JPH0799699B2 - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPH0799699B2
JPH0799699B2 JP62065391A JP6539187A JPH0799699B2 JP H0799699 B2 JPH0799699 B2 JP H0799699B2 JP 62065391 A JP62065391 A JP 62065391A JP 6539187 A JP6539187 A JP 6539187A JP H0799699 B2 JPH0799699 B2 JP H0799699B2
Authority
JP
Japan
Prior art keywords
film
photoelectric conversion
purple
membrane
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62065391A
Other languages
Japanese (ja)
Other versions
JPS63231884A (en
Inventor
正博 井関
高一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62065391A priority Critical patent/JPH0799699B2/en
Publication of JPS63231884A publication Critical patent/JPS63231884A/en
Publication of JPH0799699B2 publication Critical patent/JPH0799699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、光電変換素子に関する。さらに詳しくは、
紫膜を固定化した電極を用いてなり、人間の目に近い分
光感度特性をもつ光電変換素子に関する。
TECHNICAL FIELD The present invention relates to a photoelectric conversion element. For more details,
The present invention relates to a photoelectric conversion element that uses an electrode with a purple film fixed and has a spectral sensitivity characteristic close to that of human eyes.

(ロ)従来の技術 紫膜(Purple Membrene)は、好塩菌(Halobacterium h
alobium)の細胞中に存在し、バクテリオロドプシン(B
acteriorhodopsin)を主成分とするタンパク質の集合体
からなる。ここでバクテリオロドプシンは、光によって
C末端(カルボキシル基のある末端)側からN末端(ア
ミノ基のある末端)側へプロトン(H+)を移動させる機
能をもっている。このバクテリオロドプシンが方向性を
もって配列集合した単位が紫膜となる。紫膜は、中性分
散液中ではカルボキシイオンのために、全体として負に
かたより、カルボキシイオンの集まった面が負の電荷を
帯びていると思われる。この状態の紫膜分散液に電場を
かけると、紫膜が電解方向に配向し、次いでC末端側が
+電極をめがけて泳動し、場合によっては付着する(G
y.Varo,Acta Biologica Academiae Scientiarum Hungar
icae,32,301−310(1981).)。この電着による方法を
利用して、配向性を持った紫膜のスタック膜(積み重ね
膜)を両側から2枚の電極ではさみ、それによる光電効
果の発現も確認されている(曽良達生,前田秀篤,日本
化学会第52春季年会講演予稿集I,411(1986).)。
(B) Conventional technology Purple Membrene is a halophilic bacterium (Halobacterium h
a bacteriorhodopsin (B
acteriorhodopsin) as a main component of a protein aggregate. Here, bacteriorhodopsin has a function of moving a proton (H + ) from the C terminal (terminal having a carboxyl group) side to the N terminal (terminal having an amino group) side by light. The unit in which the bacteriorhodopsin is directionally assembled is the purple membrane. Due to the carboxy ions in the neutral dispersion, the purple membrane is negative as a whole, but the surface on which the carboxy ions are gathered has a negative charge. When an electric field is applied to the purple membrane dispersion in this state, the purple membrane is oriented in the electrolysis direction, and then the C-terminal side migrates toward the + electrode and, in some cases, adheres (G
y.Varo, Acta Biologica Academiae Scientiarum Hungar
icae, 32, 301-310 (1981). ). Using this electrodeposition method, it is confirmed that a stack film of oriented purple films (stacked film) is sandwiched between two electrodes from both sides, and that the photoelectric effect is manifested (Tatsuo Sora, Maeda). Shuatsu, Proceedings of the 52nd Annual Meeting of the Chemical Society of Japan I, 411 (1986).).

