JPS63234013A - Resin composition for semiconductor sealing use - Google Patents

Resin composition for semiconductor sealing use

Info

Publication number
JPS63234013A
JPS63234013A JP6954487A JP6954487A JPS63234013A JP S63234013 A JPS63234013 A JP S63234013A JP 6954487 A JP6954487 A JP 6954487A JP 6954487 A JP6954487 A JP 6954487A JP S63234013 A JPS63234013 A JP S63234013A
Authority
JP
Japan
Prior art keywords
benzotriazole
resin
water
epoxy resin
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6954487A
Other languages
Japanese (ja)
Other versions
JPH0618860B2 (en
Inventor
Takatoki Fukuda
福田 孝祝
Kenji Mori
健次 森
Masanori Tokita
時田 正憲
Eiichi Fujimoto
栄一 藤本
Toshitake Otaki
大滝 俊武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP62069544A priority Critical patent/JPH0618860B2/en
Publication of JPS63234013A publication Critical patent/JPS63234013A/en
Publication of JPH0618860B2 publication Critical patent/JPH0618860B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To obtain the titled composition causing no corrosion of aluminum electrodes and/or copper fine wires even if water infiltrated into packages, by incorporating an epoxy resin with benzotriazole (water-soluble amine salt) as the rust preventive. CONSTITUTION:The objective composition can be obtained by incorporating (A) 100pts.wt. of an epoxy resin with (B) as the rust preventive, pref. 0.1-2pts. wt. of benzotriazole or a water-soluble amine salt therefrom (e.g., benzotriazole monoethanolamine salt).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体素子と外部接続リードとの間を金又は
金合金若しくは銅ボンディング線で接合した半導体を封
止する樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a resin composition for sealing a semiconductor in which a semiconductor element and an external connection lead are bonded using gold, a gold alloy, or a copper bonding wire.

より詳しくはベンゾトリアゾール又はベンゾトリアゾー
ルに種々のアミン塩を付加した防錆剤を半導体封止用樹
脂中に添加した組成物に関する。
More specifically, the present invention relates to a composition in which benzotriazole or a rust preventive agent prepared by adding various amine salts to benzotriazole is added to a resin for semiconductor encapsulation.

(従来技術) 従来、トランジスター、IC5LSIなど大部分の半導
体素子は、半導体素子上の電極と外部接続リードとを金
又は金合金細線でボンディングした後、温度、湿度、汚
染物質などの外部環境変化から保護し、外部接続リード
を個々に絶縁保持すると共に、機械的振動および衝撃な
どによる破損、デバイス特性変化を防止するために封止
用樹脂でパッケージされている。
(Prior art) Conventionally, most semiconductor devices such as transistors and IC5LSIs are protected from external environmental changes such as temperature, humidity, and pollutants after bonding electrodes on the semiconductor device and external connection leads with gold or gold alloy thin wires. It is packaged with a sealing resin to protect the external connection leads, insulate them individually, and prevent damage and changes in device characteristics due to mechanical vibration and impact.

これらの封止用樹脂に要求される特性は、パッケージ形
態やサイズの違いによって要求特性が異なるものの、高
耐湿性で作業性がよく、且つ低応力性、高熱伝導性、耐
熱衝撃性が必要に応じて要求されている。これらに適合
する樹脂として一般的にエポキシ樹脂、シリコン樹脂、
アルキンド樹脂などが使用されている。
The properties required for these sealing resins vary depending on the package form and size, but they must have high moisture resistance, good workability, low stress, high thermal conductivity, and thermal shock resistance. Requested accordingly. Commonly used resins include epoxy resin, silicone resin,
Alkind resin etc. are used.

(発明が解決しようとする問題点) 線は、すぐれたボンディング特性を有するものの、高価
であるためその省貴金属化が進められており、代替金属
材料として銅基材のボンディング線に置換させる問題が
ある。
(Problems to be Solved by the Invention) Although wires have excellent bonding properties, they are expensive, so the use of precious metals is being promoted, and there is a problem of replacing them with copper-based bonding wires as an alternative metal material. be.

