JPS632320A - Corerection for deflecting distortion in focused ion beam - Google Patents

Corerection for deflecting distortion in focused ion beam

Info

Publication number
JPS632320A
JPS632320A JP14489786A JP14489786A JPS632320A JP S632320 A JPS632320 A JP S632320A JP 14489786 A JP14489786 A JP 14489786A JP 14489786 A JP14489786 A JP 14489786A JP S632320 A JPS632320 A JP S632320A
Authority
JP
Japan
Prior art keywords
ion beam
distortion
deflection
focused ion
deflecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14489786A
Other languages
Japanese (ja)
Inventor
Eizo Miyauchi
宮内 栄三
Toshio Hashimoto
橋本 寿夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14489786A priority Critical patent/JPS632320A/en
Publication of JPS632320A publication Critical patent/JPS632320A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To accurately measure the deflecting distortion of a focused ion beam by deflecting the beam to be scanned on an X-marker, Y-marker, measuring the distortion by obtained electric signals, and correcting a deflecting voltage to be applied to a deflecting electrode to correct the distortion of the beam. CONSTITUTION:Deflecting voltages Xi, Yi are respectively applied to X-and Y-deflecting electrode plates 4a, 4b and 5a, 5b to deflect a focused ion beam (a), and scanned on an X-marker 2 and a Y-marker 3. Thus, the markers 2, 3 generate secondary electron signals, which are detected by a second electron detector 6, amplified by an amplifier 7, and applied to a computer 8. After a distortion parameter is determined on the basis of the deflecting distortion amount of the focused ion beam (a) measured in the computer 8, the values are introduced into an analog type distortion correcting circuit 9, and corrected deflecting voltage values X0, Y0 are generated from X-, Y-deflecting voltage generators 10, 11. The signals are applied to the plates 4a, 4b and 5a, 5b to correct the scanning of the beam (a).

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、集束イオンビームにおける偏向歪補正方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for correcting deflection distortion in a focused ion beam.

(従来の技術) 近年半導体装置製作のために、マスクレスイオン注入装
置が開発され、使用されているか、このマスクレスイオ
ン注入装置においてはイオンビームを偏向させることに
よって半導体基板上にイオンビーム描画することが行な
われている。
(Prior Art) In recent years, maskless ion implantation equipment has been developed and used for manufacturing semiconductor devices. In this maskless ion implantation equipment, ion beam writing is performed on a semiconductor substrate by deflecting the ion beam. things are being done.

このイオンビーム描画を高精度に行なうには、イオンビ
ーム径を微細にすると共に、イオンビームの偏向歪をな
くす必要かある。
In order to perform this ion beam drawing with high precision, it is necessary to make the ion beam diameter fine and to eliminate deflection distortion of the ion beam.

(発明か解決しようとする問題点) しかしながら、通常イオンビームの偏向には集束イオン
ビームの通路周囲にX方向偏向電極板及びY方向偏向電
極板に偏向電圧を加え、該偏向電圧によって集束イオン
ビームを静電偏向する静゛心偏向系か用いられているが
、この静電偏向系では電界歪のために偏向フィール1−
に糸巻き状歪乃至樽型歪の偏向歪か不可逆的に発生し、
したかって従来のイオン注入装置によるイオンビーム描
画には精度上の限界があった。
(Problem to be solved by the invention) However, in order to deflect an ion beam, a deflection voltage is usually applied to an X-direction deflection electrode plate and a Y-direction deflection electrode plate around the path of the focused ion beam, and the focused ion beam is However, in this electrostatic deflection system, due to electric field distortion, the deflection field 1-
Deflection distortion of pincushion-like distortion or barrel-shaped distortion occurs irreversibly.
Therefore, ion beam lithography using conventional ion implanters has a limit in terms of accuracy.

