JPH06310746A - Electrochemical element - Google Patents

Electrochemical element

Info

Publication number
JPH06310746A
JPH06310746A JP5100682A JP10068293A JPH06310746A JP H06310746 A JPH06310746 A JP H06310746A JP 5100682 A JP5100682 A JP 5100682A JP 10068293 A JP10068293 A JP 10068293A JP H06310746 A JPH06310746 A JP H06310746A
Authority
JP
Japan
Prior art keywords
polymer film
electrode
plant tissue
polymer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5100682A
Other languages
Japanese (ja)
Inventor
Yuji Miyahara
裕二 宮原
Osamu Ozawa
理 小沢
Kotaro Yamashita
浩太郎 山下
Yoshio Watanabe
▲吉▼雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5100682A priority Critical patent/JPH06310746A/en
Publication of JPH06310746A publication Critical patent/JPH06310746A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

PURPOSE:To enhance the efficiency and service life while attaining high selectivity by dispersing or dissolving an organic substance in a polymer film. CONSTITUTION:A conductive transparent electrode 2 of Indium Tim Oside (ITO), for example, is formed on a transparent glass substrate 1 and a polymer film 3, into which a plant texture or a substance extracted therefrom is dispersed or dissolved, is laminated thereon followed by formation of a metal electrode 4. The polymer film 3 can be irradiated with light through the transparent glass substrate 1 and the transparent ITO electrode 3 and voltage or current is measured using the electrodes 3, 4. The electrodes 3, 4 are formed by sputtering or deposition whereas the polymer film 3 is formed by applying a basic material, a plasticizer, an organic substance or an additive dissolved into a solvent directly or by spin coating to the polymer film 3 and then evaporating the solvent. This constitution allows utilization of excellent efficiency and selectivity of organism.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分子膜で生成する電位
又は電流を取り出す電気化学素子に係り、特に、光に応
答して電流(エネルギ)を取り出す電池、又は液体中の
化学成分に電位応答する化学分析素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrochemical device for extracting a potential or a current generated by a polymer film, and more particularly to a battery for extracting a current (energy) in response to light or a potential for a chemical component in a liquid. Responsive chemical analysis element.

【0002】[0002]

【従来の技術】従来、有機膜を利用した太陽電池はジャ
パニーズ ジャーナル オブ アプライド フィジック
ス1980年,第19巻,L683頁からL685頁(Jap
aneseJournal Applied Physics ,19(1980)L
683−L685)に掲載されている。又、人工の膜で
イオンチャネル等を形成して細胞膜を模擬し、イオンセ
ンサに応用した研究がアナリティカル ケミストリ 1
987年,第59巻,2842頁から2846頁(Anal.
Chem.,59(1987)2842−2846)に掲載さ
れている。
2. Description of the Related Art Conventionally, a solar cell using an organic film has been known as a Japanese Journal of Applied Physics, 1980, Volume 19, L683 to L685 (Jap.
aneseJournal Applied Physics, 19 (1980) L
683-L685). In addition, research on the application of an ion sensor to an ion sensor by simulating a cell membrane by forming an ion channel etc. with an artificial membrane is an analytical chemistry 1.
987, Vol. 59, pp. 2842 to 2846 (Anal.
Chem., 59 (1987) 2842-2846).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来技術
は有機物のみを用い、固体状に製膜したため有機物の立
体構造が柔軟性を失い、例えば、太陽電池などの電気化
学素子では効率が悪く、寿命が短いという問題があっ
た。また、他の上記従来技術は人工膜を用いていたた
め、やはり膜物質の立体構造の柔軟性が無いため、イオ
ンセンサの選択性が悪いという問題点があった。
However, in the above-mentioned prior art, since only an organic substance is used and a film is formed in a solid state, the three-dimensional structure of the organic substance loses flexibility. For example, in an electrochemical device such as a solar cell, the efficiency is low, There was a problem that the life was short. In addition, since the above-mentioned other prior art uses an artificial membrane, there is also a problem that the selectivity of the ion sensor is poor because the three-dimensional structure of the membrane substance is not flexible.

【0004】本発明の目的は、効率が良く長寿命な電気
化学素子、又は高い選択性を有する電気化学素子を提供
することにある。
An object of the present invention is to provide an electrochemical device having high efficiency and long life, or an electrochemical device having high selectivity.