又、半導体生産技術の急速な革新は、年を追う毎に目ざ
ましく進展し、その機能および形態も多様化し、同一機
能ならより薄形化、軽量化、小形化に、同一容積ならシ
ステムの複合化、多機能化する傾向にあり、そのパッケ
ージ形態、サイズ、実装方法なども多様化している。
In addition, the rapid innovation in semiconductor production technology has progressed at a remarkable pace over the years, and its functions and forms have become more diverse. There is a tendency for devices to become more complex and multi-functional, and their packaging forms, sizes, and mounting methods are also diversifying.

例えば、ボンディング線の接合は、25〜30μmφの
細線の先端に形成されたボールを半導体素子上の100
〜130μ園角のアルミ蒸着電極に圧着する接合である
ため、接合部の信頼性と同様に環境変化に対する耐食性
への配慮が必要である。金細線は化学的に安定であるが
、銅細線は酸化されやすく、環境変化に対する耐食性に
欠け、その接合部は前者では金−アルミ、後者では銅−
アルミの異種接合であり、水分の存在によっては局部電
池を構成し、アルミが腐食されて半導体素子の機能を阻
害する問題を生ずる。
For example, when bonding wires are bonded, a ball formed at the tip of a thin wire with a diameter of 25 to 30 μm is connected to a 100 mm diameter wire on a semiconductor element.
Since the bond is bonded to an aluminum vapor-deposited electrode with a diameter of ~130 μm, consideration must be given to corrosion resistance against environmental changes as well as the reliability of the bonded portion. Although thin gold wires are chemically stable, thin copper wires are easily oxidized and lack corrosion resistance against environmental changes.
This is a dissimilar junction of aluminum, and depending on the presence of moisture, it can form a local battery, causing problems such as corrosion of the aluminum and inhibiting the functionality of semiconductor devices.

一方、半導体素子の封止用樹脂は、次の要求特性(■成
形収縮率が小さく、且つ硬化物の線膨張係数が金属フレ
ームに返信し、外部リードとの密着性がよいこと、■イ
オン性不純物の含有量が少ないこと、■熱伝導性がよい
こと、■成形時の流動性がよく、成形時間が短かく、離
On the other hand, the resin for encapsulating semiconductor devices has the following required properties (■ low molding shrinkage, linear expansion coefficient of the cured product returns to the metal frame, good adhesion to external leads, ■ ionicity) Low content of impurities, ■ Good thermal conductivity, ■ Good fluidity during molding, short molding time, and easy release.

型性がよいこと、■金型汚れな(、パリが少ないこと)
を備えたエポキシ樹脂やシリコン樹脂が使用されている
Good moldability, ■Mold is dirty (and there is little dust)
Epoxy resins and silicone resins are used.

しかし、一般にエポキシ樹脂は、過剰のエビク品tドリ
ンと低分子量の副生成物の除去および脱ハロゲン反応に
より生じた塩化ナトリウムが除去されて精製されるが、
エポキシ樹脂中には第1図(A) 、 (B)に示すよ
うな副生成物が残存している。
However, in general, epoxy resins are purified by removing excess liquid and low molecular weight by-products and removing sodium chloride produced by dehalogenation reaction.
By-products as shown in FIGS. 1(A) and 1(B) remain in the epoxy resin.

第1図 (F3)   )−to−CH2−CH−CH2−C1
はこれらの塩素が遊離し、アルミ電極が腐食され、半導
体製品の耐湿信頼性を著しく低下させるという問題があ
る。
Figure 1 (F3) )-to-CH2-CH-CH2-C1
However, there is a problem in that these chlorine is liberated, corroding the aluminum electrode, and significantly reducing the moisture resistance reliability of semiconductor products.

又、挿入型デバイスのDIPでは面積率が大きいため、
薄形化、小形化の多ピン用として表面実装用デバイ7、
(7)SOP、FP、、PLCCなどが急速に普及しつ
つあるが、これらの表面実装用デバイスは実装後におい
て、その耐湿信頼性が著しく低下するという問題がある
。その原因は、封止用樹脂によるパッケージの成形、ポ
ストキュアから実装までの間にパッケージの吸湿が起り
、半田付時に半田溶融温度にさらされると吸湿水分が爆
発的に膨張し、この蒸気圧により半導体素子と樹脂界面
にM離が起り、この剥離部分に水分が浸入して半導体素
子上のアルミ電極を腐食させるためである。
In addition, since the area ratio is large in the DIP of an insertion type device,
Surface mount device 7 for thinner and smaller multi-pin applications,
(7) SOPs, FPs, PLCCs, etc. are rapidly becoming popular, but these surface mount devices have a problem in that their moisture resistance reliability decreases significantly after mounting. The cause of this is that the package absorbs moisture during the process of molding the package with the sealing resin, post-curing, and mounting, and when exposed to the solder melting temperature during soldering, the absorbed moisture expands explosively, and this vapor pressure causes the package to absorb moisture. This is because M separation occurs at the interface between the semiconductor element and the resin, and moisture infiltrates into this peeled part, corroding the aluminum electrode on the semiconductor element.

