JPH05206489A - Photoelectric conversion device - Google Patents

Photoelectric conversion device

Info

Publication number
JPH05206489A
JPH05206489A JP4011946A JP1194692A JPH05206489A JP H05206489 A JPH05206489 A JP H05206489A JP 4011946 A JP4011946 A JP 4011946A JP 1194692 A JP1194692 A JP 1194692A JP H05206489 A JPH05206489 A JP H05206489A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
dye
electrode
conversion element
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4011946A
Other languages
Japanese (ja)
Inventor
Tsutomu Miyasaka
力 宮坂
Yoshio Inagaki
由夫 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4011946A priority Critical patent/JPH05206489A/en
Publication of JPH05206489A publication Critical patent/JPH05206489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To provide an optical sensor which incorporates an effective information processing function in terms of visual information processing. CONSTITUTION:The surface of a conductive electrode is coated with a photo-sensitive pigment layer capable of carrying out optical isomerization reaction by way of an insulating thin film whose thickness is virtually uniform on the surface of a conductive electrode, thereby forming an optical conversion device which includes an optical conductive conversion element constituted by an ion conductive electrolyte bonded with the pigment layer. Therefore, this device is provided with a feature which responds electrically to the intensity of light in a differential manner and capable of using is effectively as a light receiving pixel which constitutes an image sensor having a visual information processing power.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機色素材料を感光層に
用いる光電変換型の光センサの新規な構造に関するもの
である。本発明の光電変換素子は、光の強度に対して微
分的に電気応答する特徴を有し、視覚情報処理能力を持
つイメージセンサを構成する受光ピクセルとして有効に
利用することができるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel structure of a photoelectric conversion type optical sensor using an organic dye material in a photosensitive layer. INDUSTRIAL APPLICABILITY The photoelectric conversion element of the present invention has a characteristic of differentially electrically responding to the intensity of light, and can be effectively used as a light receiving pixel that constitutes an image sensor having visual information processing capability.

【0002】[0002]

【従来の技術】感光性の有機色素材料を用いた光電変換
型の素子としては、2種の導電性電極の間に有機色素の
薄膜を接合して形成するサンドイッチ型の光ボルタイッ
クセルが最も一般的である。このような光電変換素子に
用いられる色素材料としてさまざまな種類のものが試み
られているが、代表的なものとしては、D.L. Morel eta
l., Appl. Phys. Lett., 32, p495 (1978)やK. Sakai e
t al., Jap. J. Appl.Phy., p865 (1985)に記載のメロ
シアニン系の色素、A.K. Ghosh et al., J. Appl. Phy
s., 45, p230 (1974)やZ.D. Popovic and J.H. Sharp,
J. Chem. Phys.,66, p5076 (1977) に記載のフタロシア
ニン誘導体、J.P. Dodelet et al., Photochem. Photob
iol., 29, p1135 (1979)に記載のクロロフィル等の光伝
導性を持った材料が知られている。
2. Description of the Related Art As a photoelectric conversion type device using a photosensitive organic dye material, a sandwich type optical voltaic cell formed by joining a thin film of an organic dye between two kinds of conductive electrodes is most suitable. It is common. Although various types of dye materials have been tried as the dye materials used in such photoelectric conversion elements, a typical one is DL Morel eta.
l., Appl. Phys. Lett., 32, p495 (1978) and K. Sakai e.
t al., Jap. J. Appl. Phy., p865 (1985), a merocyanine dye, AK Ghosh et al., J. Appl. Phy
s., 45, p230 (1974) and ZD Popovic and JH Sharp,
Phthalocyanine derivative described in J. Chem. Phys., 66, p5076 (1977), JP Dodelet et al., Photochem. Photob
Materials having photoconductivity such as chlorophyll described in iol., 29, p1135 (1979) are known.

