JPS63231884A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPS63231884A
JPS63231884A JP62065391A JP6539187A JPS63231884A JP S63231884 A JPS63231884 A JP S63231884A JP 62065391 A JP62065391 A JP 62065391A JP 6539187 A JP6539187 A JP 6539187A JP S63231884 A JPS63231884 A JP S63231884A
Authority
JP
Japan
Prior art keywords
membrane
photoelectric conversion
violet
electrode
purple
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62065391A
Other languages
Japanese (ja)
Other versions
JPH0799699B2 (en
Inventor
Masahiro Izeki
正博 井関
Koichi Inoue
高一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62065391A priority Critical patent/JPH0799699B2/en
Publication of JPS63231884A publication Critical patent/JPS63231884A/en
Publication of JPH0799699B2 publication Critical patent/JPH0799699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To improve repeatability on uniform photoelectric effect and make it easy to produce the element in the caption by interposing a photoelectric conversion layer of which a violet membrane is stabilized in an electrolysis polymerization macromolecule between pair of light permeable electrodes. CONSTITUTION:Pt-electrode plate 5 is soaked in an electrolyte aqueous solution including 0.1M pyrrole and a violet membrane, a constant potential electrolysis- oxidation polymerization is conducted, a polypyrrole-violet membrane stabilizing macromolecule membrane 4 is formed on the electrode plate 5. Then a violet membrane stabilizing membrane electrode is obtained by washing and drying it. A transparent electrode 2 on a glass substrate 1 coated with PVA3 and dried is prepared. Thus prepared component is stuck firmly on the violet membrane stabilizing membrane 4 of the violet membrane stabilizing membrane electrode already obtained by means of a supporter 6. This photoelectric conversion element shows stable response against light rediation.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、光電変換素子に関する。さらに詳しくは、
紫膜を固定化した電極を用いてなり、人間の目に近い分
光感度特性をもつ光電変換素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a photoelectric conversion element. For more details,
This invention relates to a photoelectric conversion element that uses electrodes with immobilized purple membrane and has spectral sensitivity characteristics close to those of the human eye.

(ロ)従来の技術 紫膜(Purple Membrene)は、好塩菌(
Halobacterium halobium)の細
胞中に存在し、バクテリオロドプシン(Bacteri
orhodopsin)を主成分とするタンパク質の集
合体からなる。ここでバクテリオロドプシンは、光によ
ってC末端(カルボキシル基のある末端)側からN末端
(アミノ基のある末端)側へプロトン(Ho)を移動さ
せる機能をもっている。このバクテリオロドプシンが方
向性をもって配列集合した単位が紫膜となる。紫膜は、
中性分散液中ではカルボキシイオンのために、全体とし
て負にかたより、カルボキシイオンの集まった面が負の
電荷を帯びていると思われる。この状態の紫膜分散液に
電場をかけると、紫膜が電解方向に配向し、次いでC末
端側が十電極をめがけて泳動し、場合によっては付着す
る(Gy、Varo、ActaBiologica A
cademiae Scientiarum Hung
aricae。
(b) Conventional technology Purple membrane is a halophilic bacterium (
It exists in the cells of Halobacterium halobium and bacteriorhodopsin (Bacteri
It consists of a protein aggregate whose main component is orhodopsin. Here, bacteriorhodopsin has the function of moving protons (Ho) from the C-terminus (terminus with a carboxyl group) side to the N-terminus (terminus with an amino group) side using light. The purple membrane is a unit in which bacteriorhodopsin is arranged and assembled in a directional manner. The purple membrane is
In a neutral dispersion, it is thought that due to carboxy ions, the overall charge is biased towards negative, and the surface where carboxy ions gather is negatively charged. When an electric field is applied to the purple membrane dispersion in this state, the purple membrane is oriented in the direction of electrolysis, and then the C-terminal side migrates toward the ten electrodes, and in some cases adheres (Gy, Varo, ActaBiologica A
cademiae Scientiarum Hung
aricae.