【0005】[0005]

【課題を解決するための手段】複数個の導電性電極とこ
の導電性電極の間に設けた高分子膜からなり、この高分
子膜の中に植物組織又は植物組織から得られた抽出物を
分散又は溶解させ電気化学素子を形成する。
[Means for Solving the Problems] The present invention comprises a plurality of conductive electrodes and a polymer film provided between the conductive electrodes. The polymer film contains a plant tissue or an extract obtained from the plant tissue. Dispersed or dissolved to form an electrochemical device.

【0006】高分子膜は、母材,可塑剤または添加剤か
らなり、母材はポリ塩化ビニル又はシリコーンゴムのい
ずれかであり、可塑剤はアジピン酸ジオクチル(DO
A)、トリ(2−エチルヘキシル)トリメリテイト(T
OTM)、3,3′,4,4−ベンゾフェノンテトラカ
ルボン酸テトラ−1−ウンデシルエステル(BTCU)
の中から選ばれ、添加剤はテトラフェニルほう酸カリウ
ム又はテトラフェニルほう酸ナトリウムの中から選ばれ
る。
The polymer film comprises a base material, a plasticizer or an additive, the base material is either polyvinyl chloride or silicone rubber, and the plasticizer is dioctyl adipate (DO).
A), tri (2-ethylhexyl) trimellitate (T
OTM), 3,3 ′, 4,4-benzophenone tetracarboxylic acid tetra-1-undecyl ester (BTCU)
And the additive is selected from potassium tetraphenylborate or sodium tetraphenylborate.

【0007】高分子膜は、高分子膜を揮発性溶剤に均一
に溶解させて調製した液膜型高分子、又はポリアセチレ
ン,ポリピロール,ポリフェニレン,ポリチオフェン,
ポリアニリン,ポリフェニレンビニレンなどの導電性高
分子からなる。
The polymer film is a liquid film type polymer prepared by uniformly dissolving the polymer film in a volatile solvent, or polyacetylene, polypyrrole, polyphenylene, polythiophene,
It is made of a conductive polymer such as polyaniline or polyphenylene vinylene.

【0008】生体組織(特に、植物組織)、又は生体組
織(特に、植物組織)から得られた抽出物は、葉緑体又
はクロロフィル又は細胞膜を含み、これら物質を母材及
び可塑剤又は添加剤と共に溶媒に溶解し、製膜後溶媒を
蒸発させて液膜とする。
[0008] Living tissue (particularly plant tissue) or an extract obtained from living tissue (particularly plant tissue) contains chloroplasts or chlorophyll or cell membrane, and these substances are used as a base material and a plasticizer or additive. It is dissolved in a solvent together with it, and after forming the film, the solvent is evaporated to form a liquid film.

【0009】導電性電極のうちの少なくとも一つは、イ
ンジウム・ティン・オキサイド(Indium Tin Oxide,I
TO)等の透明電極として透明なガラス基板上に形成さ
れ、このITO電極上に高分子膜、及び他の導電性電極
を積層する。導電性電極のうちの少なくとも一つを銀/
塩化銀電極又はカロメル電極から成る参照電極とし、高
分子膜を他の導電性電極上に形成し参照電極とともに電
解液に浸漬する。
At least one of the conductive electrodes is Indium Tin Oxide (I).
(TO) or the like is formed on a transparent glass substrate as a transparent electrode, and a polymer film and other conductive electrodes are laminated on the ITO electrode. At least one of the conductive electrodes is silver /
A reference electrode including a silver chloride electrode or a calomel electrode is used, a polymer film is formed on another conductive electrode, and the reference electrode is immersed in an electrolytic solution.