本発明は、かかる問題を解決することを目的とするもの
で、封止用樹脂中に微量のイオン性不純物が含有されて
いても、パッケージが吸湿し、半田付時に吸湿水分が爆
発的に膨張し、その蒸気圧により半導体素子と樹脂界面
に剥離が起り、その剥離部分に水分が浸入しても、パッ
ケージ内の半導体素子上のアルミ電極と銅細線の腐食を
防止できる半導体封止用樹脂組成物を提供することにあ
る。
The present invention aims to solve this problem. Even if the sealing resin contains a small amount of ionic impurities, the package absorbs moisture and expands explosively during soldering. However, even if the vapor pressure causes peeling at the interface between the semiconductor element and the resin, and moisture infiltrates into the peeled part, this resin composition for semiconductor encapsulation can prevent corrosion of the aluminum electrodes and thin copper wires on the semiconductor element in the package. It's about providing things.

(問題点を解決するための手段) 本発明者らは、上述の目的を解決するために鋭意検討を
重ねた結果、半導体封止用エポキシ樹脂中にベンゾトリ
アゾール又はベンゾトリアゾールの水溶性アミン塩を含
有させることにより、前記樹脂中に微量のイオン性不純
物が存在し、又パッケージ内に水分が浸入しても軟土の
問題点を排除し、半導体素子上のアルミ電極と銅細線の
腐食を完全に防止できることを見出して本発明を完成さ
せたものである。
(Means for Solving the Problems) As a result of intensive studies to solve the above-mentioned object, the present inventors have found that benzotriazole or a water-soluble amine salt of benzotriazole is added to an epoxy resin for semiconductor encapsulation. By including a small amount of ionic impurities in the resin, and even if water enters the package, the problem of soft soil can be eliminated, and corrosion of aluminum electrodes and thin copper wires on semiconductor elements can be completely prevented. The present invention was completed by discovering that this can be prevented.

本発明は、エポキシ樹脂中にベンゾトリアゾール又はベ
ンゾトリアゾールの水溶性アミン塩を含有させたことを
特徴とするものである。
The present invention is characterized in that benzotriazole or a water-soluble amine salt of benzotriazole is contained in the epoxy resin.

本発明の構成について以下に説明する。The configuration of the present invention will be explained below.

本発明で使用するエポキシ樹脂とは、その主樹脂がクレ
ゾール又はフェノールノボラック型成物、酸無水物、フ
ェノール樹脂のいずれかを選択使用するが、低圧トラン
スファー封止用樹脂にはノボラック型エポキシ樹脂とフ
ェノール樹脂との配合にイミダゾール系化合物の硬化促
進剤を併用し、更に、他の配合剤として、シリカ、アル
ミナなどの充填剤、二酸化アンチモンの難燃助剤、その
他適量の顔料、離型剤を含有させた公知配合の半導体封
止用エポキシ樹脂である。
The epoxy resin used in the present invention is selected from cresol, phenol novolak type compound, acid anhydride, and phenol resin as the main resin, but novolac type epoxy resin is used for low pressure transfer sealing resin. A curing accelerator such as an imidazole compound is used in combination with the phenol resin, and other additives include fillers such as silica and alumina, flame retardant aids such as antimony dioxide, and appropriate amounts of pigments and mold release agents. This is an epoxy resin for semiconductor encapsulation with a known formulation.