【0003】また、上記のもの以外の一般的な光電変換
セルとしては、色素被覆電極を電解水溶液中で用いる色
素増感型光電気化学セルが挙げられ、例えば、N. Minam
i etal., Ber. Bunsenges. Phys. Chem., 83, p476 (19
79)には金属フタロシアニンを用いた例、T. Kawai et a
l., Chem. Phys. Lett., 56, p541 (1978) にはポルフ
ィリンを用いた例、T. Miyasaka et al., Photochem. P
hotobiol., 32, p217(1980)にはクロロフィルを用いた
例、W. Arden and P. Fromherz, J. Electrochem. So
c., 127, p370 (1980)にはシアニン色素を用いた例が示
されている。以上の各種の光電変換系では、色素の吸収
する可視の波長領域の光が起電力(ボルタイックセル)
もしくは電流といった電気的エネルギーに変換される。
Further, as a general photoelectric conversion cell other than the above, there is a dye-sensitized photoelectrochemical cell in which a dye-coated electrode is used in an electrolytic aqueous solution, for example, N. Minam.
i et al., Ber. Bunsenges. Phys. Chem., 83, p476 (19
79) Example using metal phthalocyanine, T. Kawai et a
l., Chem. Phys. Lett., 56, p541 (1978) using porphyrin, T. Miyasaka et al., Photochem. P.
hotobiol., 32, p217 (1980) using chlorophyll, W. Arden and P. Fromherz, J. Electrochem. So
c., 127, p370 (1980) shows an example using a cyanine dye. In the above various photoelectric conversion systems, the light in the visible wavelength range absorbed by the dye is the electromotive force (voltaic cell).
Or it is converted into electrical energy such as electric current.

【0004】以上のような従来の光電変換方法では、感
度の違いや出力が起電力か電流かの違いはあるものの、
概ね入力される光の強度を反映した定常的な電気量が最
終的に出力される。すなわち定常光の入射の下で素子は
光強度に依存した定常的な出力を与える。この点は、既
存の光ダイオードを含めた固体光センサと同様である。
In the conventional photoelectric conversion method as described above, there are differences in sensitivity and whether the output is electromotive force or current, but
A steady quantity of electricity that reflects the intensity of the input light is finally output. That is, the device gives a stationary output depending on the light intensity under the incidence of stationary light. This point is similar to the existing solid-state photosensor including a photodiode.

【0005】しかし、近年ますます重要性が高まってい
る視覚情報処理において、これに有効な情報処理機能を
内蔵した光センサを構築する目的では、入力の光強度に
対して微分的に感応するセンサの実現が重要となってく
る。このような微分応答型の光センサは既存のフォトダ
イオードを微分回路(CR回路)と組み合わせることに
よっても得られるが、回路上の負担を最小限にするに
は、回路技術に依存せずに、感光素子そのものに微分応
答性を持たせることが重要であり、上記の既存の有機光
電変換素子ではこの目的は達成されない。
However, in visual information processing, which has become more and more important in recent years, for the purpose of constructing an optical sensor having a built-in information processing function effective for this, a sensor that is differentially sensitive to the input light intensity is used. Realization of will become important. Such a differential response type optical sensor can be obtained by combining an existing photodiode with a differentiating circuit (CR circuit), but in order to minimize the load on the circuit, it does not depend on the circuit technology, It is important that the photosensitive element itself has a differential response, and the above-mentioned existing organic photoelectric conversion element cannot achieve this purpose.

【0006】[0006]

【発明が解決しようとする課題】従って本発明の目的
は、光の強度に対して微分的に電気応答する光電変換素
子を提供することにある。
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a photoelectric conversion device which differentially electrically responds to the intensity of light.

【0007】[0007]

【課題を解決するための手段】微分型の電気応答はコン
デンサーの充電と放電の際の容量電流のパターンによく
見られる現象である。このような容量電流のパターン
は、ベクトル的な電荷の移動や双極子の変化を光反応過
程で伴うような特定の有機分子を使うことによってうま
く実現することができる。特定の有機分子とは、電荷の
移動が有機分子の酸化還元や外部の材料との間の電子移
動によって償却されることなく、有効に容量の変化とし
て蓄えられるような有機分子である。
Differential type electrical response is a phenomenon that is often seen in the pattern of capacitive current during charging and discharging of a capacitor. Such a capacitive current pattern can be successfully realized by using a specific organic molecule that causes vector-like charge transfer or dipole change in the photoreaction process. A specific organic molecule is an organic molecule in which charge transfer is effectively stored as a change in capacity without being amortized by redox of the organic molecule or electron transfer with an external material.