【0010】[0010]

【作用】母材及び可塑剤又は添加剤から成る液膜中で
は、生体組織又は生体組織から抽出した物質は立体構造
を維持したままで比較的容易に動くことができ、生体物
質が持っている機能を容易に発現することができる。ま
た実際の生体内では一つの機能を発現するのに、単独の
物質のみならず複数の物質が関与している場合が多い。
従って、生体組織そのまま、又は生体組織から抽出した
複数の物質を用いることにより、組織的かつ効率的に機
能を発現させることができ、高効率の太陽電池又は高選
択性のイオンセンサを提供することができる。
[Function] In a liquid film composed of a base material and a plasticizer or an additive, the biological tissue or a substance extracted from the biological tissue can move relatively easily while maintaining the three-dimensional structure, and the biological substance has The function can be easily expressed. In addition, not only a single substance but also a plurality of substances are often involved in expressing one function in an actual living body.
Therefore, by using a living tissue as it is or by using a plurality of substances extracted from a living tissue, it is possible to systematically and efficiently develop a function, and to provide a highly efficient solar cell or a highly selective ion sensor. You can

【0011】[0011]

【実施例】〈実施例1〉図1は本発明の第一の実施例を
示す断面図である。透明ガラス基板1の上にITOのよ
うな導電性透明電極2を形成し、この電極上に植物組織
又は植物組織から得られた抽出物を分散又は溶解させた
高分子膜3を積層し、この高分子膜上に金属電極4を形
成した。透明ガラス基板及び透明ITO電極を介して高
分子膜に光を照射することができ、ITO電極及び金属
電極より電圧又は電流を測定する。ITO電極及び金属
電極はスパッタリング又は蒸着法により形成し、高分子
膜は溶媒に溶かした母材,可塑剤,生体物質または添加
剤をITO電極上に直接塗布するか又はスピンコーティ
ング法により塗布して溶媒を蒸発させた。
[Embodiment 1] FIG. 1 is a sectional view showing a first embodiment of the present invention. A conductive transparent electrode 2 such as ITO is formed on a transparent glass substrate 1, and a polymer film 3 in which a plant tissue or an extract obtained from a plant tissue is dispersed or dissolved is laminated on this electrode. The metal electrode 4 was formed on the polymer film. The polymer film can be irradiated with light through the transparent glass substrate and the transparent ITO electrode, and the voltage or current is measured from the ITO electrode and the metal electrode. The ITO electrode and the metal electrode are formed by a sputtering or vapor deposition method, and the polymer film is formed by directly coating the ITO electrode with a base material, a plasticizer, a biological material or an additive dissolved in a solvent or by a spin coating method. The solvent was evaporated.

【0012】本実施例では、高分子膜は、いわゆる、液
膜状であり、高分子膜中に分散した生体物質は生体中と
同様な立体構造を維持し、又生体物質は比較的自由に膜
中を動くことができる。さらに、機能発現に必要な生体
物質は1種類だけでなく、複数種類の生体物質を膜中に
分散したので、生体中と同様に複数種類の生体物質が組
織的に協調して機能発現に寄与するため、効率的に機能
が発揮される。
In the present embodiment, the polymer film is a so-called liquid film, the biomaterial dispersed in the polymer film maintains the same three-dimensional structure as in the living body, and the biomaterial is relatively free. Can move through the membrane. Furthermore, not only one type of biomaterial necessary for function expression but also multiple types of biomaterials dispersed in the membrane, so that multiple kinds of biomaterials contribute to function expression in a systematic manner as in the living body. Therefore, the function is efficiently exhibited.

【0013】〈実施例2〉図2は本発明の第二の実施例
を示す断面図である。ポリイミドのようなフレキシブル
な絶縁基板5上に下から金属電極4,高分子膜3,IT
O電極2を積層した。これらの各膜の形成法は第一の実
施例と同様である。本実施例のようにフレキシブル基板
を用いることにより、瓦,自動車の屋根などのような曲
面に本発明を形成することができ、又テントなどに直接
本発明を形成することができる。
<Embodiment 2> FIG. 2 is a sectional view showing a second embodiment of the present invention. On the flexible insulating substrate 5 such as polyimide, from the bottom, the metal electrode 4, the polymer film 3, the IT
The O electrode 2 was laminated. The method for forming each of these films is the same as in the first embodiment. By using a flexible substrate as in this embodiment, the present invention can be formed on a curved surface such as a roof tile or a roof of an automobile, or can be formed directly on a tent or the like.