この欠点を解消するために、従来は偏向電極そのものの
形状を修正したり、8極、16極等の他極を使用して修
正することか行なうのか一般的てあったか、これには電
極設計、製作精度、取付は法等に難点が多くあった。
In order to eliminate this drawback, it has conventionally been common practice to modify the shape of the deflection electrode itself, or to use other poles such as 8 or 16 poles. There were many difficulties in manufacturing accuracy and installation due to legal regulations.

(問題点を解決するための手段) 以上の問題点を解決するため、この発明では偏向電極に
偏向電圧を加えて集束イオンビームを偏向させるように
した方法において上記集束イオンビームを偏向させてX
マーカ、Yマーカ上を、走査させ、これにより得られた
電気信号より上記集束イオンビームの偏向歪を測定し、
測定された集束イオンビームの偏向歪量に基づいて偏向
M、極に加える偏向電圧を修正して集束イオンビームの
偏向歪を補正するようにした集束イオンビームの偏向歪
補正方法を提案するものである。
(Means for Solving the Problems) In order to solve the above problems, in the present invention, the focused ion beam is deflected by applying a deflection voltage to the deflection electrode to deflect the focused ion beam.
The marker and the Y marker are scanned, and the deflection distortion of the focused ion beam is measured from the electric signal obtained thereby,
This paper proposes a method for correcting deflection distortion of a focused ion beam in which the deflection distortion of the focused ion beam is corrected by correcting the deflection voltage applied to the deflection M and the pole based on the measured amount of deflection distortion of the focused ion beam. be.

ここて、集束イオンビームを走査させるXマーカ、Yマ
ーカとしては、第1図A、Hに示すようにパラレル線パ
ターンによりエツチングにて一定間隔にX方向及びY方
向に溝(マーカグループライン)を形成したものを使用
することかてき、集束イオンビームは上記マーカ上に形
成した溝な直角方向に横切るように走査させる。
Here, as the X marker and Y marker for scanning the focused ion beam, grooves (marker group lines) are etched in a parallel line pattern at regular intervals in the X and Y directions, as shown in FIGS. 1A and 1H. When using the marker, a focused ion beam is scanned across the groove formed on the marker in a direction perpendicular to the groove.

これにより走査中に、集束イオンビームか溝の立ち上が
り、立ち下かりを通過する際にパルスとなる二次電子信
号を発生するか、この二次電子信号のパルス間隔を測定
することによって集束イオンビームの偏向歪を精度良く
測定することかてきる。
During scanning, the focused ion beam generates a secondary electron signal that becomes a pulse when it passes the rising and falling edges of the groove, or the focused ion beam is measured by measuring the pulse interval of this secondary electron signal. It is possible to accurately measure the deflection distortion of

この場合、得られる集束イオンビームの偏向歪は糸巻き
型とこれとは反対な樽型偏向歪に大別され、糸巻き型の
偏向歪の場合にはこの糸巻き型偏向歪を相殺する樽型偏
向歪を重畳することにより、リニアーな偏向線となり、
反対に樽型偏向歪の場合にはこれを相殺するような糸巻
き型偏向歪を重畳することによりリニアーな偏向線を得
ることができるが、この発明ては偏向距離と偏向電圧が
対応関係にあるため、上述のように集束イオンビームの
偏向歪なJlll定した後、この偏向歪を相殺するよう
な偏向歪に対応するような偏向電圧を上記偏向電極に加
えて集束イオンビームの偏向歪を補正するものである。
In this case, the deflection distortion of the resulting focused ion beam can be roughly divided into pincushion-shaped and barrel-shaped deflection distortions, and in the case of pincushion-shaped deflection distortion, barrel-shaped deflection distortion that cancels out this pincushion-shaped deflection distortion By superimposing the , it becomes a linear deflection line,
On the other hand, in the case of barrel-shaped deflection distortion, a linear deflection line can be obtained by superimposing a pincushion-shaped deflection distortion that cancels this distortion, but in this invention, the deflection distance and the deflection voltage are in a corresponding relationship. Therefore, after determining the deflection distortion of the focused ion beam as described above, a deflection voltage corresponding to the deflection distortion that cancels out this deflection distortion is applied to the deflection electrode to correct the deflection distortion of the focused ion beam. It is something to do.