【0008】このような有機分子は極めて限られている
が、特開平3−205520に示されるバクテリオロド
プシンはその典型的な例である。バクテリオロドプシン
においては、電荷の移動の引き金となるレチナール分子
がたんぱく質の壁に取り囲まれているため、レチナール
の化学的な酸化還元による分解はほぼ完璧に押さえられ
ている。従って、より汎用性の高い一般の感光性有機色
素を利用してバクテリオロドプシンと同様な効果を得る
ためには、少なくとも酸化還元に電気化学的に寄与する
電極材料から感光性色素を隔離して用いる必要が生じ
る。
Although such organic molecules are extremely limited, bacteriorhodopsin disclosed in JP-A-3-205520 is a typical example. In bacteriorhodopsin, the retinal molecule that triggers the transfer of charge is surrounded by the walls of the protein, so that the chemical redox decomposition of retinal is almost completely suppressed. Therefore, in order to obtain the same effect as that of bacteriorhodopsin by using a more versatile general photosensitive organic dye, at least the photosensitive dye is isolated from the electrode material that electrochemically contributes to redox. The need arises.

【0009】上記の課題は、導電性電極の表面に厚みの
実質的に均一な絶縁性の薄膜を介して光異性化反応を行
うことのできる感光性色素の層が被覆され、該色素層に
イオン伝導性電解質が接合して構成される光電変換要素
を含むことを特徴とする光電変換素子によって達成する
ことができた。
The above problem is that the surface of the conductive electrode is coated with a layer of a photosensitive dye capable of performing a photoisomerization reaction through an insulating thin film having a substantially uniform thickness, and the dye layer is coated with the photosensitive dye layer. This can be achieved by a photoelectric conversion element characterized by including a photoelectric conversion element configured by bonding an ion conductive electrolyte.

【0010】本発明の光電変換素子は、層構成が以下の
ような順序となっていることを特徴とする。導電性電極
基板/絶縁性薄膜/感光性色素層/イオン伝導性電解質
/対電極
The photoelectric conversion element of the present invention is characterized in that the layer structure is in the following order. Conductive electrode substrate / insulating thin film / photosensitive dye layer / ion conductive electrolyte / counter electrode

【0011】導電性電極基板及び対電極の材料として
は、電気化学セルにおいて通常用いられる耐腐食性の各
種の酸化物及び貴金属の電極が適用できる。酸化物電極
としては酸化スズ、酸化インジウムが特に好ましく、貴
金属電極としては、金、白金、銀が特に好ましい。導電
性電極として耐腐食性と光学的透明性の点で好ましいも
のは、酸化スズ及び酸化インジウムからなる電極であ
る。ただし、感光性色素層が担持される導電性電極と対
電極のいずれか一方は感光性色素層の吸収する光の波長
領域について透明であることが必要である。
As materials for the conductive electrode substrate and the counter electrode, various corrosion-resistant oxide and noble metal electrodes which are commonly used in electrochemical cells can be applied. Tin oxide and indium oxide are particularly preferable as the oxide electrode, and gold, platinum and silver are particularly preferable as the noble metal electrode. What is preferable as a conductive electrode in terms of corrosion resistance and optical transparency is an electrode made of tin oxide and indium oxide. However, one of the conductive electrode and the counter electrode on which the photosensitive dye layer is carried needs to be transparent in the wavelength region of the light absorbed by the photosensitive dye layer.

【0012】上記の層構成中、必要によっては第三の電
極として参照電極をイオン伝導性電解質層に加えること
ができる。参照電極として好ましいものは銀/塩化銀電
極、飽和カロメルなどの水銀系電極であり、特に銀/塩
化銀電極が好ましい。
In the above layer structure, a reference electrode can be added to the ion conductive electrolyte layer as a third electrode, if necessary. Preferred as the reference electrode are silver / silver chloride electrodes, mercury-based electrodes such as saturated calomel, and silver / silver chloride electrodes are particularly preferred.