32、301−310(1981)、 )。この電着に
よる方法を利用して、配向性を持った紫膜のスタック膜
(積み重ね膜)を両側から2枚の電極ではさみ、それに
よる光電効果の発現も確認されている(曽良達生。
32, 301-310 (1981), ). Using this electrodeposition method, a stack of oriented purple films is sandwiched between two electrodes from both sides, and the resulting photoelectric effect has also been confirmed (Tatsuo Sora).

前田秀篤1日本化学会第52春季年会講演予稿集1 、
411(1986)、)。
Hideatsu Maeda 1 Proceedings of the 52nd Spring Annual Meeting of the Chemical Society of Japan 1,
411 (1986), ).

(ハ)発明が解決しようとする問題点 しかしながら、前記電着法による紫膜スタック膜は不均
一であり、この紫膜スタック膜を光電変換層として構成
した光電変換素子における光電効果の安定性は不充分で
あり、かつ素子作製毎の光電効果の再現性が著しく低い
という問題があった。
(c) Problems to be Solved by the Invention However, the purple film stack formed by the electrodeposition method is non-uniform, and the stability of the photoelectric effect in a photoelectric conversion element comprising this purple film stack as a photoelectric conversion layer is poor. There were problems in that it was insufficient and the reproducibility of the photoelectric effect for each device fabrication was extremely low.

さらに、かかる光電変換素子における紫膜スタック膜の
作製においては、電着時の電極間距離を厳密に規制しな
ければならない等の煩雑さがあり、また、電着電圧も5
〜lOvを要し、エネルギー的にもコストが高い等の問
題点があった。
Furthermore, in the production of the purple film stack film in such photoelectric conversion elements, there are complications such as having to strictly control the distance between electrodes during electrodeposition, and the electrodeposition voltage is also 5.
There were problems in that it required ~1Ov and was expensive in terms of energy.

この発明は、かかる従来の問題点を解消すべくなされた
ものであり、ことに均一で光電効果についての再現性が
高く、かつ簡便に作製できる紫膜含有光電変換素子を提
供しようとするものである。
The present invention has been made to solve these conventional problems, and particularly to provide a photoelectric conversion element containing a violet film that is uniform, has high reproducibility of the photoelectric effect, and can be easily produced. be.

(ニ)問題点を解決するための手段 本発明者らは、鋭意研究を行った結果、導電性高分子を
作製する一手法として用いられている電解重合の電解系
に紫膜を存在させることにより、紫膜が効率良く高分子
膜中に均一に包括固定できる事実、並びにこの紫膜固定
化膜が安定性、再現性の優れた光電変換層として機能す
る事実を見出し、この発明を完成するに到った。
(d) Means for solving the problem As a result of intensive research, the present inventors found that a purple film is present in the electrolytic system of electrolytic polymerization, which is used as a method for producing conductive polymers. discovered the fact that the purple membrane can be efficiently and uniformly immobilized in a polymer membrane, and the fact that this purple membrane-immobilized membrane functions as a photoelectric conversion layer with excellent stability and reproducibility, and completed this invention. reached.

かくしてこの発明によれば、少なくとも一方が光透過性
の一対の電極間に、電解重合高分子内に紫膜が固定化さ
れた光電変換層を介在してなる光電変換素子が提供され
る。
Thus, according to the present invention, a photoelectric conversion element is provided in which a photoelectric conversion layer in which a purple film is fixed in an electrolytically polymerized polymer is interposed between a pair of electrodes, at least one of which is transparent to light.

この発明における光電変換層は、各種貴金属(白金、金
等)やカーボン電極、またITO/SnO。
The photoelectric conversion layer in this invention includes various noble metals (platinum, gold, etc.), carbon electrodes, and ITO/SnO.

