.52・・・抵抗、 E・・・半導体チップ。
Figure 1 is an electric circuit diagram of a vehicle direction indicator to which the present invention is applied, Figure 2 is a graph showing the relationship between ON resistance value Ron and chip temperature t, and Figure ttS3 is a graph showing the current sensitivity of all rods, which is constant. The graph showing the relationship between the resistance value Rs and the chip temperature t for the purpose of
2 is a graph showing the relationship between the resistance value Rs and the chip temperature t when R) is kept constant. Explanation of symbols 10゛a~10f...7 Ratsunya lamp, 20...
Oscillation control circuit (control signal generation means), 40...power MO8FET. 41... Source (input terminal), 42... Drain (output terminal), 43... Date (control terminal), 50... Voltage divider circuit, 51.52... Resistor, E... semiconductor chip.

Claims (3)

【特許請求の範囲】[Claims] (1)一対の抵抗(51、52)と、制御端子(43)
、抵抗(51)の一端に接続された入力端子(41)、
及び抵抗(52)の他端に接続された出力端子(42)
を有するMOSFET(40)とを備え、このMOSF
ET(40)がその制御端子(43)にて制御信号発生
手段(20)から一連の制御信号を受けて導通したとき
負荷に流入する負荷電流の一部がMOSFET(40)
にその入力端子(41)から流入しその出力端子(42
)から流出するとともに、前記負荷電流の残余の部分が
一対の抵抗(51、52)を通して流れ、かつこれらの
抵抗(51、52)の一方がその流入電流を検出し他方
の抵抗との共通端から検出電圧を発生し、さらにこの検
出電圧に基き前記負荷電流の状態を検出するようにした
電流検出装置において、一対の抵抗(51、52)の一
方を、負の抵抗温度特性を有する材料により形成するよ
うにしたことを特徴とする電流検出装置。
(1) A pair of resistors (51, 52) and a control terminal (43)
, an input terminal (41) connected to one end of the resistor (51),
and an output terminal (42) connected to the other end of the resistor (52).
MOSFET (40) having
When the ET (40) receives a series of control signals from the control signal generating means (20) at its control terminal (43) and becomes conductive, a portion of the load current flowing into the load flows through the MOSFET (40).
flows from its input terminal (41) into its output terminal (42).
), the remaining part of said load current flows through a pair of resistors (51, 52), and one of these resistors (51, 52) detects the incoming current and connects it to a common terminal with the other resistor. In the current detection device, one of the pair of resistors (51, 52) is made of a material having negative resistance temperature characteristics. A current detection device characterized in that the current detection device is configured to have a shape.
(2)一対の抵抗(51、52)の一方を、多結晶シリ
コン抵抗材料にボロン又はリンをイオン注入して形成す
るようにしたことを特徴とする特許請求の範囲第1項に
記載の電流検出装置。
(2) The current according to claim 1, characterized in that one of the pair of resistors (51, 52) is formed by ion-implanting boron or phosphorus into a polycrystalline silicon resistance material. Detection device.
(3)一対の抵抗(51、52)の各抵抗値の比率がほ
ぼ製品ロッド毎に一定値となるように前記ボロン又はリ
ンのイオン注入濃度を定め、かつトリミング調整してい
ることを特徴とする特許請求の範囲第2項に記載の電流
検出装置。
(3) The boron or phosphorus ion implantation concentration is determined and the trimming is adjusted so that the ratio of the resistance values of the pair of resistors (51, 52) is approximately constant for each product rod. A current detection device according to claim 2.
JP62068611A 1987-03-23 1987-03-23 Vehicle turn signal device Expired - Fee Related JP2611214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62068611A JP2611214B2 (en) 1987-03-23 1987-03-23 Vehicle turn signal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62068611A JP2611214B2 (en) 1987-03-23 1987-03-23 Vehicle turn signal device

Publications (2)

Publication Number Publication Date
JPS63234166A true JPS63234166A (en) 1988-09-29
JP2611214B2 JP2611214B2 (en) 1997-05-21

Family

ID=13378734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62068611A Expired - Fee Related JP2611214B2 (en) 1987-03-23 1987-03-23 Vehicle turn signal device

Country Status (1)