偏向電極に加える偏向電圧は上記のように測定された集
束イオンビームの偏向歪に基づいて下記式(1)(2)
より定めることかてきる。
The deflection voltage applied to the deflection electrode is determined by the following formulas (1) and (2) based on the deflection distortion of the focused ion beam measured as above.
It is possible to define more.

X、=X、(1±Y、”−1’S) −−・−−(1)
Yo=Yt(1fXi”−B) −−・−−(2)ここ
て、X、、Y、は測定に際して加えられたX方向並びに
Y方向の偏向電圧値、 X、、Y、は修正して加えるX
方向並びにY方向の偏向電圧値てあり、修正して加える
偏向電圧が糸巻き型の場合は式中の符号を正符号とし1
mは測定された集束イオンビームの偏向歪の形状に応じ
てmalの任意の整数を択するものとし、また補正係数
Bは測定された集束イオンビームの大きさに応じて任意
の小数を選択する。
X, =X, (1±Y, "-1'S) --・--(1)
Yo=Yt(1fXi"-B) --・--(2) Here, X,, Y are the deflection voltage values in the X direction and Y direction applied during measurement, and X,, Y, are the values after correction. add X
There are deflection voltage values in the direction and Y direction, and if the deflection voltage to be corrected and added is pincushion type, the sign in the formula should be a positive sign, and 1
m shall be selected as an arbitrary integer of mal according to the shape of the measured deflection distortion of the focused ion beam, and the correction coefficient B is selected as an arbitrary decimal number according to the size of the measured focused ion beam. .

一方、修正して加える偏向電圧か樽型の場合は式中の符
号を負符号とし、mは測定された集束イオンビームの偏
向歪の形状に応じてm<1の任意の数を選択するものと
し、また補正係数Bは測定された集束イオンビームの大
きさに応じて任意の小数を選択する。
On the other hand, in the case of a modified deflection voltage or a barrel shape, the sign in the formula is a negative sign, and m is an arbitrary number selected from m<1 depending on the shape of the measured deflection distortion of the focused ion beam. and the correction coefficient B is selected as an arbitrary decimal number depending on the size of the measured focused ion beam.

このように選択された式(1)(2)中の歪パラメータ
及び符号を、例えばアナログ型補正回路に加え、アナロ
グ型補正回路より修正された偏向電圧を上記偏向電極に
加えて集束イオンビームの偏向歪の補正を行なうもので
ある。
The distortion parameters and signs in equations (1) and (2) selected in this way are added to, for example, an analog correction circuit, and the deflection voltage corrected by the analog correction circuit is applied to the deflection electrode to generate a focused ion beam. This is to correct deflection distortion.

(発明の効果) 以上要するに、この発明によればマスクレスイオンビー
ム装置等集束イオンビームな使用する装置において問題
となるイオンビーム偏向の歪並びにそれに伴なうイオン
ビーム径の位置的な変化を精度良く測定し、これに基い
てイオンビームの偏向歪を修正するものてあり、この発
明によれば従来−般に用いられている偏向歪除去用の複
雑な構造の偏向電極を使用しなくても簡便な方法て集束
イオンビームの正確な偏向歪の修正か可億となり、した
かって簡便な方法により集束イオンビームによる高精度
、高品質描画を行なわせることかできる。
(Effects of the Invention) In summary, according to the present invention, distortion of ion beam deflection, which is a problem in devices using focused ion beams such as maskless ion beam devices, and the accompanying positional changes in the ion beam diameter can be accurately corrected. According to the present invention, the deflection distortion of the ion beam can be corrected based on the well-measured measurements, and the present invention does not require the use of a deflection electrode with a complicated structure for removing deflection distortion, which is conventionally used in general. It is possible to accurately correct the deflection distortion of a focused ion beam using a simple method, and therefore it is possible to perform high-precision, high-quality writing using a focused ion beam using a simple method.