(ハ)発明が解決しようとする問題点 しかしながら、前記電着法による紫膜スタック膜は不均
一であり、この紫膜スタック膜を光電変換層として構成
した光電変換素子における光電効果の安定性は不充分で
あり、かつ素子作製毎の光電効果の再現性が著しく低い
という問題があった。
(C) Problems to be Solved by the Invention However, the purple film stack film formed by the electrodeposition method is not uniform, and the stability of the photoelectric effect in the photoelectric conversion element in which this purple film stack film is used as the photoelectric conversion layer is There is a problem that the reproducibility of the photoelectric effect for each element fabrication is extremely low, which is insufficient.

さらに、かかる光電変換素子における紫膜スタック膜の
作製においては、電着時の電極間距離を厳密に規制しな
ければならない等の煩雑さがあり、また、電着電圧も5
〜10Vを要し、エネルギー的にもコストが高い等の問題
点があった。
Furthermore, in the production of the purple film stack film in such a photoelectric conversion element, there are complications such as strictly controlling the distance between electrodes during electrodeposition, and the electrodeposition voltage is 5
It required ~ 10V, and there were problems such as high energy costs.

この発明は、かかる従来の問題点を解消すべくなされた
ものであり、ことに均一で光電効果についての再現性が
高く、かつ簡便に作製できる紫膜含有光電変換素子を提
供しようとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and is to provide a purple film-containing photoelectric conversion element which is uniform and has high reproducibility of photoelectric effect, and which can be easily manufactured. is there.

(ニ)問題点を解決するための手段 本発明者らは、鋭意研究を行った結果、導電性高分子を
作製する一手法として用いられている電解重合の電解系
に紫膜を介在させることにより、紫膜が効率良く高分子
膜中に均一に包括固定できる事実、並びにこの紫膜固定
化膜が安定性、再現性の優れた光電変換層として機能す
る事実を見出し、この発明を完成するに到った。
(D) Means for Solving Problems As a result of intensive studies, the present inventors have found that a purple membrane is interposed in an electrolytic system of electrolytic polymerization used as a method for producing a conductive polymer. The present invention has completed the present invention by discovering the fact that a purple film can be efficiently and uniformly entrapped in a polymer film, and that this purple film-immobilized film functions as a photoelectric conversion layer having excellent stability and reproducibility. Came to.

かくしてこの発明によれば、少なくとも一方が光透過性
の一対の電極間に、電解重合高分子内に紫膜が固定化さ
れた光電変換層を介在してなる光電変換素子が提供され
る。
Thus, according to the present invention, there is provided a photoelectric conversion element including a pair of electrodes, at least one of which is light transmissive, and a photoelectric conversion layer having a purple film fixed in an electropolymerized polymer.

この発明における光電変換層は、各種貴金属(白金、金
等)やカーボン電極、またITO/SnO2ガラス電極(透明電
極)等を電解用電極として用い、これを重合用モノマー
と紫膜を含有する電解質溶液中に浸漬し、この状態で電
解を行って重合を進行させることにより、上記電極面上
に簡便かつ効率的に形成することができる。従ってこの
発明は、重合用モノマーと紫膜を共存させた電解質溶液
中に電極を挿入して電解重合に付すことにより、該電極
上に紫膜を包括固定した高分子膜を形成させることから
なる光電変換膜の製造方法をも提供するものである。
The photoelectric conversion layer in the present invention uses various noble metals (platinum, gold, etc.) and carbon electrodes, and ITO / S n O 2 glass electrodes (transparent electrodes) as electrodes for electrolysis, which are used as a polymerization monomer and a purple film. By immersing in the contained electrolyte solution and performing electrolysis in this state to promote polymerization, it is possible to easily and efficiently form on the electrode surface. Therefore, the present invention consists in forming a polymer membrane on which the purple membrane is entrapped and immobilized on the electrode by inserting the electrode into an electrolytic solution in which the polymerization monomer and the purple membrane coexist and subjecting it to electrolytic polymerization. It also provides a method for manufacturing a photoelectric conversion film.

