JPS63232415A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63232415A
JPS63232415A JP6602687A JP6602687A JPS63232415A JP S63232415 A JPS63232415 A JP S63232415A JP 6602687 A JP6602687 A JP 6602687A JP 6602687 A JP6602687 A JP 6602687A JP S63232415 A JPS63232415 A JP S63232415A
Authority
JP
Japan
Prior art keywords
amorphous silicon
conductivity type
silicon film
hydrogenated amorphous
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6602687A
Other languages
Japanese (ja)
Inventor
Hiroshi Fujioka
洋 藤岡
Kanetake Takasaki
高崎 金剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6602687A priority Critical patent/JPS63232415A/en
Publication of JPS63232415A publication Critical patent/JPS63232415A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve current/voltage characteristics by irradiating an opposed conductivity type amorphous silicon hydride film with hydrogen plasma. CONSTITUTION:When the junction of one conductivity type single crystal silicon film 2 and the opposing conductivity type amorphous silicon hydride film 3 is formed and the opposed conductivity type amorphous silicon hydride film 3 is irradiated with hydrogen plasma, hydrogen diffuses in the reverse conductivity type amorphous silicon hydride film 3, hydrogen atoms are taken in to dangling bonds on the interface of amorphous silicon and crystalline silicon, and the dangling bonds disappear. Accordingly, generation-recombination currents are reduced, thus acquiring a hetero-diode having excellent current/ voltage characteristics.

Description

【発明の詳細な説明】 〔概要〕 一導電型の単結晶シリコン膜と反対導電型の水素化アモ
ルファスシリコン膜とを接触させて構成するヘテロダイ
オードの電流/電圧特性を向上させる改良である。
DETAILED DESCRIPTION OF THE INVENTION [Summary] This is an improvement that improves the current/voltage characteristics of a heterodiode formed by contacting a single-crystal silicon film of one conductivity type with a hydrogenated amorphous silicon film of the opposite conductivity type.

ヘテロダイオードを構成する水素化アモルファスシリコ
ン膜に水素プラズマ照射をなすヘテロダイオードの製造
方法である。
This is a method for manufacturing a hetero diode in which a hydrogenated amorphous silicon film constituting the hetero diode is irradiated with hydrogen plasma.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体装置の製造方法の改良に関する。特に
、ヘテロダイオードの電流/電圧特性を向上する改良に
関する。
The present invention relates to an improvement in a method for manufacturing a semiconductor device. In particular, it relates to improvements that improve the current/voltage characteristics of heterodiodes.

〔従来の技術〕[Conventional technology]

一導電型の単結晶シリコン膜と反対導電型の水素化アモ
ルファスシリコン膜との接合をもって構成するヘテロダ
イオードが知られている。
2. Description of the Related Art Heterodiodes are known that are constructed by joining a single-crystal silicon film of one conductivity type and a hydrogenated amorphous silicon film of an opposite conductivity type.

第2図参照 図において、1は2,000^厚の金膜よりなる正電極
であり、2は500 g m厚の1O15c11−3の
p型単結品シリコン膜であり、3は5,000^厚の1
00Ω・0層のn型の水素化アモルファスシリコン膜で
あり、4は1IL−厚のアルミニウム膜よりなる負電極
である。
In the diagram shown in Figure 2, 1 is a positive electrode made of a 2,000^ thick gold film, 2 is a p-type single crystal silicon film of 1O15c11-3 with a thickness of 500 gm, and 3 is a 5,000^ thick gold film. ^Thick 1
It is an n-type hydrogenated amorphous silicon film of 00 Ω/0 layer, and 4 is a negative electrode made of an aluminum film of 1 IL-thickness.

このヘテロダイオードを製造するには、  500#L
膳厚ノ1015cm−3のplA単結晶シリ:17H2
上に、プラズマCVD法を使用して、 5,000^厚
の 100Ω・0層のn型の水素化アモルファスシリコ
ン膜3を形成し、  50074■厚の1015c層−
3のp型車結晶シリコン膜2の下面に金膜lを蒸着また
はスパッタし、 5.000人厚の 100Ω・cmの
n型の水素化アモルファスシリコン膜3の上面にアルミ
ニウム膜4を蒸着また□はスパッタする。
To manufacture this hetero diode, 500#L
plA single crystal silicon with a thickness of 1015 cm-3: 17H2
On top of this, a 100Ω/0 layer of n-type hydrogenated amorphous silicon film 3 with a thickness of 5,000mm is formed using the plasma CVD method, and a 1015C layer with a thickness of 50074mm is formed.
A gold film 1 is evaporated or sputtered on the lower surface of the p-type crystal silicon film 2 of 3, and an aluminum film 4 is evaporated or sputters.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