本発明で使用するベンゾトリアゾールの水溶性アミン塩
とは、ベンゾトリアゾール・モノエタノ−匈、ベンゾト
リアゾール・ジエチルアミン塩、ベンゾトリアゾール・
シクロヘキシルアミン塩、ベンゾトリアゾール・モルホ
リン塩、ベンゾトリアゾール・ジイソプロピルアミン塩
、ベンゾトリアゾール・イソプロピルアミン塩、メチル
ベンゾトリアゾール・シクロヘキシルアミン塩などであ
って、ベンゾトリアゾールに種々のアミンを付加させて
水溶性に変化させたものである。
The water-soluble amine salts of benzotriazole used in the present invention include benzotriazole monoethanol, benzotriazole diethylamine salt, and benzotriazole diethylamine salt.
Cyclohexylamine salt, benzotriazole/morpholine salt, benzotriazole/diisopropylamine salt, benzotriazole/isopropylamine salt, methylbenzotriazole/cyclohexylamine salt, etc., which are made water-soluble by adding various amines to benzotriazole. This is what I did.

ベンゾトリアゾール又はベンゾトリアゾールの水溶性ア
ミン塩の使用量は、主樹脂のエポキシ樹脂100重量部
に対して、0.01〜5重量部、好ましくは0.1〜2
重量部の範囲である。その使用量が0.01重量部未満
であるときは、エボキ成できず、防食効果が期待できな
くなる。
The amount of benzotriazole or water-soluble amine salt of benzotriazole used is 0.01 to 5 parts by weight, preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the epoxy resin as the main resin.
Parts by weight range. If the amount used is less than 0.01 part by weight, no epoxy can be formed and no anticorrosion effect can be expected.

逆に、5重量部を越えるときは、使用量に対応する防食
効果の向上が認められず、飽和に達するので経済的に不
利となり、且つエポキシ樹脂からブリードし、低圧トラ
ンスファー法によ・るモールドの作業性を阻害するので
好ましくない。
On the other hand, if the amount exceeds 5 parts by weight, no improvement in the anticorrosion effect corresponding to the amount used will be observed, and saturation will be reached, resulting in an economic disadvantage. This is not preferable because it impedes workability.

(作 用) 本発明では、エポキシ樹脂中に予めベンゾトリアゾール
又はベンゾトリアゾールの水溶性アミン塩を含有させで
あるので、半導体素子上のアルミ電極や銅細線を腐食す
る水分がパッケージ内に浸入しても、この水分を逆に利
用して、エポキシ樹脂中にベンゾトリアゾール又はベン
ゾトリアゾールの水溶性アミン塩が溶出して、アルミ電
極や銅細線の表面に強固な防食皮膜を形成するので、エ
ポキシ樹脂の精製過程で残留する微量のイオン性不純物
および浸入する水分の影響を受けても、アルミ電極や銅
細線が腐食されることが全くない。
(Function) In the present invention, since the epoxy resin contains benzotriazole or a water-soluble amine salt of benzotriazole in advance, moisture that corrodes the aluminum electrodes and thin copper wires on the semiconductor element does not enter the package. However, by utilizing this moisture, benzotriazole or a water-soluble amine salt of benzotriazole is eluted into the epoxy resin, forming a strong anti-corrosion film on the surface of the aluminum electrode or thin copper wire. Even if they are affected by minute amounts of ionic impurities that remain during the purification process and moisture that enters, the aluminum electrodes and thin copper wires will not be corroded at all.

(実施例) ベンゾトリアゾール・エタノールアミン塩を各種配合し
た半導体封止用ノボラックエポキシ樹脂を低圧トランス
ファーモールドにより成型し、12ピンのDIP−IC
を作成(注1)した。各パッケージについて成型作業性
(注3)の観察およびPCT試験(注2)を行い、IC
の不良個数を調べ、その結果を第1表に併記した。
(Example) Novolak epoxy resin for semiconductor sealing containing various benzotriazole/ethanolamine salts was molded by low-pressure transfer molding to form a 12-pin DIP-IC.
was created (Note 1). We conducted molding workability (Note 3) and PCT tests (Note 2) for each package.
The number of defective pieces was investigated and the results are also listed in Table 1.

(注1)試験に供する12ピンDIP−ICは、半導体
素子上のアルミ電極と外部リードとの接合を25μ糟φ
の銅ボンディング線を用いて行なった。
(Note 1) The 12-pin DIP-IC used for the test has a 25μ diameter
This was done using a copper bonding wire.