ガラス電極(透明電極)等を電解用電極として用い、こ
れを重合用モノマーと紫膜を含有する電解質溶液中に浸
漬し、この状態で電解を行って重合を進行させることに
より、上記電極面上に簡便かつ効率的に形成することが
できる。従ってこの発明は、重合用モノマーと紫膜を共
存させた電解質溶液中に電極を挿入して電解重合に付す
ことにより、該電極上に紫膜を包括固定した高分子膜を
形成させることからなる光電変換膜の製造方法をも提供
するものである。
A glass electrode (transparent electrode) or the like is used as an electrode for electrolysis, and it is immersed in an electrolyte solution containing monomers for polymerization and purple membrane, and electrolysis is performed in this state to advance polymerization, thereby forming a layer on the electrode surface. It can be formed simply and efficiently. Therefore, this invention consists of forming a polymer membrane on which the purple membrane is comprehensively fixed on the electrode by inserting an electrode into an electrolyte solution in which a monomer for polymerization and a purple membrane coexist and subjecting it to electrolytic polymerization. The present invention also provides a method for manufacturing a photoelectric conversion film.

上記重合用上ツマ−としては水溶性でかつ水溶液中で重
合しうるものが適しており、例えば、ア=3− ニリン、ピロール、0−フェニレンジアミン、フェノー
ル等が挙げられる。溶液中のモノマー濃度はとくに限定
されないが、通常0.1〜0.2M程度が適している。
As the above polymerization polymer, those which are water-soluble and can be polymerized in an aqueous solution are suitable, and examples thereof include a=3-niline, pyrrole, 0-phenylenediamine, and phenol. Although the monomer concentration in the solution is not particularly limited, it is usually suitable to be about 0.1 to 0.2M.

また紫膜は、必ずしも純品でなくてもよく、好塩菌ハロ
バクテリウム ハロビウム(Halobacteriu
m halobium)の形質膜から分離される粗製品
であってもよい。これらは通常、水分散液の形態で容易
に入手可能である。紫膜の電解質溶液中への添加量は特
に限定されないが、通常紫膜を構成するバクテリオロド
プシンの濃度が溶液中で10−5Mオーダとなる程度で
充分である。
In addition, the purple membrane does not necessarily have to be a pure product, and the halophilic bacterium Halobacterium halobium
It may also be a crude product separated from the plasma membrane of M. halobium. These are usually readily available in the form of aqueous dispersions. Although the amount of the purple membrane added to the electrolyte solution is not particularly limited, it is usually sufficient that the concentration of bacteriorhodopsin constituting the purple membrane is on the order of 10 -5 M in the solution.

一方、電解重合用の支持電解質としては、電解重合に用
いられる一般的な塩が使用でき、p−トルエンスルホン
酸アルカリ金属塩、AsFa塩、CLCL塩、BP、塩
等が適している。また、これらの支持電解質濃度として
は0.05〜0.1M程度が適している。
On the other hand, as the supporting electrolyte for electrolytic polymerization, common salts used in electrolytic polymerization can be used, and p-toluenesulfonic acid alkali metal salts, AsFa salts, CLCL salts, BP, salts, etc. are suitable. Further, a suitable concentration of these supporting electrolytes is about 0.05 to 0.1M.

上記電解用電極は、板状、棒状のものに限らず、例えば
、絶縁基板上に蒸着された膜状のものであってもよい。
The electrolytic electrode is not limited to a plate or rod shape, but may be, for example, a film deposited on an insulating substrate.

なお、電極の形状の如何を問わず、−4= 均一な紫膜面一定化膜を形成することができ、用途に応
じた形の光電変換素子を作製することができる点も、こ
の発明の1つの利点である。電解重合は、室温等の緩和
な温度下で行うのが適しており、また電解条件は、定電
位法、定電流法、電位走査法のいずれを用いてもよい。
It should be noted that, regardless of the shape of the electrode, it is possible to form a uniform -4 = uniform purple film surface, and it is also possible to produce a photoelectric conversion element in a shape depending on the application, which is another advantage of the present invention. This is one advantage. The electrolytic polymerization is suitably carried out at a mild temperature such as room temperature, and the electrolytic conditions may be any of the constant potential method, constant current method, and potential scanning method.