たC1上記のプラズマCVD法を使用して、水素化アモ
ルファスシリコン膜を形成する工程において、単結晶シ
リコン膜と水素化アモルファスシリコン膜との界面に欠
陥が発生し、発生・再結合電流が増加するために逆方向
電圧に対して電流値が大きくなり、また、順方向電圧印
加時にn値が大きくなるという欠点がある。
C1 In the process of forming a hydrogenated amorphous silicon film using the plasma CVD method described above, defects occur at the interface between the single crystal silicon film and the hydrogenated amorphous silicon film, and the generation/recombination current increases. Therefore, there is a drawback that the current value becomes large with respect to a reverse voltage, and the n value becomes large when a forward voltage is applied.

本発明の目的は、この欠点を解消することにあり、発生
舎再結合電流を減少し、電流/電圧特性のすぐれたヘテ
ロダイオードを製造する方法を提供することにある。
The object of the present invention is to eliminate this drawback, and to provide a method for manufacturing a heterodiode that reduces the generated recombination current and has excellent current/voltage characteristics.

〔問題点を解決するための手段〕 上記の目的を達成するために本発明が採った手段は、−
導電型の単結晶′シリコン膜と反対導電型の水素化アモ
ルファスシリコン膜との接合を形成した後、反対導電型
の水素化アモルファスシリコン膜に水素プラズマを照射
することにある。
[Means for solving the problems] The means taken by the present invention to achieve the above object are as follows:-
The method involves forming a junction between a single-crystalline silicon film of a conductivity type and a hydrogenated amorphous silicon film of an opposite conductivity type, and then irradiating the hydrogenated amorphous silicon film of an opposite conductivity type with hydrogen plasma.

導電型は、単結晶シリコン膜と水素化アモルファスシリ
コン膜とのいずれがp型でいずれがn型でもさしつかえ
ないが、単結晶シリコン膜をn型とし水素化アモルファ
スシリコン膜をp型とするときは、水素化アモルファス
シリコン膜に接触する電極も金膜であることが望ましい
Regarding the conductivity type, either the single crystal silicon film or the hydrogenated amorphous silicon film may be p type and the other n type, but when the single crystal silicon film is n type and the hydrogenated amorphous silicon film is p type, It is desirable that the electrode in contact with the hydrogenated amorphous silicon film is also a gold film.

〔作用〕[Effect]

一導電型の単結晶シリコン膜と反対導電型の水素化アモ
ルファスシリコン膜との接合を形成した後、反対導電型
の水素化アモルファスシリコンIIqに水素プラズマを
照射すると、水素が反対導電型の水素化アモルファスシ
リコン膜中を拡散して、アモルファスシリコンと結晶シ
リコンの界面のダングリングボンドに水素原子が取り込
まれて、ダングリングボンドが消滅すると考えられる。
After forming a junction between a single crystal silicon film of one conductivity type and a hydrogenated amorphous silicon film of the opposite conductivity type, when hydrogen plasma is irradiated to the hydrogenated amorphous silicon IIq of the opposite conductivity type, the hydrogen is hydrogenated to the opposite conductivity type. It is thought that hydrogen atoms diffuse through the amorphous silicon film and are incorporated into dangling bonds at the interface between amorphous silicon and crystalline silicon, causing the dangling bonds to disappear.

−導電型の単結晶シリコン膜と反対導電型の水素化アモ
ルファスシリコン膜との接合を形成した後、プラズマC
VD装置を使用して、Y Q、3Torrの真空中で、
直径 1001層のウェーハに対し50Wのパワーで1
0分間、反対導電型の水素化アモルファスシリコン膜に
水素プラズマを照射した場合、第3図に示すように電流
/電圧特性が改良することを確認した0図において、Y
軸は電流であり、X軸は電圧であるが、順方向に対して
はn値が1.15 (酸素プラズマ照射しない場合は 
1.3)に改善しており、逆方向電流も大幅に減少して
いる。
- After forming a junction between a single crystal silicon film of a conductivity type and a hydrogenated amorphous silicon film of an opposite conductivity type, plasma C
Using a VD device, Y Q, in a vacuum of 3 Torr,
1 at a power of 50W for a wafer with a diameter of 1001 layers
In Figure 3, it was confirmed that when a hydrogenated amorphous silicon film of the opposite conductivity type is irradiated with hydrogen plasma for 0 minutes, the current/voltage characteristics are improved as shown in Figure 3.
The axis is current, and the
1.3), and the reverse current has also been significantly reduced.