Country Link
JP (1) JP2611214B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490831A (en) * 1987-09-30 1989-04-07 Shindengen Electric Mfg Electronic direction indicator
JPH02164629A (en) * 1988-12-19 1990-06-25 Shindengen Electric Mfg Co Ltd Electronic direction indicator
JPH02169340A (en) * 1988-12-23 1990-06-29 Shindengen Electric Mfg Co Ltd Electronic direction indicator
JPH0736211U (en) * 1993-12-10 1995-07-04 八重洲無線株式会社 Power switch circuit
JP2003310842A (en) * 2003-06-05 2003-11-05 Aruze Corp Game machine
EP1657557A1 (en) * 2004-11-04 2006-05-17 Hitachi, Ltd. Current sensing method and current sensing device, power conversion device using this current sensing device, and vehicle using this power conversion device
JP2008049974A (en) * 2006-08-28 2008-03-06 Nippon Yusoki Co Ltd Electric lamp driving device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111618A (en) * 1979-02-20 1980-08-28 Nippon Electric Co Overcurrent detecting circuit
JPS5625266U (en) * 1979-08-06 1981-03-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111618A (en) * 1979-02-20 1980-08-28 Nippon Electric Co Overcurrent detecting circuit
JPS5625266U (en) * 1979-08-06 1981-03-07

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490831A (en) * 1987-09-30 1989-04-07 Shindengen Electric Mfg Electronic direction indicator
JPH05262B2 (en) * 1987-09-30 1993-01-05 Shindengen Electric Mfg
JPH02164629A (en) * 1988-12-19 1990-06-25 Shindengen Electric Mfg Co Ltd Electronic direction indicator
JPH02169340A (en) * 1988-12-23 1990-06-29 Shindengen Electric Mfg Co Ltd Electronic direction indicator
JPH0736211U (en) * 1993-12-10 1995-07-04 八重洲無線株式会社 Power switch circuit
JP2003310842A (en) * 2003-06-05 2003-11-05 Aruze Corp Game machine
EP1657557A1 (en) * 2004-11-04 2006-05-17 Hitachi, Ltd. Current sensing method and current sensing device, power conversion device using this current sensing device, and vehicle using this power conversion device
JP2006136086A (en) * 2004-11-04 2006-05-25 Hitachi Ltd Current detection method, current detector, power converter using current detector and vehicle using power converter
US7310001B2 (en) 2004-11-04 2007-12-18 Hitachi, Ltd. Current sensing method and current sensing device, power conversion device using this current sensing device, and vehicle using this power conversion device
JP2008049974A (en) * 2006-08-28 2008-03-06 Nippon Yusoki Co Ltd Electric lamp driving device

Also Published As

Publication number Publication date
JP2611214B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
EP0039215B1 (en) Temperature compensating voltage generator circuit
US5747978A (en) Circuit for generating a reference voltage and detecting an under voltage of a supply and corresponding method
US4806804A (en) Mosfet integrated delay line for digital signals
US5055768A (en) Temperature compensator for hall effect circuit
US8102156B2 (en) Differential amplifier circuit and electric charge control apparatus using differential amplifier circuit
JPS63234166A (en) Current detector
US7443178B2 (en) Circuit arrangement of the temperature compensation of a measuring resistor structure
US11300618B2 (en) Switch failure detection device
JP5629016B2 (en) Independent cell balancing
US9207694B2 (en) Method of measuring characteristics of a protection circuit for a linear voltage regulator
US8237505B2 (en) Signal amplification circuit
US4774492A (en) Slotted integrated circuit resistor
JP2987302B2 (en) Current sensing resistor and adjustment method thereof
CN108334148B (en) Improved voltage comparator
CN108319316B (en) Band-gap reference voltage source circuit
CN204681322U (en) The amplifier circuit that a kind of adjustable gain is whole and there is the Hall element of this circuit
JP3789068B2 (en) Temperature detection apparatus and temperature detection method
CN213934663U (en) Current trimming circuit for band-gap reference
JPS63241469A (en) Current detector
US20150323607A1 (en) Method for adjusting a current sensor
JPH0327407A (en) Regulating circuit of inductive load current
JP3676595B2 (en) Current detection circuit
JPH0640566B2 (en) Semiconductor integrated circuit
JPH01217611A (en) Constant voltage generating circuit
KR102416199B1 (en) Apparatus for protecting field effect transistor and system for preventing over-current using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees