JPS63232404A - Ac superconducting coil - Google Patents

Ac superconducting coil

Info

Publication number
JPS63232404A
JPS63232404A JP62066809A JP6680987A JPS63232404A JP S63232404 A JPS63232404 A JP S63232404A JP 62066809 A JP62066809 A JP 62066809A JP 6680987 A JP6680987 A JP 6680987A JP S63232404 A JPS63232404 A JP S63232404A
Authority
JP
Japan
Prior art keywords
wire rod
coil
cooling channels
winding
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62066809A
Other languages
Japanese (ja)
Inventor
Kazuya Daimatsu
一也 大松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62066809A priority Critical patent/JPS63232404A/en
Publication of JPS63232404A publication Critical patent/JPS63232404A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PURPOSE:To prevent quenching effectively by forming cooling channels, into which a refrigerant flows, among arbitrary layers in the winding of an extremely fine multiconductor filament while burying clearances among a wire rod except the cooling channels with an insulator impregnated and cured. CONSTITUTION:There are cooling channels 4 among the layers of a wire rod 3 wound to a coil shape, and clearances among the wire rod except these cooling channels 4 is buried completely with insulators 5. A simple body consisting of a resin impregnated and cured may be used as the insulator 5, but the combination of the fibers of glass, aramid, nylon, etc., which are changed previously into a tape and wound on the wire rod, and a resin such as epoxy, formal, etc., impregnated to the fibers and cured is preferable. Accordingly, the movement of insulating materials among the wire rod is prevented positively, and heat is hardly generated partially due to the fine motion of the winding section, thus effectively avoiding quenching resulting from the heat generation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、商用周波数(50〜60Hz)で使用する
トランス、発電機等の交流機器に、それ等の構成要素と
して採用される超電導コイルに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a superconducting coil employed as a component in AC equipment such as transformers and generators used at commercial frequencies (50 to 60 Hz). .

〔従来の技術およびその問題点〕[Conventional technology and its problems]

極細多芯超電導線の開発によって、従来、数Hz程度の
パルス用途に限られていた交流用超電導コイルは、首記
した商用周波数の領域へも用途が拡大してきている。
With the development of ultra-fine multicore superconducting wires, AC superconducting coils, which were conventionally limited to pulse applications of several Hz, are now being used in the commercial frequency range mentioned above.

ところで、超電導コイルを交流で用いるためには、通電
下での交流損失を低減し、コイルの発熱を防ぐことが必
要である。この要求に対し、これまでに作られたこの種
コイルは、絶縁超電導線を密巻きしたものや、絶縁スペ
ーサを層間に挿入したタイプのものが多い、そして、そ
れ等は、冷媒である液体ヘルウムとの接触を保つことに
よって冷却され、発熱が防止されている。
By the way, in order to use a superconducting coil in alternating current, it is necessary to reduce the alternating current loss under energization and to prevent the coil from generating heat. In response to this requirement, many of the coils that have been made so far are of a type in which insulated superconducting wires are tightly wound or insulated spacers are inserted between layers, and these are made using liquid helium, which is a refrigerant. By keeping in contact with the body, it is cooled and heat generation is prevented.

しかしながら、上述した構造のコイルは、線材の定置力
が巻線時のS締張力によって決定されるものであり、通
電時のT4磁力によるコイル線材の動きが生じ易かった
ために、巻線の全体的な或いは極所的な動きによる発熱
によって冷却能力を越える交流損失が発生し、コイル性
能がその最大容量を越えないうちに、コイル全体を超電
導状態から常電導状態へ転移させてしまういわゆるクエ
ンチ現象がしばしば観測されている。
However, in the coil of the above-mentioned structure, the fixing force of the wire is determined by the S tightening tension during winding, and the coil wire tends to move due to the T4 magnetic force when energized, so the overall winding Alternatively, there is a so-called quench phenomenon in which AC loss that exceeds the cooling capacity occurs due to heat generation due to local movements, causing the entire coil to transition from a superconducting state to a normal conducting state before the coil performance exceeds its maximum capacity. often observed.

一方、巻線部の機械的な動きを無くすために、従来から
エポキシ樹脂等を巻線部に含浸し、全体をその樹脂で固
める方法が採用されているが、この方法は、せいぜい数
Hz程度の使用にしか耐えない、何故なら、巻線部が含
浸樹脂に包み込まれてしまうため、液体ヘルウムによる
直接の冷却は巻線部の表面のみに限られ、数十Hzによ
って内部で発生する交流損失熱を充分に放出することが
できない、従って、既述のクエンチが発生する。この種
の問題は、コイル容量が大きくなると特に深刻で、交流
損失をいくら低減しても時間の経過と共に熱エネルギー
が蓄積され、ついにはクエンチに至る。
On the other hand, in order to eliminate mechanical movement of the winding part, a method has been adopted in which the winding part is impregnated with epoxy resin or the like and the entire part is solidified with the resin. This is because the windings are wrapped in the impregnated resin, so direct cooling with liquid helium is limited to the surface of the windings, and AC losses generated internally at frequencies of several tens of Hz The heat cannot be dissipated sufficiently, so the aforementioned quench occurs. This kind of problem is particularly serious when the coil capacity becomes large; no matter how much AC losses are reduced, thermal energy accumulates over time, eventually leading to quenching.

そこで、この発明は、かかる点の問題対策として有効な
交流゛用超電導コイルを提供することを目的としている
Therefore, an object of the present invention is to provide a superconducting coil for alternating current that is effective as a countermeasure to such problems.

〔問題点を解決するための手段〕[Means for solving problems]

この発明のコイルは、極細多芯フィラメントを有する超
電導線をjt5線して構・成されるものであって、巻線
の任意の層間には冷媒の流入する冷却チャネルを有し、
かつ、この冷却チャネルを除く線材間の隙間が含浸後に
硬化せしめた絶縁体に埋めつくされていることを特徴と
する。
The coil of the present invention is composed of JT5 superconducting wires having ultra-fine multifilament filaments, and has a cooling channel between arbitrary layers of the winding through which a refrigerant flows,
Moreover, the gap between the wires except for the cooling channel is completely filled with an insulator that is hardened after being impregnated.

〔作用〕[Effect]

上記絶縁体は、巻線を一体に固めてコイル線材の機械的
な動きを阻止する働きをする。
The insulator serves to solidify the windings together and prevent mechanical movement of the coil wire.

また、層間の冷却チャネルは、コイルの内部に冷媒を導
入し、コイルの内部に生じた熱を直接冷媒中に放散させ
る働きをする。
The interlayer cooling channels also serve to introduce a refrigerant into the interior of the coil and dissipate heat generated within the coil directly into the refrigerant.

従って、巻線部の機械的な働き、及びそれによる発熱が
なく、また、巻線部の内部の交流損失熱も効果的に冷媒
に伝達され、クエンチの起き難い、性能の安定したコイ
ルとなる。
Therefore, there is no mechanical action in the winding section and no heat generation due to it, and AC loss heat inside the winding section is also effectively transferred to the refrigerant, resulting in a coil with stable performance that is unlikely to quench. .

〔実施例〕〔Example〕

添付図にこの発明の実施例を示す。 Embodiments of the invention are shown in the accompanying drawings.

この発明を適用した第1図のダイポールコイル1、第3
図のツルイドコイル2とも、コイル線材として極細多芯
フィラメントを有する超電導線材が用いられる。第2図
及び第4図の3がそれである。所望のコイル形状に巻線
されたこれ等の線材の層間には、冷却チャネル4が存在
し、また、それ等の冷却チャネル4を除く線材間の隙間
は絶縁体5で埋めつくされている。第3図の6はツルイ
ドコイルの層間の冷却チャネルを外部に連通させる目的
で、コイルと巻枠7のフランジとの間に設けた連通路で
ある。
Dipole coils 1 and 3 in Fig. 1 to which this invention is applied
In both of the tluid coils 2 shown in the figure, superconducting wires having ultrafine multifilamentary filaments are used as coil wires. This is indicated by 3 in FIGS. 2 and 4. Cooling channels 4 are present between the layers of these wires wound into the desired coil shape, and the gaps between the wires except for the cooling channels 4 are filled with an insulator 5. Reference numeral 6 in FIG. 3 is a communication path provided between the coil and the flange of the winding frame 7 for the purpose of communicating the cooling channels between the layers of the tluid coil to the outside.

上記絶縁体5は、含浸後に硬化させた樹脂の単体物でも
よいが、予めテープ化して線材に巻付ける等したガラス
、アラミド、ナイロン等の繊維とそれに含浸させて硬化
させたエポキシ、ホルマール等の樹脂との組合せ物が好
ましい。
The insulator 5 may be a single piece of resin that is cured after being impregnated, but it may also be made of glass, aramid, nylon, or other fibers that have been made into a tape and wrapped around a wire, and epoxy, formal, or the like that has been impregnated and cured. Combinations with resins are preferred.

また、冷却チャネル4は、巻線時に成形型となるスペー
サをコイルの層間に巻き込み、これを絶縁体部の硬化後
に抜き取り、或いは溶解除去して作り出されているが、
上記スペーサとして中空チューブを用い、絶縁体部の硬
化後もそのチューブを残存させる方法で作り出してもよ
い。この冷却チャネル4は、冷却効率を高めるために、
図のように、@線の各層間又は数層毎の層間に多数設け
るのが望ましい。
In addition, the cooling channel 4 is created by winding a spacer, which serves as a mold during winding, between the layers of the coil, and extracting it after the insulator part has hardened, or by melting and removing it.
A hollow tube may be used as the spacer, and the spacer may be produced by a method in which the tube remains even after the insulator portion is hardened. This cooling channel 4 is designed to increase cooling efficiency.
As shown in the figure, it is desirable to provide a large number of @ lines between each layer or every few layers.

なお、使用する超電導線材3は、極細多芯フィラメント
が、Nb5Ti又はそれ等の合金、もしくはその合金中
に第3元素の添加された材料や、Nb1Sn % V2
Gas Nb3Si s v!I(rSNbsAJ等の
化合物系材料から成る実用線材が好ましい、これ等の線
材は容量が少な(、大電流を流し得るからである。
The superconducting wire 3 used is such that the ultrafine multifilament is made of Nb5Ti or an alloy thereof, or a material in which a third element is added to the alloy, or Nb1Sn%V2.
Gas Nb3Si s v! Practical wires made of compound materials such as I(rSNbsAJ) are preferred because these wires have a small capacity (and can carry a large current).

また、多芯フィラメントは、1μm以下の径のものが好
ましい、フィラメントの太さに起因した磁化損失(これ
が交流損失の主因子)がきわめて小さいからである。
Further, the multicore filament preferably has a diameter of 1 μm or less because magnetization loss (this is the main factor of AC loss) due to the thickness of the filament is extremely small.

〔効果〕〔effect〕

以上から成るこの発明のコイルは、特に、商用周波数で
用いられる交流トランスや発電機の分野で有効である。
The coil of the present invention constructed as described above is particularly effective in the fields of AC transformers and generators used at commercial frequencies.

即ち、複数のコイルを組合せて構成される交流トランス
は、コイルの相互作用により、コイル巻線部に複雑な電
磁力が作用するため、微妙な機械的動きが生じ易い、し
かし、この発明によれば、線材間の絶縁材がその動きを
確実に阻止し、従って、巻線部の微妙な動きによる局所
的な発熱は殆ど起こらず、これに起因したクエンチが有
効に防止される。
That is, in an AC transformer constructed by combining a plurality of coils, complex electromagnetic force acts on the coil windings due to the interaction of the coils, so subtle mechanical movements are likely to occur. For example, the insulating material between the wires reliably prevents the movement, so that local heat generation due to slight movement of the winding portion hardly occurs, and quenching caused by this is effectively prevented.

また、50〜60Hzの電流印加により、コイル内部に
は定常的に交流損失が発生するが、その熱は、層間の冷
却チャネル内に流入した冷媒に迅速に吸収されるので、
冷却効率の悪さに起因したクエンチも防止される。
In addition, when a current of 50 to 60 Hz is applied, alternating current loss is constantly generated inside the coil, but that heat is quickly absorbed by the refrigerant that flows into the cooling channel between the layers.
Quenching caused by poor cooling efficiency is also prevented.

また、発電機用として特に電機子の巻線に利用する場合
には、コイルが大型化するため、S線の定置安定化と効
率的な冷却の要求がより高まる。
Further, when used in a generator, particularly as an armature winding, the coil becomes large, so there is an increased need for stabilization of the S wire in place and efficient cooling.

この発明によれば、その要求に充分に応えて、発電機の
完全超電導化に大きく寄与することができる。
According to the present invention, it is possible to sufficiently meet this demand and greatly contribute to making a generator completely superconducting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に適用したダイポールコイルを簡略
化して示す平面図、第2図はその巻線部の一部を詳細に
示す平面図、第3図はこの発明を適用したツルイドコイ
ルの簡略化断面図、第4図は第3図のA−A線に沿っま
た部分の一部を詳細に示す断面図である。 1・・・・・・ダイポールコイル、2・・・・・・ツル
イドコイル、3・・・・・・超電導線材、4・・・・・
・冷却チャネル、5・・・・・・絶縁体、6・・・・・
・連通路、7・・・・・・巻枠。 特許出願人 住友電気工業株式会社 同 代理人  鎌  1) 文  二 第1図 第3図 。 第2図 第4図
Fig. 1 is a simplified plan view of a dipole coil to which the present invention is applied, Fig. 2 is a plan view showing a part of its winding section in detail, and Fig. 3 is a simplified plan view of a truid coil to which the present invention is applied. FIG. 4 is a sectional view taken along line A--A in FIG. 3 and showing a part of the portion in detail. 1... Dipole coil, 2... Tluid coil, 3... Superconducting wire, 4...
・Cooling channel, 5... Insulator, 6...
・Communication path, 7... winding frame. Patent applicant Sumitomo Electric Industries, Ltd. Agent Kama 1) Text 2 Figure 1 Figure 3. Figure 2 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)極細多芯フィラメントを有する超電導線を巻線し
て構成され、その巻線の任意の層間には冷媒の流入する
冷却チャネルを有し、かつ、この冷却チャネルを除くコ
イル線材間の隙間が含浸後の硬化樹脂を含む絶縁体に埋
めつくされていることを特徴とする交流用超電導コイル
(1) Constructed by winding a superconducting wire having ultra-fine multifilamentary filaments, having a cooling channel between any layers of the winding through which a refrigerant flows, and gaps between the coil wires excluding this cooling channel. An AC superconducting coil characterized in that the coil is completely filled with an insulator containing a cured resin after being impregnated.
(2)上記絶縁体が、樹脂と有機又は無機質繊維の組合
せ物であることを特徴とする特許請求の範囲第(1)項
記載の交流用超電導コイル。
(2) The AC superconducting coil according to claim (1), wherein the insulator is a combination of resin and organic or inorganic fibers.
(3)上記冷却チャネルが、巻線の各層間又は数層毎の
層間にそれぞれ多数設けられていることを特徴とする特
許請求の範囲第(2)項記載の交流用超電導コイル。
(3) The AC superconducting coil according to claim (2), wherein a large number of the cooling channels are provided between each layer of the winding or between every few layers.
JP62066809A 1987-03-20 1987-03-20 Ac superconducting coil Pending JPS63232404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62066809A JPS63232404A (en) 1987-03-20 1987-03-20 Ac superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62066809A JPS63232404A (en) 1987-03-20 1987-03-20 Ac superconducting coil

Publications (1)

Publication Number Publication Date
JPS63232404A true JPS63232404A (en) 1988-09-28

Family

ID=13326555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62066809A Pending JPS63232404A (en) 1987-03-20 1987-03-20 Ac superconducting coil

Country Status (1)

Country Link
JP (1) JPS63232404A (en)

Similar Documents

Publication Publication Date Title
KR20170047253A (en) A metal assembly comprising a superconductor
JPS61278109A (en) Conical impregnation-free winding for magnetic resonance
JP2001244109A (en) High-temperature superconducting coil device
US3766502A (en) Cooling device for superconducting coils
Mizuno et al. Fabrication of 5 T magnet using 2G wires directed at maglev application
JPH1041125A (en) Superconducting coil
JPS63232404A (en) Ac superconducting coil
US8275429B1 (en) High magnetic field gradient strength superconducting coil system
JP2509633B2 (en) Solenoid type AC superconducting coil
JPH10116721A (en) Superconducting bulk body magnet
MXPA02009646A (en) Superconductive armature winding for an electrical machine.
JP3840819B2 (en) Superconducting coil for induction equipment
JP2000150224A (en) Excitation control method of superconducting coil
JP2829008B2 (en) Superconducting magnet. Semiconductor single crystal pulling equipment. Nuclear magnetic resonance apparatus and method of manufacturing superconducting magnet
JP2004259737A (en) Superconducting transformer
JPH06260335A (en) High temperature superconducting magnet
JP3272017B2 (en) AC superconducting wire and method of manufacturing the same
JPS6218005Y2 (en)
JP3322981B2 (en) Permanent current switch
JPH0660107U (en) Electromagnet impregnation structure
JPS59208811A (en) Superconductive coil
Yamamoto et al. Development of 50 Hz disc-type superconducting coil
JPH08222428A (en) Persistent current switch
JPS6320808A (en) Ac superconductive coil
JPH0832129A (en) Superconducting device, its operating mthod, and its permanent current switching device