〔実施例〕〔Example〕

以下、図面を参照しつ一1本発明の一実施例に係る半導
体装置の製造方法についてさらに説明する。
Hereinafter, a method for manufacturing a semiconductor device according to an embodiment of the present invention will be further described with reference to the drawings.

第1図参照 モノシランとリンと水素とを反応性ガスとするプラズマ
CVD法を使用し、I Torrの真空中で。
A plasma CVD method using monosilane, phosphorus, and hydrogen as reactive gases was used in a vacuum of I Torr (see FIG. 1).

基板温度は250℃に保持して 13.58M Hz(
7) RFパワーを15W(直径100膳麿0ウェーハ
)与えて、500gm厚の1015c腸−3のp型車結
晶シリコン膜z上に、プラズマCVD法を使用して、 
5,000人厚の 1000Ilc履のn型の水素化ア
モルファスシリコン膜3を形成し、そのま覧、反応ガス
を水素のみに切り替え0.3Torrの圧力下において
13.58MHzのRFパワーを 100W (直径1
00mmのウェーハ)与えて、水素プラズマ照射をなす
The substrate temperature was maintained at 250℃ and the frequency was 13.58MHz (
7) Applying RF power of 15 W (diameter 100 wafers), using a plasma CVD method on a 500 gm thick 1015C-3 p-type crystalline silicon film,
An n-type hydrogenated amorphous silicon film 3 with a thickness of 1000 Ilc was formed, and the reaction gas was switched to hydrogen only, and an RF power of 13.58 MHz was applied to 100 W (diameter) under a pressure of 0.3 Torr. 1
00 mm wafer) and subjected to hydrogen plasma irradiation.

この工程によって、p型車結晶シリコン膜2とn型の水
素化アモルファスシリコン膜3との界面の状態が改善さ
れる。
This step improves the state of the interface between the p-type crystalline silicon film 2 and the n-type hydrogenated amorphous silicon film 3.

p型車結晶シリコン膜2の下面に金Batを蒸着または
スパッタし、n型の水素化アモルファスシリコン膜3の
上面にアルミニウム膜4を蒸着またはスパッタする。
Gold Bat is vapor-deposited or sputtered on the lower surface of the p-type wheel crystal silicon film 2, and an aluminum film 4 is vapor-deposited or sputtered on the upper surface of the n-type hydrogenated amorphous silicon film 3.

以上の工程をもって製造したヘテロダイオードは、p型
車結晶シリコン11!2とn型の水素化アモルファスシ
リコン膜3との界面が良好であるため、発生番再結合電
流が少なく、n値が低く、逆方向電流は少なく、電流/
電圧特性は大幅に向上している・ 〔発明の効果〕 以上説明せるとおり、本発明に係るヘテロダイオードの
製造方法においては、−導電型の単結晶シリコン膜と反
対導電型の水素化アモルファスシリコン膜との接合を形
成した後、反対導電型の水素化アモルファスシリコン膜
に水素プラズマを照射することとされいるので、−導電
型の単結晶シリコン膜と反対導電型の水素化アモルファ
スシリコン膜との界面が良好とされているため、発生・
再結合電流が少なく、n値が低く、逆方向電流は少なく
、電流/電圧特性は大幅に向上している。
The heterodiode manufactured through the above process has a good interface between the p-type crystalline silicon 11!2 and the n-type hydrogenated amorphous silicon film 3, so the generated recombination current is small and the n value is low. The reverse current is small and the current/
The voltage characteristics are significantly improved. [Effects of the Invention] As explained above, in the method for manufacturing a hetero diode according to the present invention, a single crystal silicon film of a negative conductivity type and a hydrogenated amorphous silicon film of an opposite conductivity type are used. After forming a junction with the hydrogenated amorphous silicon film of the opposite conductivity type, hydrogen plasma is irradiated to the hydrogenated amorphous silicon film of the opposite conductivity type. Since it is said that the
The recombination current is small, the n value is low, the reverse current is small, and the current/voltage characteristics are significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係る半導体装置の製造方
法を実施して製造したヘテロダイオードの断面図である
。 第2図は、従来技術に係るヘテロダイオードの断面図で
ある。 第3図は1本発明の効果確認試験の結果である。 l−Φ・正電極、 2・拳・単結晶シリコン膜、 3・・−水素化アモルファスシリコン膜、4・・・負電
極。
FIG. 1 is a cross-sectional view of a hetero diode manufactured by implementing a method for manufacturing a semiconductor device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a conventional heterodiode. FIG. 3 shows the results of a test to confirm the effectiveness of the present invention. l-Φ, positive electrode, 2, fist, single crystal silicon film, 3...-hydrogenated amorphous silicon film, 4... negative electrode.