【0013】絶縁性薄膜は本発明において色素と電極の
間の電子交換をブロックするブロッキング層としての役
目を果たしている。その目的で、薄膜は厚みが均一であ
り、その平均的な厚みは電子の局部的なトンネリングの
確率を十分に小さくするだけ大きいことが必要であり、
少なくとも5nm以上であることが望まれる。また一方
で、絶縁性膜は、色素層で生じた電荷の移動が静電効果
として十分な感度で電極に伝えられるために厚くなりす
ぎないことが必要であり、500nm以下であることが
望ましい。絶縁性材料としては、Siなどの無機物、S
iO2、Al23等の無機酸化物や脂質、ポリイミド等
の重合体に代表される有機高分子化合物が使用できる。
The insulating thin film serves as a blocking layer that blocks electron exchange between the dye and the electrode in the present invention. For that purpose, the thin film should have a uniform thickness, and its average thickness should be large enough to make the probability of local tunneling of electrons small enough.
It is desired that the thickness is at least 5 nm or more. On the other hand, the insulating film needs to be not too thick in order that the movement of charges generated in the dye layer can be transmitted to the electrode as an electrostatic effect with sufficient sensitivity, and is preferably 500 nm or less. As the insulating material, inorganic substances such as Si, S
iO 2, inorganic oxides and lipids such as Al 2 O 3, an organic polymer compound represented by the polymer such as polyimide can be used.

【0014】疎水性アルキル鎖をもった脂質類をラング
ミュアーブロジェット(Langmuir-Blodgett 、LB)膜
として絶縁性膜に用いるときはそのLB膜の層数は少な
くとも5層以上であることが望ましい。
When lipids having a hydrophobic alkyl chain are used as an insulating film as a Langmuir-Blodgett (LB) film, it is desirable that the number of layers of the LB film is at least 5 or more.

【0015】イオン伝導性電解質としては支持塩を含む
電解質水溶液、高分子有機材料を媒体とする高分子固体
電解質が有効である。支持電解質の濃度は好ましくは
0.1〜5mol/Lの範囲である。高分子電解質用の
媒体としては、例えばゼラチン、寒天、キチン及びキト
サン誘導体、ポリアクリルアミド、ポリビニルアルコー
ル、その他の水溶性ポリマーを利用することができる。
これらの媒体は支持塩とともに水に溶解してゲル状態で
用いることが望ましい。
As the ion conductive electrolyte, an electrolytic aqueous solution containing a supporting salt and a polymer solid electrolyte using a polymer organic material as a medium are effective. The concentration of the supporting electrolyte is preferably in the range of 0.1 to 5 mol / L. As the medium for the polymer electrolyte, for example, gelatin, agar, chitin and chitosan derivatives, polyacrylamide, polyvinyl alcohol and other water-soluble polymers can be used.
These media are preferably dissolved in water together with the supporting salt and used in a gel state.

【0016】イオン伝導性電解質中には必要によっては
ハレーション防止のために適当な染料や顔料あるいは感
光性色素の酸化防止のための保候剤を添加することがで
きる。またイオン伝導性電解質は窒素やアルゴンなどの
不活性ガスの導入で脱酸素をして用いることが望まし
い。
If necessary, an appropriate dye or pigment for preventing halation or a weathering agent for preventing oxidation of the photosensitive dye may be added to the ion conductive electrolyte. Further, it is desirable that the ion conductive electrolyte be used after being deoxidized by introducing an inert gas such as nitrogen or argon.

【0017】次に、本発明で使用する感光性色素材料に
ついて説明する。本発明で用いられる感光性色素には光
励起下で分子上の電荷の分布もしくは分子の双極子モー
メントに大きな変化を生じるものを広く適用することが
できる。このような色素の代表的なものはアゾベンゼン
誘導体、レチナール誘導体、スピロオキサジン誘導体、
スピロピラン誘導体、フルギド誘導体等の光異性化色素
である。
Next, the photosensitive dye material used in the present invention will be described. As the photosensitive dye used in the present invention, those which cause a large change in the distribution of charges on the molecule or the dipole moment of the molecule under photoexcitation can be widely applied. Typical of such dyes are azobenzene derivatives, retinal derivatives, spirooxazine derivatives,
Photoisomerization dyes such as spiropyran derivatives and fulgide derivatives.