上記重合用モノマーとしては水溶性でかつ水溶液中で重
合しうるものが適しており、例えば、アニリン、ピロー
ル、o−フェニレンジアミン、フェノール等が挙げられ
る。溶液中のモノマー濃度はとくに限定されないが、通
常0.1〜0.2M程度が適している。また紫膜は、必ずしも
純品でなくてもよく、好塩菌ハロバクテリウム ハロビ
ウム(Halobacterium halobium)の形質膜から分離され
る粗製品であってもよい。これらは通常、水分散液の形
態で容易に入手可能である。紫膜の電解質溶液中への添
加量は特に限定されないが、通常紫膜を構成するバクテ
リオロドプシンの濃度が溶液中で10-5Mオーダとなる程
度で充分である。
As the above-mentioned polymerization monomer, those which are water-soluble and can be polymerized in an aqueous solution are suitable, and examples thereof include aniline, pyrrole, o-phenylenediamine, and phenol. The concentration of the monomer in the solution is not particularly limited, but usually about 0.1 to 0.2M is suitable. The purple membrane does not necessarily have to be a pure product, and may be a crude product separated from the plasma membrane of the halobacterium Halobacterium halobium. These are usually readily available in the form of aqueous dispersions. The amount of the purple membrane added to the electrolyte solution is not particularly limited, but it is usually sufficient that the concentration of the bacteriorhodopsin constituting the purple membrane is on the order of 10 −5 M in the solution.

一方、電解重合用の支持電解質としては、電解重合に用
いられる一般的な塩が使用でき、p−トルエンスルホン
酸アルカリ金属塩、AsF6塩、ClO4塩、BF4塩等が適して
いる。また、これらの支持電解質濃度としては0.05〜0.
1M程度が適している。
On the other hand, as the supporting electrolyte for electrolytic polymerization, general salts used in electrolytic polymerization can be used, and p-toluenesulfonic acid alkali metal salt, AsF 6 salt, ClO 4 salt, BF 4 salt and the like are suitable. The concentration of these supporting electrolytes is 0.05 to 0.
1M is suitable.

上記電解用電極は、板状、棒状のものに限らず、例え
ば、絶縁基板上に蒸着された膜状のものであってもよ
い。なお、電極の形状の如何を問わず、均一な紫膜固定
化膜を形成することができ、用途に応じた形の光電変換
素子を作製することができる点も、この発明の1つの利
点である。電解重合は、室温等の緩和な温度下で行うの
が適しており、また電解条件は、定電位法、定電流法、
電位走査法のいずれを用いてもよい。例えば定電位電解
で重合を行う場合には、電解電位0.6〜0.8Vvs.Ag/AgCl
とするのが適している。電解重合時間により、形成され
る紫膜固定化高分子膜の厚みを調整することができる。
かかる厚みは、意図する光電変換電圧が得られるように
調整されるが、光透過性の点で効率が悪くならない程度
の厚みに適宜決定する。
The above-mentioned electrode for electrolysis is not limited to a plate-like or rod-like one, and may be, for example, a film-like one deposited on an insulating substrate. One advantage of the present invention is that a uniform purple film fixing film can be formed regardless of the shape of the electrode, and a photoelectric conversion element having a shape suitable for the application can be manufactured. is there. It is suitable to carry out the electropolymerization at a mild temperature such as room temperature, and the electrolysis conditions are a constant potential method, a constant current method,
Any of the potential scanning methods may be used. For example, when conducting polymerization by potentiostatic electrolysis, the electrolysis potential is 0.6 to 0.8 V vs .Ag / AgCl.
Is suitable. The thickness of the formed purple membrane-immobilized polymer membrane can be adjusted by the electrolytic polymerization time.
The thickness is adjusted so that an intended photoelectric conversion voltage can be obtained, but is appropriately determined to a thickness that does not deteriorate efficiency in terms of light transmittance.