Claims (1)

【特許請求の範囲】 一導電型の単結晶シリコン膜(2)と反対導電型の水素
化アモルファスシリコン膜(3)とを接触させてヘテロ
ダイオードを製造する半導体装置の製造方法において、 前記反対導電型の水素化アモルファスシリコン膜(3)
に水素プラズマ照射をなす ことを特徴とする半導体装置の製造方法。
[Scope of Claims] A method for manufacturing a semiconductor device in which a heterodiode is manufactured by bringing a single crystal silicon film (2) of one conductivity type into contact with a hydrogenated amorphous silicon film (3) of an opposite conductivity type, comprising: the opposite conductivity type; Type hydrogenated amorphous silicon film (3)
1. A method for manufacturing a semiconductor device, comprising irradiating hydrogen plasma on the semiconductor device.
JP6602687A 1987-03-20 1987-03-20 Manufacture of semiconductor device Pending JPS63232415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6602687A JPS63232415A (en) 1987-03-20 1987-03-20 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6602687A JPS63232415A (en) 1987-03-20 1987-03-20 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63232415A true JPS63232415A (en) 1988-09-28

Family

ID=13303993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6602687A Pending JPS63232415A (en) 1987-03-20 1987-03-20 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63232415A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336623A (en) * 1992-03-02 1994-08-09 Showa Shell Sekiyu K.K. Process for producing integrated solar cell
CN102130229A (en) * 2010-12-27 2011-07-20 中国科学院半导体研究所 Method for improving electroluminescent performance of n-ZnO/AlN/p-GaN heterojunction light-emitting diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336623A (en) * 1992-03-02 1994-08-09 Showa Shell Sekiyu K.K. Process for producing integrated solar cell
CN102130229A (en) * 2010-12-27 2011-07-20 中国科学院半导体研究所 Method for improving electroluminescent performance of n-ZnO/AlN/p-GaN heterojunction light-emitting diode

Similar Documents

Publication Publication Date Title
JPH04116816A (en) Junction wafer and manufacture thereof
JPS63232415A (en) Manufacture of semiconductor device
JPH02194620A (en) Crystal growth method of semiconductor thin film
JPH01241168A (en) Bipolar transistor and manufacture thereof
JPS5948960A (en) Manufacture of insulated gate type transistor
US5094964A (en) Method for manufacturing a bipolar semiconductor device
CN117276352B (en) Transistor structure, preparation method thereof, recording medium and system
TWI647327B (en) Method of forming silicon-based stacked layer and method of fabricating silicon-based heterojunction solar cell
JPH04367276A (en) Thin film transistor and manufacture thereof
JPS6235539A (en) Manufacture of semiconductor device
JPH03263870A (en) Bipolar transistor
JPS58206158A (en) Manufacture of semiconductor device
JPS62122119A (en) Semiconductor wafer
JPH03248464A (en) Contact-buried metal structure and manufacture thereof
JP2644764B2 (en) Method for manufacturing heterojunction device
JPH02222178A (en) Manufacture of heterojunction diode
JPH04229664A (en) Photoelectromotive force device and its manufacture
JPH02222179A (en) Manufacture of heterojunction diode
JPS62224089A (en) Solar cell
US3866312A (en) Method of contacting semiconductor regions in a semiconductor body
JPS6169122A (en) Manufacture of semiconductor device
JPH0851087A (en) Manufacture of semiconductor device and structure of semiconductor wafer
JPS6340324A (en) Manufacture of semiconductor element of high breakdown strength
JPS609164A (en) Manufacture of semiconductor device
JP2001210654A (en) Method of manufacturing semiconductor film having characteristic in withstand voltage