【0014】図3は本発明の第一の効果を示したもので
ある。第一の実施例において、高分子膜3にポリ塩化ビ
ニル(PVC),アジピン酸ジオクチル(DOA)及び
ほうれん草からテトラヒドロフランで抽出した植物組織
を用い、この高分子膜上に金電極を形成し、ITO電極
及び金電極間に電圧を印加し、電流を測定した。図中a
の曲線は暗状態、即ち、光を遮断した状態で測定した結
果、bは明状態、即ち、光照射条件下で測定した結果で
ある。これより、光照射下での電流値は暗状態における
電流値より約二桁大きく、又光照射下では電圧を印加し
ないときでも電流を取りだすことができる。即ち太陽電
池として使用できる。これはほうれん草から抽出した植
物組織の中のクロロフィルが、他の生体物質と協調して
光照射下で光合成を効率的に行うためである。
FIG. 3 shows the first effect of the present invention. In the first embodiment, the polymer membrane 3 is made of polyvinyl chloride (PVC), dioctyl adipate (DOA), and plant tissue extracted from spinach with tetrahydrofuran, and a gold electrode is formed on the polymer membrane to form an ITO film. A voltage was applied between the electrode and the gold electrode, and the current was measured. A in the figure
Curve is a result measured in a dark state, that is, a state where light is blocked, and b is a result measured in a bright state, that is, under a light irradiation condition. As a result, the current value under light irradiation is about two orders of magnitude larger than the current value in the dark state, and the current can be taken out under light irradiation even when no voltage is applied. That is, it can be used as a solar cell. This is because the chlorophyll in the plant tissue extracted from spinach cooperates with other biological substances to efficiently perform photosynthesis under light irradiation.

【0015】〈実施例3〉図4は本発明の第三の実施例
である。耐水性の絶縁基板6上に銀−塩化銀電極7を形
成し、この銀−塩化銀電極上に植物組織又は植物組織か
ら得られた抽出物を分散又は溶解させた高分子膜3を積
層した。他の導電性電極として、水溶液を介して銀−塩
化銀電極又はカロメル電極から成る参照電極8を配置し
た。本実施例では水溶液中のイオン濃度が変化すると、
高分子膜でイオン濃度に応じた起電力が生じ、この起電
力を銀−塩化銀電極及び参照電極間の電位変化として計
測する。予め既知濃度の溶液で電位を校正しておけば、
電位変化を測定することによりイオン濃度を知ることが
できる。即ち、イオンセンサを製作することができる。
本実施例では植物の細胞膜が特定のイオンのみを選択的
に透過させ、細胞内部と外部で大きな濃度差ができ細胞
膜電位を発生している性質を利用している。高分子膜中
に分散された細胞膜組織の一部は高分子膜表面に存在
し、高分子膜と接する溶液中の特定イオンを選択的に高
分子膜中に取り込み平衡に達する。帯電したイオンが水
溶液相から膜相に移動するので膜で起電力が発生する。
<Embodiment 3> FIG. 4 shows a third embodiment of the present invention. A silver-silver chloride electrode 7 was formed on a water-resistant insulating substrate 6, and a polymer film 3 in which a plant tissue or an extract obtained from a plant tissue was dispersed or dissolved was laminated on the silver-silver chloride electrode. . As another conductive electrode, a reference electrode 8 composed of a silver-silver chloride electrode or a calomel electrode was arranged via an aqueous solution. In this example, when the ion concentration in the aqueous solution changes,
An electromotive force corresponding to the ion concentration is generated in the polymer film, and this electromotive force is measured as a potential change between the silver-silver chloride electrode and the reference electrode. If you calibrate the potential with a solution of known concentration in advance,
The ion concentration can be known by measuring the potential change. That is, an ion sensor can be manufactured.
In this example, the property that the cell membrane of the plant selectively permeates only a specific ion and a large concentration difference is generated between the inside and outside of the cell to generate the cell membrane potential is used. A part of the cell membrane tissue dispersed in the polymer membrane exists on the polymer membrane surface, and a specific ion in a solution in contact with the polymer membrane is selectively taken into the polymer membrane to reach equilibrium. Electromotive force is generated in the film because the charged ions move from the aqueous solution phase to the film phase.