このようにして電極上に得られた紫膜固定化膜上に対極
を設けることによりこの発明の光電変換素子が基本的に
構成される。この際、紫膜固定化膜に光が到達する必要
があるため、対極は透明電極である必要がある。ただ
し、紫膜の固定化に用いた電極が透明電極である場合
は、その限りではない。すなわち、紫膜固定化膜(光電
変換層)の両面に位置する一対の電極のうち、少なくと
も一方が光透過性であればよく、ことに可視光透過性で
あればよい。
The photoelectric conversion element of the present invention is basically constructed by providing a counter electrode on the purple film fixing film thus obtained on the electrode. At this time, since the light needs to reach the purple film fixing film, the counter electrode needs to be a transparent electrode. However, this is not the case when the electrode used for fixing the purple membrane is a transparent electrode. That is, at least one of the pair of electrodes located on both surfaces of the purple film fixing film (photoelectric conversion layer) may be light-transmissive, and particularly visible light-transmissive.

対極は上記紫膜固定化膜上に、例えば白金、アルミニウ
ム等を直接蒸着して形成することも可能である。ただ
し、紫膜固定化膜はそれ自体電解質溶液中で作製されて
いるため、導電性を示し、ことに、用いる支持電解質に
よっては高い導電性を示す。かかる導電性の高い固定化
膜を用いた場合には、対極を直接密着させると、両極間
が実質的に短絡状態となり、光電変換特性ことに光起電
力を有効に発生することは困難となる。従って、通常、
紫膜固定化膜(光電変換層)と対極との間にある程度の
絶縁性を有する高分子薄膜を介在させることが好まし
い。かかる高分子薄膜としては、例えば、ポリビニルア
ルコール(PVA)、ポリメタクリル酸メチル(PMMA)、
ポリイミド等の薄膜が挙げられる。かかる薄膜は一種の
コンデンサーの働きをするものであり、ある程度薄くし
ないと起電力の低下をまねく。従って、厚みを1〜10μ
m程度とするのが望ましい。これらのうち、PVAは、水
溶性ポリマーであるので、紫膜固定化膜の上に直接塗布
形成でき、取り扱い易く好ましい。PMMA、ポリイミド等
については、クロロホルム、トルエン等の有機溶媒に溶
かして使用するが、この場合、固定化された紫膜の変性
を招く恐れがあるため、あらかじめ対極の方に塗って乾
燥しておく必要がある。
The counter electrode can also be formed by directly vapor-depositing platinum, aluminum, or the like on the purple film fixing film. However, since the purple membrane-immobilized membrane itself is prepared in an electrolyte solution, it exhibits electrical conductivity, and particularly exhibits high electrical conductivity depending on the supporting electrolyte used. In the case of using such a highly conductive immobilization film, if the counter electrode is directly adhered, both electrodes will be substantially short-circuited, and it will be difficult to effectively generate photovoltaic power for photoelectric conversion characteristics. . Therefore, normally
It is preferable to interpose a polymer thin film having a certain degree of insulation between the purple film fixing film (photoelectric conversion layer) and the counter electrode. Examples of such a polymer thin film include polyvinyl alcohol (PVA), polymethyl methacrylate (PMMA),
A thin film such as polyimide can be used. Such a thin film functions as a kind of capacitor, and unless it is made thin to a certain extent, electromotive force is reduced. Therefore, the thickness should be 1-10μ
It is desirable to set it to about m. Of these, PVA is a water-soluble polymer, and therefore, it can be directly formed by coating on the purple membrane-immobilized membrane, and it is preferable because it is easy to handle. PMMA, polyimide, etc. are used by dissolving them in an organic solvent such as chloroform, toluene, etc. In this case, since there is a risk of causing denaturation of the immobilized purple membrane, apply it to the counter electrode beforehand and dry it. There is a need.