(実施例) 以下、この発明の実施例を示す。(Example) Examples of this invention will be shown below.

第3図は、この発明の一実施例を示すものて、操作台1
表面にはXマーカ2とYマーカ3とか並設され、更に操
作台1上には2枚のX偏向電極板4a、4bと2枚のY
偏向電極板5a、5bか設けられている。
FIG. 3 shows an embodiment of the present invention.
An X marker 2 and a Y marker 3 are arranged side by side on the surface, and two X deflection electrode plates 4a, 4b and two Y markers are placed on the operation table 1.
Deflection electrode plates 5a and 5b are also provided.

Xマーカ2は、例えば第1図Aに示すように縦横1.2
mmの正方形にY方向に等間隔に1200本程度0平行
な溝を形成して構成され、Yマーカ3は、例えば第1図
Bに示すように縦横1.2mmの正方形にX方向に等間
隔に1200本程度0平行な溝を形成して構成される。
For example, as shown in FIG. 1A, the X marker 2 is
It is constructed by forming approximately 1,200 parallel grooves at equal intervals in the Y direction in a square of 1.2 mm in length and width, and the Y marker 3 is formed by forming approximately 1200 parallel grooves in a square of 1.2 mm in length and width at equal intervals in the X direction, as shown in FIG. 1B, for example. It is constructed by forming approximately 1,200 zero-parallel grooves on the surface.

1゛Yマーカ3上を走査させる。1゛Scan the Y marker 3.

これにより上述のようにXマーカ2及びYマーカ3より
二次電子信号が発生するか、この二次電子信号を二次電
子検出器6を検出し、更に増幅器7で増幅してコンピュ
ータ8に印加する。
As a result, a secondary electron signal is generated from the X marker 2 and Y marker 3 as described above, or this secondary electron signal is detected by the secondary electron detector 6, further amplified by the amplifier 7, and applied to the computer 8. do.

コンピュータ8内では、二次電子信号に基づいて集束イ
オンビームaの偏向歪量の測定と測定された偏向歪量に
基づいて上記式(1)(2)の符号並びにm、補正係i
!!l!B等の歪パラメータを定める。
In the computer 8, the deflection distortion amount of the focused ion beam a is measured based on the secondary electron signal, and based on the measured deflection distortion amount, the sign, m, and correction coefficient i of the above equations (1) and (2) are determined.
! ! l! Determine distortion parameters such as B.

第2図は第1図AのXマーカ上に集束イオンビームaを
順次上方に走査させた場合の集束イオンビームaの偏向
歪測定例を示すものてあり、上方に行く程、走査線に大
きな偏向歪か見られる。
Figure 2 shows an example of measuring the deflection distortion of the focused ion beam a when the focused ion beam a is sequentially scanned upward on the X marker in Figure 1A. Deflection distortion can be seen.

第4図Aはmを1、補正係数Bを10%とした場合の式
(1)(2)による補正例てあり、第4図Bはmを2、
補正係数を10%とした場合の補正例である。
Figure 4A shows an example of correction using equations (1) and (2) when m is 1 and correction coefficient B is 10%, and Figure 4B is an example of correction using formulas (1) and (2) when m is 1 and correction coefficient B is 10%.
This is an example of correction when the correction coefficient is 10%.

コンピュータ8内て測定された集束イオンビームaの偏
向歪量に基づいて式(1)(2)の行第5図は、この実
施例で使用するアナログ型偏向歪補正回路を示すものて
あり、+2aと12bは歪変換回路、 13aとllb
はマルチプレクス、14aと14bは補正量の31節回
路、15aと15bは加算回路を示す。
Based on the amount of deflection distortion of the focused ion beam a measured in the computer 8, the rows of equations (1) and (2) in FIG. 5 show an analog deflection distortion correction circuit used in this embodiment. +2a and 12b are distortion conversion circuits, 13a and llb
14a and 14b are 31-node circuits for correction amounts, and 15a and 15b are addition circuits.