【0018】光励起下で生じる電荷の移動(displaceme
nt) は絶縁膜を介して静電的に下地の導電性電極に伝わ
り、ここで誘起電流が生じる。色素は絶縁膜と電解質の
界面に固定されるために、水に不溶であることが望まし
い。水に不溶な色素はスピンコート法や真空蒸着法ある
いはラングミュア−ブロジェット(LB)法そのほかの
常用の薄膜形法によって絶縁膜上に被覆することができ
る。色素が水に不溶でない場合は、色素を適当な水に不
溶なバインダー材料(高分子化合物や樹脂)に一度分散
したものをバインダー材料とともに絶縁膜上に塗設する
という方法により用いることができる。
Discharge of charge generated under photoexcitation
nt) is electrostatically transmitted to the underlying conductive electrode through the insulating film, where an induced current is generated. Since the dye is fixed at the interface between the insulating film and the electrolyte, it is preferably insoluble in water. The water-insoluble dye can be coated on the insulating film by a spin coating method, a vacuum vapor deposition method, a Langmuir-Blodgett (LB) method, or another commonly used thin film forming method. When the dye is not insoluble in water, it can be used by a method in which the dye is once dispersed in a suitable water-insoluble binder material (polymer compound or resin) and coated on the insulating film together with the binder material.

【0019】バインダー用高分子材料として有用なもの
は、例えば、セルロース系樹脂、ポリスチレン、ポリ塩
化ビニル、ポリメチルメタクリレート、ポリアクリルア
ミド、ポリエステル類、ポリカーボネート、ポリイミド
類等の他、汎用の水不溶性ポリマーが使用できる。バイ
ンダー中に硬膜剤を添加することもできる。
Examples of useful polymeric materials for binders include, for example, cellulose resins, polystyrene, polyvinyl chloride, polymethylmethacrylate, polyacrylamides, polyesters, polycarbonates, polyimides, and general water-insoluble polymers. Can be used. A hardener can also be added to the binder.

【0020】本発明で有効に使用できる感光性色素材料
の例を以下に挙げる。
Examples of the photosensitive dye material that can be effectively used in the present invention are given below.

【0021】[0021]

【化1】 [Chemical 1]

【0022】[0022]

【化2】 [Chemical 2]

【0023】[0023]

【化3】 [Chemical 3]

【0024】[0024]

【化4】 [Chemical 4]

【0025】[0025]

【化5】 [Chemical 5]

【0026】[0026]

【化6】 [Chemical 6]

【0027】[0027]

【化7】 [Chemical 7]

【0028】[0028]

【化8】 [Chemical 8]

【0029】[0029]

【化9】 [Chemical 9]

【0030】[0030]

【化10】 [Chemical 10]

【0031】[0031]

【化11】 [Chemical 11]

【0032】[0032]

【化12】 [Chemical 12]

【0033】[0033]

【化13】 [Chemical 13]

【0034】[0034]

【化14】 [Chemical 14]

【0035】[0035]

【化15】 [Chemical 15]

【0036】以下に本発明の実施例を示すが、本発明の
好ましい態様はこれらに限定されるものではない。
Examples of the present invention will be shown below, but the preferred embodiments of the present invention are not limited to these.

【0037】[0037]

【実施例1】ガラス基板上に酸化スズの薄膜(厚さ45
00オングストローム、電気抵抗10Ω/cm2)が被覆
された酸化スズ電極基板の表面に、M. Suzuki et al Ch
em. Lett., p395 (1986)に記載された方法に従って、L
B法によりポリイミドの単分子膜(厚さ40オングスト
ローム)を10mN/cmの表面圧力下5〜6層相当の
厚みで積層して被覆し、基板上にポリイミドの絶縁膜を
設けた。
Example 1 A thin film of tin oxide (thickness: 45
The surface of a tin oxide electrode substrate coated with 00 angstrom and an electric resistance of 10 Ω / cm 2 ) was coated with M. Suzuki et al Ch
L according to the method described in em. Lett., p395 (1986).
By the method B, a polyimide monomolecular film (thickness 40 Å) was laminated and covered under a surface pressure of 10 mN / cm to a thickness of 5 to 6 layers, and a polyimide insulating film was provided on the substrate.