(ホ)作 用 電解重合系にモノマーと共存する紫膜は、モノマーの電
極面上への重合に伴って、電界方向へ配向及び電極面へ
泳動され、その光電変換作用の阻害を受けることなく重
合膜中に包括固定されることとなる。
(E) Operation The purple film, which coexists with the monomer in the electrolytic polymerization system, is oriented in the direction of the electric field and migrates to the electrode surface as the monomer is polymerized on the electrode surface, and the photoelectric conversion action is not hindered. It will be comprehensively fixed in the polymer film.

そして、この固定化膜からなる光電変換層に光、ことに
500〜600nmの波長光が入射すると、紫膜中のバクテリオ
ロドプシンの光吸収に基づいて光起電力が発生し、この
電圧や電力が一対の電極を介して、検知や利用されるこ
ととなる。
And, light, especially on the photoelectric conversion layer consisting of this immobilization film
When light with a wavelength of 500 to 600 nm is incident, a photoelectromotive force is generated based on the light absorption of bacteriorhodopsin in the purple membrane, and this voltage or power is detected or used via a pair of electrodes.

(ヘ)実施例 以下、この発明の一実施例を図面と共に説明する。第1
図は、この発明の光電変換素子の構成説明図である。こ
の光電変換素子は、以下のようにして作製した。
(F) Embodiment One embodiment of the present invention will be described below with reference to the drawings. First
The figure is a structural explanatory view of the photoelectric conversion element of the present invention. This photoelectric conversion element was produced as follows.

まず、白金(Pt)電極板(0.1×15×20mm)を、0.1Mピ
ロール、紫膜(バクテリオロドプシンの濃度で約4×10
-5M)を含む電解質水溶液(0.1Mパラトルエンスルホン
酸ナトリウム、0.1Mリン酸緩衝溶液,pH7.0)中に浸漬
し、室温下約5分間の定電位電解酸化重合(0.7Vvs.Ag/
AgCl)をおこない、Pt電極板上にポリピロール−紫膜固
定化(包括)高分子薄膜(約2μm[電気量より計
算])を形成した。このポリピロール−紫膜固定化膜電
極を水洗した後、十分に乾燥した。この得られた紫膜固
定化膜電極を、第1図に示したように配置してこの発明
の光電変換素子を構成した。図中、1はガラス基板、2
はITO/SnO2からなる透明電極、3はPVA塗布薄膜(厚み
約3μm)、4はポリピロール−紫膜固定化膜、5はPt
電極板、6は支持板(アクリル板)を各々示すものであ
る。この構成手順は、あらかじめ透明電極2にPVA3を塗
布、乾燥したものを用意し、上記で得られた紫膜固定化
膜電極の紫膜固定化膜4上に密着させ、支持体6で固定
することにより行った。
First, place a platinum (Pt) electrode plate (0.1 x 15 x 20 mm) on 0.1 M pyrrole, purple membrane (concentration of bacteriorhodopsin is approximately 4 x 10
-5 M) in an aqueous electrolyte solution (0.1 M sodium paratoluene sulfonate, 0.1 M phosphate buffer, pH 7.0), and controlled potential electrolysis polymerization (0.7 V vs .Ag) at room temperature for about 5 minutes. /
AgCl) was carried out to form a polypyrrole-purple membrane-immobilized (inclusive) polymer thin film (about 2 μm [calculated from the amount of electricity]) on the Pt electrode plate. The polypyrrole-purple membrane-immobilized membrane electrode was washed with water and then thoroughly dried. The obtained purple film-immobilized film electrode was arranged as shown in FIG. 1 to construct the photoelectric conversion device of the present invention. In the figure, 1 is a glass substrate, 2
Transparent electrode made of ITO / S n O 2, the 3 PVA coating film (thickness of about 3 [mu] m), 4 polypyrrole - purple membrane immobilized membrane, the 5 Pt
Electrode plates, 6 are support plates (acrylic plates), respectively. In this configuration procedure, PVA3 is applied to the transparent electrode 2 in advance and dried, and the prepared electrode is brought into close contact with the purple membrane-immobilized membrane 4 of the purple membrane-immobilized membrane electrode obtained above and fixed by the support 6. I went by.