【0016】〈実施例4〉図5は本発明の第四の実施例
を示す。PVC製の筒9の先端に植物組織又は植物組織
から得られた抽出物を分散又は溶解させた高分子膜3を
形成し、筒の内部に電解質溶液10を充填し、電解質溶
液に銀−塩化銀内部電極11を浸漬し、筒の他端を密封
した。この筒を参照電極8と共に試料溶液12中に浸漬
した。参照電極8と銀−塩化銀内部電極との間の電位を
測定しイオン濃度に換算する。この構成は従来のイオン
電極と同じであり安定性に優れている。
<Fourth Embodiment> FIG. 5 shows a fourth embodiment of the present invention. A polymer membrane 3 in which plant tissue or an extract obtained from plant tissue is dispersed or dissolved is formed at the tip of a PVC cylinder 9, and an electrolyte solution 10 is filled inside the cylinder, and the electrolyte solution is silver-chloride. The silver internal electrode 11 was immersed, and the other end of the cylinder was sealed. This cylinder was immersed in the sample solution 12 together with the reference electrode 8. The potential between the reference electrode 8 and the silver-silver chloride internal electrode is measured and converted into an ion concentration. This structure is the same as the conventional ion electrode and is excellent in stability.

【0017】図6は本発明の第二の効果を示したもので
ある。第四の実施例において、高分子膜3にポリ塩化ビ
ニル(PVC),アジピン酸ジオクチル(DOA)及び
ワカメからテトラヒドロフランで抽出した組織を用い、
試料溶液中の塩素イオン濃度を変化させたときの電位変
化を測定した。図より10-5〜10-1Mの濃度範囲で理
論応答に近い応答を示し、イオンセンサとして使用でき
る。
FIG. 6 shows the second effect of the present invention. In the fourth embodiment, the polymer membrane 3 is made of polyvinyl chloride (PVC), dioctyl adipate (DOA), and a tissue extracted with tetrahydrofuran from wakame seaweed,
The potential change was measured when the chlorine ion concentration in the sample solution was changed. From the figure, it shows a response close to the theoretical response in the concentration range of 10 -5 to 10 -1 M and can be used as an ion sensor.

【0018】以上のように、高分子膜中に植物組織又は
植物組織から得られた抽出物を分散又は溶解させること
により、優れた電気化学素子を提供することができる。
As described above, an excellent electrochemical device can be provided by dispersing or dissolving the plant tissue or the extract obtained from the plant tissue in the polymer film.

【0019】[0019]

【発明の効果】本発明によれば、液膜中に生体物質を分
散又は溶解させるので、生体の持つ優れた効率,選択性
を充分利用することができ、又、製作プロセスが簡単な
ため、低価格・高効率の太陽電池、及び低価格・高選択
性のイオンセンサを提供することができる。
According to the present invention, since the biological substance is dispersed or dissolved in the liquid film, the excellent efficiency and selectivity of the living body can be fully utilized, and the manufacturing process is simple. It is possible to provide a low-price, high-efficiency solar cell and a low-price, high-selectivity ion sensor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を示す説明図。FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.

【図2】本発明の第二の実施例を示す説明図。FIG. 2 is an explanatory diagram showing a second embodiment of the present invention.

【図3】本発明の第一の効果を示す特性図。FIG. 3 is a characteristic diagram showing the first effect of the present invention.

【図4】本発明の第三の実施例を示す説明図。FIG. 4 is an explanatory diagram showing a third embodiment of the present invention.

【図5】本発明の第四の実施例を示す説明図。FIG. 5 is an explanatory view showing a fourth embodiment of the present invention.

【図6】本発明の第二の効果を示す特性図。FIG. 6 is a characteristic diagram showing a second effect of the present invention.

【符号の説明】[Explanation of symbols]