【0038】この絶縁膜上に、同じくLB法によって、
下記のアゾベンゼン誘導体の膜を水平付着式被覆法によ
って同方向(疎水基側が基板面)から20mN/cmの
表面圧力下で約10層積層し、基板上に絶縁膜をブロッ
キング層として挿入した状態で感光性色素の薄膜(厚さ
約250オングストローム)を設けた。
On this insulating film, similarly by the LB method,
About 10 layers of the following azobenzene derivative films were laminated by a horizontal adhesion coating method in the same direction (hydrophobic substrate side is the substrate surface) under a surface pressure of 20 mN / cm, and an insulating film was inserted as a blocking layer on the substrate. A thin film of photosensitive dye (about 250 Å thick) was provided.

【0039】[0039]

【化16】 [Chemical 16]

【0040】感光性色素を担持した電極基板を塩化カリ
ウム0.5モル/Lを含む中性の電解水溶液中に対電極
の白金電極とともに浸漬して、光電変換セルを作製し
た。色素側電極には白金電極に対して−0.4VのDC
バイアス電圧を外部から印加した。次に、色素電極に対
して、150Wキセノン灯から360nmにピークを持
つバンド光を照射したところ、光の入力に対して図1の
ような微分型の光電流の応答が見られた。これは、アゾ
ベンゼン誘導体のトランス体からシス体への光異性化に
伴う変位電流であると考えられる。
An electrode substrate carrying a photosensitive dye was immersed in a neutral electrolytic aqueous solution containing 0.5 mol / L of potassium chloride together with a platinum electrode as a counter electrode to prepare a photoelectric conversion cell. -0.4V DC for the dye side electrode with respect to the platinum electrode
A bias voltage was applied from the outside. Next, when the band electrode having a peak at 360 nm was irradiated from the 150 W xenon lamp to the dye electrode, a differential photocurrent response as shown in FIG. 1 was observed with respect to the light input. This is considered to be a displacement current associated with photoisomerization of the azobenzene derivative from the trans form to the cis form.

【0041】次に、バンド光のピークを450nmに変
えて同じように光照射を行ったところ、図1に示した応
答とは逆方向の微分型の光電流応答が検出された。これ
は、シス体からトランス体への光異性化を反映する変位
電流であると考えられる。
Next, when the peak of band light was changed to 450 nm and light irradiation was performed in the same manner, a differential type photocurrent response in the opposite direction to the response shown in FIG. 1 was detected. This is considered to be a displacement current that reflects the photoisomerization from cis form to trans form.

【0042】[0042]

【実施例2】金蒸着膜(厚さ1000オングストロー
ム)をガラス上に担持した電極基板をアルキルチオール
としてHS−(CH2)21−CH3 を1%含むエタノール
(脱酸素処理)中に5時間室温で浸漬してアルキルチオ
ールの単分子膜を金表面に形成させた。単分子膜が被覆
されて疎水性となった基板表面上に、次いでアラキジン
酸の単分子膜をLB法により水面上から30mN/mの
表面圧力下で水平付着法によって1層被覆した。この操
作によって金基板上におよそ50オングストローム(5
nm)の均一な絶縁層が形成された。
Example 2 An electrode substrate having a vapor-deposited gold film (thickness of 1000 Å) supported on glass was used as an alkylthiol in ethanol containing 1% of HS- (CH 2 ) 21 -CH 3 (deoxidation treatment) for 5 hours. It was immersed at room temperature to form a monomolecular film of alkylthiol on the gold surface. A monolayer of arachidic acid was coated on the surface of the substrate, which was made hydrophobic by the monolayer, by the horizontal deposition method under the surface pressure of 30 mN / m from the water surface by the LB method. By this operation, about 50 angstroms (5
(nm) uniform insulating layer was formed.