この光電変換素子を、シールドしたアクリルケース内に
セットし、スライドプロジェクター(100V/150W)から
得られる光をレンズで集光してガラス基板1面に照射し
た。光電変換の測定は、光を照射したときに生ずる光起
電力の測定で行った。光起電力は、デジタルエルクトロ
メータ7によって検出し、ペンレコーダによって記録し
た。
This photoelectric conversion element was set in a shielded acrylic case, and light obtained from a slide projector (100V / 150W) was condensed by a lens and irradiated onto the glass substrate 1 surface. The photoelectric conversion was measured by measuring the photoelectromotive force generated when light was irradiated. Photovoltaic power was detected by a Digital Elktrometer 7 and recorded by a pen recorder.

上記の方法によって得られた光起電力の測定結果を第2
図に示す。このように、光を照射すると、光起電力が発
生した。発生した光電圧は、光照射が始まると共に素早
く立ち上がりピーク値を示した後、比較的ゆっくりと電
圧が減少した。光照射を止めると、光電圧は急激に減少
し、光照射前の状態にもどった。20回以上の繰り返し光
照射に対しても安定した応答を示し、また通常の室温下
の保存で安定した機能を保っていることが明らかとなっ
た。また、同様な紫膜固定化膜を用いた光電変換素子を
繰り返し作製して応答を調べたところ、再現性も良好で
あり、電解重合法により紫膜の固定化が再現性良く行え
ることも判明した。
The measurement result of the photovoltaic power obtained by the above method is
Shown in the figure. Thus, when light was irradiated, a photoelectromotive force was generated. The generated photovoltage rapidly rose with the start of light irradiation, showed a peak value, and then decreased in voltage relatively slowly. When the light irradiation was stopped, the photovoltage sharply decreased and returned to the state before the light irradiation. It was clarified that it showed a stable response to repeated irradiation of light 20 times or more, and maintained a stable function when stored at ordinary room temperature. In addition, when a photoelectric conversion element using the same purple membrane-immobilized film was repeatedly manufactured and the response was investigated, it was also found that the reproducibility is good and that the purple membrane can be immobilized with good reproducibility by the electrolytic polymerization method. did.

(ト)発明の効果 この発明による光電変換素子は、従来の紫膜スタック膜
を用いたものに比して、光応答性及びその再現性に優
れ、しかも半導体等に代表される従来の光電変換素子に
比べ、より人間の目に近い分光感度特性を持つ。また、
この素子の中核をなす紫膜固定化膜は、電解重合法によ
る導電性高分子を用いた電気化学的な手法によって固定
化されているので、エネルギー的にコストが安く、簡便
で膜厚制御も容易である。
(G) Effect of the Invention The photoelectric conversion device according to the present invention is superior in photoresponsiveness and its reproducibility to the conventional photoelectric conversion device represented by a semiconductor or the like, as compared with a device using a conventional purple film stack film. It has a spectral sensitivity characteristic closer to the human eye than an element. Also,
The purple film immobilization film, which is the core of this device, is immobilized by an electrochemical method using a conductive polymer by an electrolytic polymerization method, so it is inexpensive in terms of energy, simple, and film thickness control is also possible. It's easy.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の光電変換素子の構成説明図、第2
図は、この発明の光電変換素子を用いて光をON−OFFし
たときの光電圧の経時変化を示したグラフ図である。 1……ガラス基板、2……透明電極、 3……PVA塗布薄膜、 4……ポリピロール−紫膜固定化膜、 5……Pt電極板、6……支持体、 7……エレクトロメータ。
FIG. 1 is a structural explanatory view of a photoelectric conversion element of the present invention, and FIG.
The figure is a graph showing the change over time in the photovoltage when light is turned on and off using the photoelectric conversion element of the present invention. 1 ... Glass substrate, 2 ... Transparent electrode, 3 ... PVA coated thin film, 4 ... Polypyrrole-violet film immobilization film, 5 ... Pt electrode plate, 6 ... Support, 7 ... Electrometer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方が光透過性の一対の電極間
に、電解重合高分子内に紫膜が固定化された光電変換層
を介在してなる光電変換素子。
1. A photoelectric conversion element comprising a pair of electrodes, at least one of which is light transmissive, and a photoelectric conversion layer having a purple film fixed in an electropolymerized polymer interposed therebetween.
【請求項2】光電変化層は、その一方の面に絶縁性高分
子膜を有し、その一方の面が光透過性の電極の側に配置
される場合には、光透過性の絶縁性高分子膜である特許
請求の範囲第1項記載の光電変換素子。
2. The photoelectric conversion layer has an insulating polymer film on one surface thereof, and when the one surface is disposed on the side of the light-transmissive electrode, it has a light-transmissive insulating property. The photoelectric conversion element according to claim 1, which is a polymer film.
JP62065391A 1987-03-19 1987-03-19 Photoelectric conversion element Expired - Lifetime JPH0799699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065391A JPH0799699B2 (en) 1987-03-19 1987-03-19 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065391A JPH0799699B2 (en) 1987-03-19 1987-03-19 Photoelectric conversion element