例えば定電位電解で重合を行う場合には、電解電位0,
6〜0.8V vsAg/AgC1とするのが適してい
る。電解重合時間により、形成される紫膜固定化高分子
膜の厚みを調整することができる。かかる厚みは、意図
する光電変換電圧が得られるように調整されるが、光透
過性の点で効率が悪くならない程度の厚みに適宜決定す
る。
For example, when polymerizing by constant potential electrolysis, the electrolytic potential is 0,
It is suitable to set it as 6-0.8V vsAg/AgC1. The thickness of the purple membrane-immobilized polymer membrane to be formed can be adjusted by the electrolytic polymerization time. This thickness is adjusted so as to obtain the intended photoelectric conversion voltage, but is appropriately determined to a thickness that does not deteriorate the efficiency in terms of light transmittance.

このようにして電極上に得られた紫膜固定化膜上に対極
を設けることによりこの発明の光電変換素子が基本的に
構成される。この際、紫膜固定化膜に光が到達する必要
があるため、対極は透明電極である必要がある。ただし
、紫膜の固定化に用いた電極が透明電極である場合は、
その限りではない。すなわち、紫膜固定化膜(光電変換
層)の両面に位置する一対の電極のうち、少なくとも一
方が光透過性であればよく、ことに可視光透過性であれ
ばよい。
The photoelectric conversion element of the present invention is basically constructed by providing a counter electrode on the purple membrane-immobilized film thus obtained on the electrode. At this time, the counter electrode needs to be a transparent electrode because the light needs to reach the purple membrane fixation film. However, if the electrode used to immobilize the purple membrane is a transparent electrode,
That's not the limit. That is, it is sufficient that at least one of the pair of electrodes located on both sides of the purple membrane fixing film (photoelectric conversion layer) is transparent to light, particularly visible light.

対極は上記紫膜固定化膜上に、例えば白金、アルミニウ
ム等を直接蒸着して形成することも可能である。ただし
、紫膜固定化膜はそれ自体電解質溶液中で作製されてい
るため、導電性を示し、ことに、用いる支持電解質によ
っては高い導電性を示す。かかる導電性の高い固定化膜
を用いた場合には、対極を直接密着させると、両極間が
実質的に短絡状態となり、光電変換特性ことに光起電力
を有効に発生することは困難となる。従って、通常、紫
膜固定化膜(光電変換層)と対極との間にある程度の絶
縁性を有する高分子薄膜を介在させることが好ましい。
The counter electrode can also be formed by directly depositing, for example, platinum, aluminum, etc. on the purple membrane fixation film. However, since the purple membrane-immobilized membrane itself is prepared in an electrolyte solution, it exhibits conductivity, and in particular, exhibits high conductivity depending on the supporting electrolyte used. When such a highly conductive immobilized film is used, if the counter electrodes are brought into direct contact with each other, the two electrodes will essentially become short-circuited, making it difficult to effectively generate photovoltaic force due to photoelectric conversion properties. . Therefore, it is usually preferable to interpose a polymer thin film having a certain degree of insulation between the purple membrane fixing film (photoelectric conversion layer) and the counter electrode.

かかる高分子薄膜としては、例えば、ポリビニルアルコ
ール(PVA)、ポリメタクリル酸メチル(PMMA)
、ポリイミド等の薄膜が挙げられる。かかる薄膜は一種
のコンデンサーの働きをするものであり、ある程度薄く
しないと起電力の低下をまねく。従って、厚みを1〜1
0μm程度とするのが望ましい。これらのうち、PVA
は、水溶性ポリマーであるので、紫膜固定化膜の上に直
接塗布形成でき、取り扱い易く好ましい。PMMA、ポ
リイミド等については、クロロホルム、トルエン等の有
機溶媒に溶かして使用するが、この場合、固定化された
紫膜の変性を招く恐れがあるため、あらかじめ対極の方
に塗って乾燥しておく必要がある。
Examples of such polymer thin films include polyvinyl alcohol (PVA) and polymethyl methacrylate (PMMA).
, polyimide, and the like. Such a thin film functions as a kind of capacitor, and unless it is made thinner to a certain extent, the electromotive force will decrease. Therefore, the thickness is 1 to 1
It is desirable that the thickness be approximately 0 μm. Among these, PVA
Since it is a water-soluble polymer, it can be directly coated onto the purple membrane immobilized membrane and is easy to handle, which is preferable. PMMA, polyimide, etc. are used after being dissolved in an organic solvent such as chloroform or toluene, but in this case, the fixed purple membrane may be denatured, so apply it to the opposite electrode and dry it beforehand. There is a need.