上記アナログ型偏向回路においてXの入力端子16a及
びYの入力端子16bに入力されたX信号及びY信号は
レベル調整され、X信号はx、、 X信号はY、とする
In the analog deflection circuit, the levels of the X and Y signals input to the X input terminal 16a and the Y input terminal 16b are adjusted, and the X signal is set to x, and the X signal is set to Y.

レベルm整されたX信号X、は歪変換回路12bてJX
1′に変換され1次にマルチブレクス13bではx、1
mとレベル調整されたY信号Y、を積算して、Y、X、
”が得られ、調節回路14bてはこの積算値に補正係数
Bを積算してB−Y、X、’″か得られ、更に加算回路
15bてはY、にこの積算値を加算或は減算してY、±
B−Y、X、”を得る。   −方、レベル3J整され
たY信号Y、は歪変換回路12aてY、′に変換され、
次にマルチブレクス13aてはY、sとX、を積算して
、xtyt’″か得られ、調節回路14aではこれに補
正係数Bを積算してB−X、Y、”を発生させ、更に加
算回路15aてはX、にこの積算値を加算或は減算して
X、±B−X、Y、”を得る。
The level-adjusted X signal X is passed through the distortion conversion circuit 12b to the JX
1', and in the primary multiplex 13b x, 1
By integrating m and level-adjusted Y signal Y, Y, X,
'' is obtained, and the adjustment circuit 14b multiplies this integrated value by the correction coefficient B to obtain BY, X, ''', and the adder circuit 15b adds or subtracts this integrated value to Y. Then Y, ±
B-Y,
Next, the multiplex 13a integrates Y, s and The circuit 15a adds or subtracts this integrated value from X to obtain X,±B-X,Y,''.

このようにして修正されたX方向の偏向電圧をX偏向電
圧発生器10及びY方向の偏向電圧なY偏向電圧発生器
11より発生させ、これ等の信号をそして、この実施例
によれば従来−般に用いられている偏向歪除去用の複雑
な構造の偏向電極を使用しなくても簡便な方法で正確な
偏向歪の補正か可1克となる。
The deflection voltage in the X direction thus modified is generated by the X deflection voltage generator 10 and the deflection voltage in the Y direction is generated by the Y deflection voltage generator 11. - Accurate correction of deflection distortion can be achieved by a simple method without using a commonly used deflection electrode with a complicated structure for removing deflection distortion.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明て使用するマーカの平面図で、第1
図AはXマーカ、第1図BはYマーカを示す、第2図は
同上のXマーカ上に集束イオンビームな走査させた場合
の歪測定例を示す図。 第3図はこの発明の一実施例を示す集束イオンビームの
補正システムを示す概略図、第4(21は上記式(1)
(2)のm、補正係数B等の歪パラメータを適当に選択
した場合の集束イオンビームの偏向歪の補正例を示すも
のてあり、第4図Aはmを1、補正係数Bをlozとし
た場合、第4図Bはmを2、補正係数をIHとした場合
を示す、第5図はこの実施例て使用するアナログ偏向補
正回路の一例を示す図である。
Figure 1 is a plan view of the marker used in this invention.
Figure A shows an X marker, Figure 1B shows a Y marker, and Figure 2 shows an example of strain measurement when a focused ion beam is scanned over the same X marker. FIG. 3 is a schematic diagram showing a focused ion beam correction system showing an embodiment of the present invention;
This figure shows an example of correcting deflection distortion of a focused ion beam when distortion parameters such as m and correction coefficient B in (2) are appropriately selected. In this case, FIG. 4B shows the case where m is 2 and the correction coefficient is IH. FIG. 5 is a diagram showing an example of an analog deflection correction circuit used in this embodiment.