Publications (2)

Publication Number Publication Date
JPS63231884A JPS63231884A (en) 1988-09-27
JPH0799699B2 true JPH0799699B2 (en) 1995-10-25

Family

ID=13285649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065391A Expired - Lifetime JPH0799699B2 (en) 1987-03-19 1987-03-19 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH0799699B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4935910B2 (en) * 2010-01-07 2012-05-23 大日本印刷株式会社 Organic thin film solar cell

Also Published As

Publication number Publication date
JPS63231884A (en) 1988-09-27

Similar Documents

Publication Publication Date Title
JP2788121B2 (en) Electrochromic device
TWI385814B (en) Photoelectrochromics device and method of manufacturing the same
JPH02209931A (en) Composite polymer of polyaniline containing metal phthalocyanine and polyaniline containing organic sulfonic acid and nafion
Stanley et al. The dark current at the TiO2 electrode of a dye-sensitized TiO2 photovoltaic cell
JPH11329519A (en) Photocell
JPH0799699B2 (en) Photoelectric conversion element
US4471036A (en) Electrochemical photovoltaic cells and electrodes
JP2005340167A (en) Manufacturing method of optical electrode substrate of dye-sensitized solar cell, optical electrode substrate of dye-sensitized solar cell, and dye-sensitized solar cell
Neves et al. Enhancing the performance of an electrochromic device by template synthesis of the active layers
JPS5928388A (en) Photoelectric conversion element
JP2947588B2 (en) Organic solar cells
KR101110651B1 (en) Dye-sensitized solar cell
JPS63215772A (en) Production of electrically conductive polymer composition
JPH0378978A (en) Manufacture of photo-electrochemical cell
Manoj et al. Voltage-controlled spectral tuning of photoelectric signals in a conducting polymer-bacteriorhodopsin device
Verghese et al. Polycarbazole‐film‐coated electrodes as electrochromic devices
JPH0523292B2 (en)
JPS60188931A (en) Manufacture of electrochromic display element
RU2292097C1 (en) Silicon-polymer photoelectric module and its manufacturing process
JPH05206489A (en) Photoelectric conversion device
JP3310995B2 (en) Bipolar cell for voltammogram recording and voltammogram recording method using this bipolar cell
Meisel et al. Large-scale electrochromic devices for smart windows and absorbers
Preethichandra et al. Functional design of electrolytic biosensor
JP2000067939A (en) Photoelectric transfer element
JP2000021393A (en) Manufacture of polymer electrode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term