(ホ)作用 電解重合系にモノマーと共存する紫膜は、モノマーの電
極面上への重合に伴って、電界方向へ配向及び電極面へ
泳動され、その光電変換作用の阻害を受けることなく重
合膜中に包括固定されることとなる。
(e) Effect The purple film that coexists with the monomer in the electrolytic polymerization system is oriented in the direction of the electric field and migrates toward the electrode surface as the monomer polymerizes onto the electrode surface, and polymerizes without being inhibited by the photoelectric conversion effect. It will be comprehensively fixed in the membrane.

そして、この固定化膜からなる光電変換層に光、ことに
500〜600nmの波長光が入射すると、紫膜中のバ
クテリオロドプシンの光吸収に基づいて光起電力が発生
し、この電圧や電力が一対の電極を介して、検知や利用
されることとなる。
When light, especially light with a wavelength of 500 to 600 nm, is incident on the photoelectric conversion layer made of this immobilized film, a photovoltaic force is generated based on the light absorption of bacteriorhodopsin in the purple film, and this voltage and power are It will be detected and used via a pair of electrodes.

(へ)実施例 以下、この発明の一実施例を図面と共に説明する。第1
図は、この発明の光電変換素子の構成説明図である。こ
の光電変換素子は、以下のようにして作製した。
(F) Example Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is an explanatory diagram of the configuration of a photoelectric conversion element of the present invention. This photoelectric conversion element was produced as follows.

まず、白金(Pt)電極板(0,1x15x20+nm
)を、0.1Mピロール、紫膜(バクテリオロドプシン
の濃度で約4XlO−5M )を含む電解質水溶液(0
,1Mパラトルエンスルホン酸ナトリウム、0.1Mリ
ン酸緩衝溶液、 pH7,0)中に浸漬し、室温下約5
分間の定電位電解酸化重合(0,7V vs、 Ag/
AgC1)をおこない、Pt電極板上にポリピロール−
紫膜固定化(包括)高分子薄膜(約2μm[電気量より
計算])を形成した。このポリピロール−紫膜固定化膜
電極を水洗した後、十分に乾燥した。この得られた紫膜
固定化膜電極を、第1図に示したように配置してこの発
明の光電変換素子を構成した。
First, platinum (Pt) electrode plate (0.1x15x20+nm
) was added to an electrolyte aqueous solution (0
, 1M sodium p-toluenesulfonate, 0.1M phosphate buffer solution, pH 7.0) and soaked at room temperature for about 5 minutes.
potentiostatic electrolytic oxidative polymerization (0.7 V vs. Ag/
AgC1) was carried out to deposit polypyrrole on the Pt electrode plate.
A purple membrane-immobilized (encompassing) polymer thin film (approximately 2 μm [calculated from the amount of electricity]) was formed. This polypyrrole-purple membrane immobilized membrane electrode was washed with water and then thoroughly dried. The obtained purple membrane-immobilized membrane electrode was arranged as shown in FIG. 1 to constitute a photoelectric conversion element of the present invention.

図中、1はガラス基板、2はITO/S、0.からなる
透明電極、3はPVA塗布薄膜(厚み約3μm)、4は
ポリピロール−紫膜固定化膜、5はpt電極板、6は支
持板(アクリル板)を各々示すものである。この構成手
順は、あらかじめ透明電極2にPVA3を塗布、乾燥し
たものを用意し、上記で得られた紫膜固定化膜電極の紫
膜固定化膜4上に密着させ、支持体6で固定することに
より行った。
In the figure, 1 is a glass substrate, 2 is ITO/S, 0. 3 is a PVA coated thin film (thickness: about 3 μm), 4 is a polypyrrole-purple film fixed film, 5 is a PT electrode plate, and 6 is a support plate (acrylic plate). In this configuration procedure, a transparent electrode 2 is coated with PVA3 and dried beforehand, and then it is brought into close contact with the purple membrane-immobilized membrane 4 of the purple membrane-immobilized membrane electrode obtained above, and fixed with a support 6. I went there.