【0043】絶縁膜上に下記の構造の感光性色素、スピ
ロオキサジンをスピンコーターによって回転数1000
rpmでクロロホルムの1%溶液からスピンコートを行
い、厚さ約900オングストロームの青く着色した水に
不溶な薄膜を得た。
A photosensitive dye of the following structure, spirooxazine, was spun on the insulating film by a spin coater at a rotation speed of 1000.
Spin coating was performed from a 1% solution of chloroform at rpm to obtain a water-insoluble thin film having a thickness of about 900 Å and colored in blue.

【0044】[0044]

【化17】 [Chemical 17]

【0045】このようにして得られた色素電極を200
μmのテフロンリングスペーサを介して対電極の酸化イ
ンジウム・スズ(ITO)電極基板(ガラス上のITO
膜厚み500オングストローム)と対向させ、スペーサ
でできた間隙に高分子電解質として2Mの塩化カリウム
を含む2%寒天溶液のゲルの薄膜を挿入し、ゲルを2枚
の電極でサンドイッチして薄層型の光電変換セルを作製
した。
The dye electrode thus obtained was used as 200
Indium tin oxide (ITO) electrode substrate (ITO on glass) through counter electrode via μm Teflon ring spacer
(A film thickness of 500 angstroms), insert a thin film of a gel of 2% agar solution containing 2M potassium chloride as a polyelectrolyte into the gap formed by the spacer, sandwich the gel with two electrodes and form a thin layer type The photoelectric conversion cell of was produced.

【0046】スピロオキサジンの色素層に対して、15
0Wタングステン/ハロゲン灯からITO電極を通して
白色光をON/OFFの矩形波として照射した結果、2
電極の間に光の入力のパターンに対して図1と同様の微
分型の光電流応答が生じた。この光電流応答はスピロオ
キサジンとその構造異性体のメロシアニン体との間の構
造変化が与える双極子の変化が反映された変位電流の1
種であると考えられる。
For the dye layer of spirooxazine, 15
As a result of irradiating white light as an ON / OFF rectangular wave from a 0W tungsten / halogen lamp through an ITO electrode, 2
A differential-type photocurrent response similar to that of FIG. 1 occurred in response to the pattern of light input between the electrodes. This photocurrent response reflects the dipole change caused by the structural change between the spirooxazine and its structural isomer, the merocyanine body, which is one of the displacement currents.
Considered to be a seed.

【図面の簡単な説明】[Brief description of drawings]

【図1】 図1は、本発明の光電変換素子に光を照射し
たときの、光応答のパターンを示す図である。
FIG. 1 is a diagram showing a pattern of photoresponse when a photoelectric conversion element of the present invention is irradiated with light.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 導電性電極の表面に厚みが実質的に均一
な絶縁性の薄膜を介して光異性化反応を行うことのでき
る感光性色素の層が被覆され、該色素層にイオン伝導性
電解質が接合して構成される光電変換要素を含むことを
特徴とする光電変換素子。
1. A surface of a conductive electrode is coated with a layer of a photosensitive dye capable of performing a photoisomerization reaction through an insulating thin film having a substantially uniform thickness, and the dye layer has ion conductivity. A photoelectric conversion element comprising a photoelectric conversion element configured by joining an electrolyte.
【請求項2】 感光性色素が、アゾベンゼン誘導体、レ
チナール誘導体、スピロオキサジン誘導体、スピロピラ
ン誘導体、フルギド誘導体から選ばれる感光性色素であ
ることを特徴とする請求項1に記載の光電変換素子。
2. The photoelectric conversion element according to claim 1, wherein the photosensitive dye is a photosensitive dye selected from an azobenzene derivative, a retinal derivative, a spirooxazine derivative, a spiropyran derivative and a fulgide derivative.
【請求項3】 絶縁性の薄膜の厚みが実質的に均一であ
り、5nm以上500nm以下であることを特徴とする
請求項1に記載の光電変換素子。
3. The photoelectric conversion element according to claim 1, wherein the thickness of the insulating thin film is substantially uniform and is 5 nm or more and 500 nm or less.
【請求項4】 絶縁性の薄膜と感光性色素の層のいずれ
かまたは両方がラングミュア−ブロジェット膜であるこ
とを特徴とする請求項1に記載の光電変換素子。
4. The photoelectric conversion element according to claim 1, wherein one or both of the insulating thin film and the photosensitive dye layer is a Langmuir-Blodgett film.
JP4011946A 1992-01-27 1992-01-27 Photoelectric conversion device Pending JPH05206489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011946A JPH05206489A (en) 1992-01-27 1992-01-27 Photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011946A JPH05206489A (en) 1992-01-27 1992-01-27 Photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPH05206489A true JPH05206489A (en) 1993-08-13