(注2)PCT試験とは、高温高湿下における腐食促進
試験であって、圧力2気圧、湿度RH100%、湿度1
21℃のそ外下に各パッケージを放置し、経過時間にお
ける半導体の不良個数を調べるものである。
(Note 2) The PCT test is a corrosion acceleration test under high temperature and high humidity, with a pressure of 2 atmospheres, humidity of 100%, and humidity of 1
Each package was left outside at 21° C., and the number of defective semiconductors over time was determined.

(注3)成型作業性とは、成形サイクルと金型汚水の問
題を評価す・る。
(Note 3) Molding workability evaluates molding cycle and mold sewage problems.

結果かられかるように、実施例1〜4は、PCT試験の
きびしい条件にもかかわらず、極めて良好なものとなる
が、比較例1は、ベンゾトリアゾール・エタノールアミ
ン塩の量が不足するため、500時間経過後に不良数が
多くなる傾向を示すので好ましくない、比較例2は、ベ
ンゾトリアゾール・エタノールアミン塩の量が多過ぎる
ため、成型作業性に欠けるので好ましくない、従ってP
CT試験は行わなかった。
As can be seen from the results, Examples 1 to 4 were very good despite the severe conditions of the PCT test, but Comparative Example 1 had insufficient amount of benzotriazole/ethanolamine salt. Comparative Example 2, which is unfavorable because the number of defects tends to increase after 500 hours, is unfavorable because the amount of benzotriazole/ethanolamine salt is too large, resulting in poor molding workability.
CT examination was not performed.

結果には示していないが、現在、多mされている金又は
金合金ボンディング線でもって、半導体素子上のアルミ
電極と外部リードとの接合を行った後、本発明にかかる
封止樹脂でパッケージすれば、実施例と同様な結果を得
ることができる。又、シリコン樹脂、アルキッド樹脂な
どにベンゾトリアゾール又はベンゾトリアゾールの水溶
性アミン塩を含有させた封止用樹脂とすることにより、
本発明と同様に半導体の接合部、すなわち金細線−アル
ミ電極、銅細線−アルミ電極の浸入する水分による腐食
防止を期待し得るものとなる。
Although not shown in the results, after the aluminum electrodes on the semiconductor element and the external leads are bonded using gold or gold alloy bonding wires, which are currently used in large quantities, packaging is performed using the sealing resin according to the present invention. Then, the same results as in the example can be obtained. In addition, by using a sealing resin containing benzotriazole or a water-soluble amine salt of benzotriazole in silicone resin, alkyd resin, etc.
Similar to the present invention, it can be expected to prevent corrosion due to moisture entering semiconductor junctions, that is, thin gold wire-aluminum electrode and thin copper wire-aluminum electrode.

(発明の効果) 以上説明した如く、本発明は、エポキシ樹脂中に予めベ
ンゾトリアゾール又はベンゾトリアゾールの水溶性アミ
ン塩を含有させた半導体封止へ樹脂としであるので、半
導体を封止後、半導体素子上のアルミ電極や銅細線を腐
食する水分がパッケージ内に浸入しても、この水分を逆
に利用してベンゾトリアゾール又はベンゾトリアゾール
の水溶性アミン塩が溶出して、アルミ電極や銅細線の表
面に強固な防食皮膜を形成するので、浸入する水分の影
響を受けたり、エポキシ樹脂の精製工程で残留する微量
のイオン不純物による影響を受けても、アルミ電極や銅
細線が腐食されないので、半導体パッケージの実装後の
信頼性を一段と向上させ得るものとなる。
(Effects of the Invention) As explained above, the present invention uses a resin for semiconductor encapsulation in which benzotriazole or a water-soluble amine salt of benzotriazole is pre-contained in an epoxy resin. Even if moisture that corrodes the aluminum electrodes and thin copper wires on the device infiltrates into the package, this moisture will be used to elute benzotriazole or a water-soluble amine salt of benzotriazole, which will corrode the aluminum electrodes and thin copper wires. Since a strong anti-corrosion film is formed on the surface, aluminum electrodes and fine copper wires will not be corroded even if they are affected by infiltrating moisture or trace amounts of ionic impurities remaining in the epoxy resin refining process. This makes it possible to further improve the reliability of the package after it is mounted.