この光電変換素子を、シールドしたアクリルケース内に
セットし、スライドプロジェクタ−(100V/150
W)から得られる光をレンズで集光してガラス基板1面
に照射した。光電変換の測定は、光を照射したときに生
ずる光起電力の測定で行った。光起電力は、デジタルエ
ルクトロメータ7によって検出し、ペンレコーダによっ
て記録した。
This photoelectric conversion element was set in a shielded acrylic case, and a slide projector (100V/150V
The light obtained from W) was focused by a lens and irradiated onto one surface of the glass substrate. Photoelectric conversion was measured by measuring the photovoltaic force generated when irradiated with light. Photovoltage was detected by a digital erctrometer 7 and recorded by a pen recorder.

上記の方法によって得られた光起電力の測定結果を第2
図に示す。このように、光を照射すると、光起電力が発
生した。発生した光電圧は、光照射が始まると共に素早
く立ち上がりピーク値を示した後、比較的ゆっくりと電
圧が減少した。光照射を止めると、光電圧は急激に減少
し、光照射前の状態にもどった。20回以上の繰り返し
光照射に対しても安定した応答を示し、また通常の室温
下の保存で安定した機能を保っていることが明らかとな
った。また、同様な紫膜固定化膜を用いた光電変換素子
を繰り返し作製して応答を調べたところ、再現性も良好
であり、電解重合法により紫膜の固定化が再現性良く行
えることも判明した。
The photovoltaic force measurement results obtained by the above method are
As shown in the figure. Thus, upon irradiation with light, a photovoltaic force was generated. The generated photovoltage rose rapidly as the light irradiation began, showed a peak value, and then decreased relatively slowly. When the light irradiation was stopped, the photovoltage decreased rapidly and returned to the state before the light irradiation. It was revealed that it showed a stable response even after being repeatedly irradiated with light 20 times or more, and that it maintained stable functionality even when stored at normal room temperature. In addition, when we repeatedly fabricated photoelectric conversion elements using similar purple membrane immobilization membranes and investigated the response, we found that the reproducibility was good, and it was also found that the electrolytic polymerization method can immobilize the purple membrane with good reproducibility. did.

(ト)発明の効果 この発明による光電変換素子は、従来の紫膜スタック膜
を用いたものに比して、光応答性及びその再現性に優れ
、しかも半導体等に代表される従来の光電変換素子に比
べ、より人間の目に近い分光感度特性を持つ。また、こ
の素子の中核をなす紫膜固定化膜は、電解重合法による
導電性高分子を用いた電気化学的な手法によって固定化
されているので、エネルギー的にコストが安く、簡便で
膜厚制御も容易である。
(G) Effects of the Invention The photoelectric conversion element according to the present invention has excellent photoresponsiveness and reproducibility compared to those using conventional purple film stack films, and moreover It has spectral sensitivity characteristics that are closer to those of the human eye than other elements. In addition, the purple membrane immobilization membrane, which forms the core of this device, is immobilized by an electrochemical method using conductive polymers using electrolytic polymerization, so it is inexpensive in terms of energy, easy to use, and has a thin film thickness. It is also easy to control.

【図面の簡単な説明】 第1図は、この発明の光電変換素子の構成説明図、第2
図は、この発明の光電変換素子を用いて光を0N−OF
F したときの光電圧の経時変化を示したグラフ図であ
る。 1・・・・・・ガラス基板、    2・・・・・・透
明電極、3・・・・・・PVA塗布薄膜、 4・・・・・・ポリピロール−紫膜固定化膜、5・・・
・・・Pt電極板、    6・・・・・・支持体、7
・・・・・・エレクトロメータ。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is an explanatory diagram of the configuration of the photoelectric conversion element of the present invention,
The figure shows how light is converted into 0N-OF using the photoelectric conversion element of this invention.
FIG. 3 is a graph showing the change in photovoltage over time when F is applied. DESCRIPTION OF SYMBOLS 1...Glass substrate, 2...Transparent electrode, 3...PVA coated thin film, 4...Polypyrrole-purple film immobilized film, 5...
... Pt electrode plate, 6 ... Support, 7
...Electrometer.