Family

ID=11791813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011946A Pending JPH05206489A (en) 1992-01-27 1992-01-27 Photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPH05206489A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001667A1 (en) * 2000-06-29 2002-01-03 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
JP2002310793A (en) * 2001-04-09 2002-10-23 Fuji Photo Film Co Ltd High sensitivity light receiving element and image sensor
EP1621338A1 (en) 2004-07-27 2006-02-01 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
WO2011115125A1 (en) 2010-03-19 2011-09-22 富士フイルム株式会社 Color developing photosensitive composition, lithographic printing original plate, and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001667A1 (en) * 2000-06-29 2002-01-03 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric transducer
US6822159B2 (en) 2000-06-29 2004-11-23 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
JP2002310793A (en) * 2001-04-09 2002-10-23 Fuji Photo Film Co Ltd High sensitivity light receiving element and image sensor
EP1621338A1 (en) 2004-07-27 2006-02-01 Fuji Photo Film Co., Ltd. Lithographic printing plate precursor and lithographic printing method
WO2011115125A1 (en) 2010-03-19 2011-09-22 富士フイルム株式会社 Color developing photosensitive composition, lithographic printing original plate, and method for producing same

Similar Documents

Publication Publication Date Title
De Paoli et al. All-polymeric electrochromic and photoelectrochemical devices: new advances
He et al. Modified phthalocyanines for efficient near-IR sensitization of nanostructured TiO2 electrode
Fang et al. Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell
EP1562205B1 (en) Method of manufacturing a dye-sensitized solar cell
US20050166958A1 (en) Dye-sensitized solar cell having enlarged wavelength range for light absorption and method of fabricating same
EP1523019A2 (en) Dye-sensitized solar cell with a buffer layer
JP2000195569A (en) Photochemical battery and its manufacture
JPWO2002052654A1 (en) Solar cell
JP2009081046A (en) Three-pole two-layer photo secondary battery
JP2003123859A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP2010009786A (en) Dye sensitized solar cell, and dye sensitized solar cell module
JP4627427B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
TWI389966B (en) Electrolyte composition
JP6082006B2 (en) Composition for photoelectric conversion layer and photoelectric conversion element
JPH05206489A (en) Photoelectric conversion device
JP2002151168A (en) Pigment sensitized solar cell
JP2003123858A (en) Organic dye sensitized metal oxide semiconductor electrode, and solar battery having the semiconductor electrode
JP2947588B2 (en) Organic solar cells
Wang et al. Alternative self-assembled films of metal-ion-bridged 3, 4, 9, 10-perylenetetracarboxylic acid on nanostructured TiO2 electrodes and their photoelectrochemical properties
JP2008181691A (en) Photoelectric conversion element and first electrode used for the same
JP2002313444A (en) Photoelectric transducer, and method for manufacturing the same
JP2003282162A (en) Composition of metal oxide semiconductor dispersed liquid and dye-sensitized optical semiconductor electrode using the same
CN110323069B (en) Dye-sensitized solar cell and method for manufacturing same
Molla et al. Boosting the efficiency of low-cost TCO-less dye-sensitized solar cells employing nanoparticle spacers and cobalt complex redox shuttle
JP4507834B2 (en) Dye-sensitized photoelectric conversion element and method for producing the same