Claims (1)

【特許請求の範囲】[Claims]  エポキシ樹脂中にベンゾトリアゾール又はベンゾトリ
アゾールの水溶性アミン塩を含有させたことを特徴とす
る半導体封止用樹脂組成物。
A resin composition for semiconductor encapsulation, characterized in that an epoxy resin contains benzotriazole or a water-soluble amine salt of benzotriazole.
JP62069544A 1987-03-23 1987-03-23 Resin composition for semiconductor encapsulation Expired - Lifetime JPH0618860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62069544A JPH0618860B2 (en) 1987-03-23 1987-03-23 Resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62069544A JPH0618860B2 (en) 1987-03-23 1987-03-23 Resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JPS63234013A true JPS63234013A (en) 1988-09-29
JPH0618860B2 JPH0618860B2 (en) 1994-03-16

Family

ID=13405765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62069544A Expired - Lifetime JPH0618860B2 (en) 1987-03-23 1987-03-23 Resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JPH0618860B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143952A (en) * 2004-11-24 2006-06-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006176555A (en) * 2004-12-21 2006-07-06 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2008098646A (en) * 2007-10-17 2008-04-24 Sharp Corp Semiconductor device
JP2011119758A (en) * 2011-02-16 2011-06-16 Sharp Corp Semiconductor device
WO2024024503A1 (en) * 2022-07-26 2024-02-01 信越化学工業株式会社 Thermally conductive two-component addition curing type silicone composition, cured product, and sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198525A (en) * 1982-05-14 1983-11-18 Sanyurejin Kk Epoxy resin composition
JPS60235829A (en) * 1984-05-09 1985-11-22 Masako Matsumoto Epoxy resin composition
JPS61236817A (en) * 1985-04-15 1986-10-22 Masako Matsumoto Curing agent for epoxy resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58198525A (en) * 1982-05-14 1983-11-18 Sanyurejin Kk Epoxy resin composition
JPS60235829A (en) * 1984-05-09 1985-11-22 Masako Matsumoto Epoxy resin composition
JPS61236817A (en) * 1985-04-15 1986-10-22 Masako Matsumoto Curing agent for epoxy resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143952A (en) * 2004-11-24 2006-06-08 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2006176555A (en) * 2004-12-21 2006-07-06 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2008098646A (en) * 2007-10-17 2008-04-24 Sharp Corp Semiconductor device
JP2011119758A (en) * 2011-02-16 2011-06-16 Sharp Corp Semiconductor device
WO2024024503A1 (en) * 2022-07-26 2024-02-01 信越化学工業株式会社 Thermally conductive two-component addition curing type silicone composition, cured product, and sheet

Also Published As

Publication number Publication date
JPH0618860B2 (en) 1994-03-16

Similar Documents

Publication Publication Date Title
KR100858967B1 (en) Transparent epoxy resin composition for molding optical semiconductor and optical semiconductor integrated circuit device using the same
TW201030907A (en) Semiconductor device
JPH10144718A (en) Tin group lead free solder wire and ball
KR19980018709A (en) Resin-sealed semiconductor device and manufacturing method
WO2005037888A1 (en) Epoxy resin composition and semiconductor device
JP2001284792A (en) Solder material and method for manufacturing semiconductor device using the same
JPS63234013A (en) Resin composition for semiconductor sealing use
KR100260390B1 (en) Epoxy resin composition for die attachment
JP2004358540A (en) High-temperature brazing filler metal
JP4022013B2 (en) Zn alloy for die bonding
JP3206449B2 (en) Resin-sealed semiconductor device
JP5141125B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008231242A (en) Epoxy resin composition and semiconductor device
JP5141857B2 (en) Epoxy resin composition and semiconductor device
JPH10324795A (en) Epoxy resin composition for sealing semiconductor and semiconductor apparatus
JP5029133B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2008045075A (en) Epoxy resin composition for sealing and electronic component device
JP2816290B2 (en) Resin-sealed semiconductor device
JPH03291340A (en) Copper alloy extra fine wire for semiconductor device and semiconductor device
JPH01291435A (en) Extrafine copper alloy wire for semiconductor device and semiconductor device
JPH06271653A (en) Resin-encapsulated semiconductor device
JP7270201B2 (en) Epoxy resin composition and resin encapsulation substrate
JP2001011289A (en) Epoxy resin composition and semiconductor device
JPS62105459A (en) Semiconductor structure
JPH0521343B2 (en)