Claims (1)

【特許請求の範囲】 偏向電極に偏向電圧を加えて集束イオンビームを偏向さ
せるようにした方法において、 上記集束イオンビームを偏向させてXマーカ、Yマーカ
上を、走査させ、これにより得られた電気信号より上記
集束イオンビームの偏向歪を測定し、測定された集束イ
オンビームの偏向歪量に基づいて偏向電極に加える偏向
電圧を修正して集束イオンビームの偏向歪を補正するよ
うにしたことを特徴とする集束イオンビームにおける偏
向歪補正方法。
[Claims] In a method in which a focused ion beam is deflected by applying a deflection voltage to a deflection electrode, the focused ion beam is deflected and scanned over an X marker and a Y marker. The deflection distortion of the focused ion beam is measured from an electrical signal, and the deflection voltage applied to the deflection electrode is corrected based on the measured amount of deflection distortion of the focused ion beam, thereby correcting the deflection distortion of the focused ion beam. A method for correcting deflection distortion in a focused ion beam, characterized by:
JP14489786A 1986-06-23 1986-06-23 Corerection for deflecting distortion in focused ion beam Pending JPS632320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14489786A JPS632320A (en) 1986-06-23 1986-06-23 Corerection for deflecting distortion in focused ion beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14489786A JPS632320A (en) 1986-06-23 1986-06-23 Corerection for deflecting distortion in focused ion beam

Publications (1)

Publication Number Publication Date
JPS632320A true JPS632320A (en) 1988-01-07

Family

ID=15372871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14489786A Pending JPS632320A (en) 1986-06-23 1986-06-23 Corerection for deflecting distortion in focused ion beam

Country Status (1)

Country Link
JP (1) JPS632320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018707A (en) * 2014-07-09 2016-02-01 住友重機械イオンテクノロジー株式会社 Ion injection apparatus and control method for ion injection apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210549A (en) * 1981-06-19 1982-12-24 Hitachi Ltd Method of correction attendant on deflection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210549A (en) * 1981-06-19 1982-12-24 Hitachi Ltd Method of correction attendant on deflection

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018707A (en) * 2014-07-09 2016-02-01 住友重機械イオンテクノロジー株式会社 Ion injection apparatus and control method for ion injection apparatus

Similar Documents

Publication Publication Date Title
JP3335845B2 (en) Charged beam drawing apparatus and drawing method
US4982099A (en) Aperture diaphragm for a lithography apparatus
JPS61187334A (en) Lithography apparatus
JPH0349042B2 (en)
US6495841B1 (en) Charged beam drawing apparatus
GB1480561A (en) Controlling the movement of a beam of charged particles
EP0033138B1 (en) A method for correcting deflection distortions in an apparatus for charged particle lithography
EP0148784B1 (en) Calibration of electron beam apparatus
US3857041A (en) Electron beam patterning system for use in production of semiconductor devices
JPS632320A (en) Corerection for deflecting distortion in focused ion beam
KR100257640B1 (en) A method of and an apparatus for electron beam exposure
JP2004311472A (en) Electron beam lithography equipment
JPS5922325A (en) Electron beam drawing device
JPS6256807A (en) Electron beam length measuring instrument
KR20130090806A (en) Drawing apparatus, and method of manufacturing article
JPH07262953A (en) Exposing apparatus by charged particle beam and exposing method
JPS6338826B2 (en)
JPH03272557A (en) Ion implantation device
JPS614141A (en) Measuring device of ion beam diameter
JPH06204127A (en) Determining method of heat compensation current in charged particle beam aligner
JPH0713937B2 (en) Electronic beam exposure method
JPH02262326A (en) Charged beam pattern drawing method
JP2023021705A (en) Charged particle beam scanning module, charged particle beam device, and computer
SU680195A1 (en) Device for shaping electron-beam tube focusing beam correction signal
JPS60230348A (en) Method of detecting axial shift of charged particle beam