1…ガラス基板、2…導電性透明電極、3…高分子膜、
4…金属電極、5…フレキシブル基板、6…耐水性絶縁
基板、7…銀−塩化銀電極、8…参照電極、9…PVC
製筒、10…内部電解液、11…銀−塩化銀内部電極、
12…試料液。
1 ... Glass substrate, 2 ... Conductive transparent electrode, 3 ... Polymer film,
4 ... Metal electrode, 5 ... Flexible substrate, 6 ... Water resistant insulating substrate, 7 ... Silver-silver chloride electrode, 8 ... Reference electrode, 9 ... PVC
Cylinder, 10 ... Internal electrolyte, 11 ... Silver-silver chloride internal electrode,
12 ... Sample liquid.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 27/416 H01L 29/28 // C12N 11/08 Z (72)発明者 渡辺 ▲吉▼雄 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G01N 27/416 H01L 29/28 // C12N 11/08 Z (72) Inventor Watanabe ▲ Yoshio 1-280, Higashi Koigokubo, Kokubunji City, Tokyo Central Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】複数個の導電性電極と前記導電性電極の間
に設けた高分子膜からなり、前記高分子膜の中に植物組
織又は前記植物組織から得られた抽出物を分散又は溶解
させたことを特徴とする電気化学素子。
1. A plurality of conductive electrodes and a polymer film provided between the conductive electrodes, wherein a plant tissue or an extract obtained from the plant tissue is dispersed or dissolved in the polymer film. An electrochemical device characterized by being made.
【請求項2】請求項1において、前記高分子膜は、母
材,可塑剤または添加剤から成り、前記母材はポリ塩化
ビニル又はシリコーンゴムのいずれかであり、前記可塑
剤はアジピン酸ジオクチル(DOA)、トリ(2ーエチ
ルヘキシル)トリメリテイト(TOTM)、3,3′,
4,4−ベンゾフェノンテトラカルボン酸テトラ−1−
ウンデシルエステル(BTCU)の中のいずれかであ
り、前記添加剤はテトラフェニルほう酸カリウム又はテ
トラフェニルほう酸ナトリウムのいずれかであり、前記
高分子膜を揮発性溶剤に均一に溶解させて調製した液膜
型高分子、または、導電性高分子からなる電気化学素
子。
2. The polymer film according to claim 1, wherein the polymer film comprises a base material, a plasticizer or an additive, the base material is either polyvinyl chloride or silicone rubber, and the plasticizer is dioctyl adipate. (DOA), tri (2-ethylhexyl) trimellitate (TOTM), 3,3 ',
4,4-benzophenone tetracarboxylic acid tetra-1-
A liquid prepared by uniformly dissolving the polymer film in a volatile solvent, wherein the additive is either undecyl ester (BTCU), the additive is potassium tetraphenylborate or sodium tetraphenylborate. An electrochemical element made of a film-type polymer or a conductive polymer.
【請求項3】請求項1において、前記植物組織又は植物
組織から得られた抽出物は、葉緑体又はクロロフィル又
は細胞膜を含む電気化学素子。
3. The electrochemical device according to claim 1, wherein the plant tissue or the extract obtained from the plant tissue contains chloroplasts, chlorophyll, or a cell membrane.
【請求項4】請求項1において、前記導電性電極のうち
の少なくとも一つを、インジウム・ティン・オキサイド
(Indium Tin Oxide,ITO)等の透明電極として透明
なガラス基板上に形成し、前記ITO電極上に前記高分
子膜、及び他の導電性電極を積層した電気化学素子。
4. The ITO according to claim 1, wherein at least one of the conductive electrodes is formed on a transparent glass substrate as a transparent electrode of indium tin oxide (ITO) or the like. An electrochemical device in which the polymer film and another conductive electrode are laminated on an electrode.
【請求項5】請求項1において、前記導電性電極のうち
の少なくとも一つを銀/塩化銀電極又はカロメル電極か
ら成る参照電極とし、前記高分子膜を他の導電性電極上
に形成し前記参照電極とともに電解液に浸漬した電気化
学素子。
5. The method according to claim 1, wherein at least one of the conductive electrodes is a reference electrode composed of a silver / silver chloride electrode or a calomel electrode, and the polymer film is formed on another conductive electrode. An electrochemical device immersed in an electrolyte together with a reference electrode.
JP5100682A 1993-04-27 1993-04-27 Electrochemical element Pending JPH06310746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5100682A JPH06310746A (en) 1993-04-27 1993-04-27 Electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5100682A JPH06310746A (en) 1993-04-27 1993-04-27 Electrochemical element

Publications (1)

Publication Number Publication Date
JPH06310746A true JPH06310746A (en) 1994-11-04

Family

ID=14280523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5100682A Pending JPH06310746A (en) 1993-04-27 1993-04-27 Electrochemical element

Country Status (1)