Claims (1)

【特許請求の範囲】 1、少なくとも一方が光透過性の一対の電極間に、電解
重合高分子内に紫膜が固定化された光電変換層を介在し
てなる光電変換素子。 2、光電変換層の一面に絶縁性高分子薄膜がさらに積層
配置されてなる特許請求の範囲第1項記載の光電変換素
子。
[Scope of Claims] 1. A photoelectric conversion element comprising a photoelectric conversion layer in which a purple film is fixed in an electrolytically polymerized polymer, interposed between a pair of electrodes, at least one of which is transparent to light. 2. The photoelectric conversion element according to claim 1, wherein an insulating polymer thin film is further laminated on one surface of the photoelectric conversion layer.
JP62065391A 1987-03-19 1987-03-19 Photoelectric conversion element Expired - Lifetime JPH0799699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065391A JPH0799699B2 (en) 1987-03-19 1987-03-19 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065391A JPH0799699B2 (en) 1987-03-19 1987-03-19 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS63231884A true JPS63231884A (en) 1988-09-27
JPH0799699B2 JPH0799699B2 (en) 1995-10-25

Family

ID=13285649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065391A Expired - Lifetime JPH0799699B2 (en) 1987-03-19 1987-03-19 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0799699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083636A1 (en) * 2010-01-07 2011-07-14 大日本印刷株式会社 Organic thin film solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011083636A1 (en) * 2010-01-07 2011-07-14 大日本印刷株式会社 Organic thin film solar cell
JP2011142217A (en) * 2010-01-07 2011-07-21 Dainippon Printing Co Ltd Organic thin-film solar cell

Also Published As

Publication number Publication date
JPH0799699B2 (en) 1995-10-25

Similar Documents

Publication Publication Date Title
Lindfors Light sensitivity and potential stability of electrically conducting polymers commonly used in solid contact ion-selective electrodes
JP2788121B2 (en) Electrochromic device
JPH02209931A (en) Composite polymer of polyaniline containing metal phthalocyanine and polyaniline containing organic sulfonic acid and nafion
Lowman et al. Novel solid-state polymer electrolyte consisting of a porous layer-by-layer polyelectrolyte thin film and oligoethylene glycol
JPH1062823A (en) Electrochromic unit
Wang et al. A comparison of the photoelectric current responses resulting from the proton pumping process of bacteriorhodopsin under pulsed and CW laser excitations
JPH11329519A (en) Photocell
JPS63231884A (en) Photoelectric conversion element
Shinohara et al. Electrically stimulated rupture of cell membranes with a conducting polymer-coated electrode
CN104817694B (en) A kind of quick method for preparing polyaniline nano sensing material
EA009476B1 (en) Photovoltaic cell
JPS63215772A (en) Production of electrically conductive polymer composition
KR101110651B1 (en) Dye-sensitized solar cell
Konry et al. Characterization of thin poly (pyrrole-benzophenone) film morphologies electropolymerized on indium tin oxide coated optic fibers for electrochemical and optical biosensing
Preethichandra et al. Functional design of electrolytic biosensor
Uehara et al. Photoelectric response of oriented purple membrane electrodeposited onto poly (vinyl alcohol) film
JPH06310746A (en) Electrochemical element
JPS60188931A (en) Manufacture of electrochromic display element
Meisel et al. Large-scale electrochromic devices for smart windows and absorbers
JP3310995B2 (en) Bipolar cell for voltammogram recording and voltammogram recording method using this bipolar cell
JPH03205520A (en) Photoelectric converting element
RU2227180C1 (en) Method of production of photo-chromic structures
JPH05206489A (en) Photoelectric conversion device
Kawai et al. Electrochemical characteristics of an insulating polymer-modified electrode prepared by electrochemical polymerization
JP2000067939A (en) Photoelectric transfer element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term