Country Link
JP (1) JPH06310746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043074A1 (en) * 1997-03-25 1998-10-01 Usf Filtration And Separations Group Inc. Improved electrochemical cell
AU723768B2 (en) * 1997-03-25 2000-09-07 Lifescan, Inc. Improved electrochemical cell
USRE42567E1 (en) 1995-11-16 2011-07-26 Lifescan, Inc. Electrochemical cell
JP2012129186A (en) * 2010-12-13 2012-07-05 Innot Bioenergy Holding Co Separator, method for manufacturing separator, and organic battery
US9075004B2 (en) 1996-06-19 2015-07-07 Lifescan, Inc. Electrochemical cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42567E1 (en) 1995-11-16 2011-07-26 Lifescan, Inc. Electrochemical cell
US9075004B2 (en) 1996-06-19 2015-07-07 Lifescan, Inc. Electrochemical cell
WO1998043074A1 (en) * 1997-03-25 1998-10-01 Usf Filtration And Separations Group Inc. Improved electrochemical cell
AU723768B2 (en) * 1997-03-25 2000-09-07 Lifescan, Inc. Improved electrochemical cell
US6454921B1 (en) 1997-03-25 2002-09-24 Usf Filtration And Separations Group, Inc. Electrochemical cell
US7041210B2 (en) * 1997-03-25 2006-05-09 Lifescan, Inc. Method of filling an amperometric cell
EP1736764A2 (en) 1997-03-25 2006-12-27 Lifescan, Inc. Improved electrochemical cell
EP1736764A3 (en) * 1997-03-25 2007-05-09 Lifescan, Inc. Improved electrochemical cell
JP2012129186A (en) * 2010-12-13 2012-07-05 Innot Bioenergy Holding Co Separator, method for manufacturing separator, and organic battery

Similar Documents

Publication Publication Date Title
Evans et al. Cyclic voltammetry
CN101871912B (en) Full-solid potassium ion sensor and preparation method thereof
Brahim et al. Electroconductive hydrogels: Electrical and electrochemical properties of polypyrrole‐poly (HEMA) composites
Henning et al. Polymer films on electrodes. 6. Bioconductive polymers produced by incorporation of tetrathiafulvalenium in a polyelectrolyte (Nafion) matrix
US5522977A (en) Glucose sensor
JP6240543B2 (en) Electrode tip and method for quantitative determination of chemical substance
ES2623080A1 (en) Biosensor electrocr¿mico (Machine-translation by Google Translate, not legally binding)
Momma et al. All-solid-state potassium-selective electrode using double-layer film of polypyrrole/polyanion composite and plasticized poly (vinyl chloride) containing valinomycin
Jurevičiūtė et al. Polyaniline-modified electrode as an amperometric ascorbate sensor
Doulache et al. Highly sensitive and selective electrochemical sensor based on polyglycine modified glassy carbon electrode for simultaneous determination of amlodipine and ramipril from biological samples
CN1908644A (en) Method for detecting univalent metal cations with polypyrrole-PVC membrane decorative taste sensor
Sjöberg-Eerola et al. All-solid-state chloride sensors based on electronically conducting, semiconducting and insulating polymer membranes
JPH06310746A (en) Electrochemical element
Palmqvist et al. Development of a simple detector for microbial metabolism, based on a polypyrrole dc resistometric device
Wang et al. Composite Polymeric Films on Electrodes: Incorporation of Poly (4‐Vinylpyridine) into Base‐Hydrolyzed Cellulose Acetate Coating
John et al. Electrochemical and spectroelectrochemical studies of phenothiazine dyes immobilized in Nafion film
Herzog et al. Ion-transfer voltammetric behavior of protein digests at liquid| liquid interfaces
Fonseca et al. Paraffin-graphite based composite electrodes as substrate for the electrodeposition of conductive films with analytical purposes
WO2012074368A1 (en) Phosphate sensor
Murthy et al. Polypyrrole coated selective electrodes for iron-thionine photogalvanic cell
CN103435269A (en) Method for preparing solid support biomimic membrane system
Ueno et al. Investigation of a nanostructured polysaccharide solid medium for electrochemistry
Lexa et al. Preparation of a mercury film electrode modified by tri-n-octylphosphine oxide and the electrochemical properties of this electrode
Sun et al. Charge transport through osmium-containing redox polymers in nitrophenyl-based solvents: Effect of solvent size
Onoda et al. Detection of environmental pollutants with oxidoreductases