JPS63229863A - Method of joining anode - Google Patents

Method of joining anode

Info

Publication number
JPS63229863A
JPS63229863A JP6487887A JP6487887A JPS63229863A JP S63229863 A JPS63229863 A JP S63229863A JP 6487887 A JP6487887 A JP 6487887A JP 6487887 A JP6487887 A JP 6487887A JP S63229863 A JPS63229863 A JP S63229863A
Authority
JP
Japan
Prior art keywords
anode
insulating material
cathode
center
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6487887A
Other languages
Japanese (ja)
Other versions
JPH0577305B2 (en
Inventor
Shigeo Ohashi
茂夫 大橋
Takeshi Yamauchi
毅 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP6487887A priority Critical patent/JPS63229863A/en
Publication of JPS63229863A publication Critical patent/JPS63229863A/en
Publication of JPH0577305B2 publication Critical patent/JPH0577305B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To prevent the generation of bubbles on a junction surface by a method wherein an electric field is applied in order from the side of the center of a cathode constituted of concentrical circle-shaped numerous annular electrodes and an anode is bonded to an insulating material while the junction interface between the anode and the insulating material is moved toward the outside from its center. CONSTITUTION:The whole is heated at 300-400 deg.C or thereabouts and a switch 6a is turned ON to make a current flow through an annular electrode 5a nearest the side of the center of a cathode 5 among numerous annular electrodes 5a-5e of the cathode 5. As a result, a DC voltage is applied to the part only of the center of an insulating material 1, a polarization phenomenon that such cations as Li<+>, Na<+> and K<+> ions turn to the side of the cathode 5 and such anions as O<2-> ions turn to the side of an anode is generated in the interior of the insulating material 1 in this part, the O<2-> ions couple chemically with Si<+> ions, for example, in the anode 2 and the anode 2 is bonded to the central part of the material 1. Then, a switch 6b is turned ON to apply a DC voltage to the second annular electrode and the bonding of the anode is performed. In such a way, the joining of the anode is performed while the junction interface between the anode and the insulating material is moved in order toward the outside.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセラミックス、ガラスのような絶縁材の表面に
、金属やシリコン等を接合するために利用される陽極接
合方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an anodic bonding method used for bonding metal, silicon, etc. to the surface of an insulating material such as ceramics or glass.

(従来の技術) 例えば半導体圧力センサー等の製造工程においては、ガ
ラス等の絶縁材の表面にシリコンウェハー等を接合する
ために陽極接合が行われている。
(Prior Art) For example, in the manufacturing process of semiconductor pressure sensors and the like, anodic bonding is performed to bond a silicon wafer or the like to the surface of an insulating material such as glass.

この陽橿接合法は米国特許第3397278号明細書等
にも示されているとおり、ガラス等の絶縁材の片面に接
合しようとする金属やシリコンウェハー等を陽極として
接触させるとともに、絶縁材の反対側の表面に金属製の
陰極を接触させ、300〜400℃の温度条件下で直流
電圧を印加することにより陽極と絶縁材とを接合させる
方法である。ところが陽極と!縁材との接合面をいかに
平滑に研摩しても全面が同時に密着するものではなく、
両者間の通電はいくつかの接触点から開始されるので、
ウェハー状の広い面積の陽極を絶縁体に接合する場合に
は接合面に分散した複数箇所から接合が始まり順次その
周囲に接合部が拡大して行くこととなり、これらの接合
部間に最後まで残された接合界面部分に気泡が閉じ込め
られるという問題があった。このような気泡は接合の進
行につれて圧縮され、場合によっては陽極や絶縁材を破
壊する程の歪を生ずることがあった。
As shown in U.S. Patent No. 3,397,278, etc., this positive bonding method involves contacting the metal or silicon wafer to be bonded to one side of an insulating material such as glass as an anode, and the other side of the insulating material. In this method, the anode and the insulating material are bonded by bringing a metal cathode into contact with the side surface and applying a DC voltage at a temperature of 300 to 400°C. However, the anode! No matter how smooth the joint surface with the edge material is polished, the entire surface will not adhere at the same time.
Since the current flow between the two starts from several contact points,
When bonding a wide area anode in the form of a wafer to an insulator, the bonding begins at multiple locations on the bonding surface and gradually expands around the bonded areas, leaving no trace between these bonded areas until the end. There was a problem in that air bubbles were trapped at the bonded interface. These bubbles are compressed as the bonding progresses, and in some cases may cause enough strain to destroy the anode or insulating material.

(発明が解決しようとする問題点) 本発明は上記のような従来の問題点を解決し、ウェハー
状の広い面積を持つ陽極を絶縁材に接合する場合にも接
合面に気泡を生ずることのない陽極接合方法を目的とし
て完成されたものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional problems and eliminates the problem of air bubbles occurring on the bonding surface even when bonding a wafer-shaped anode with a large area to an insulating material. It was completed with the aim of creating an anodic bonding method that was not previously available.

(問題点を解決するための手段) 本発明は絶縁材の両表面に陽極と陰極とを接触させ直流
電圧を印加して絶縁材と陽極とを接合させる陽極接合方
法において、陰極を同心円状の多数の環状電極により構
成し、その中心側から順次電圧を印加することにより陽
極と絶縁材との接合界面を中心から外側に向って移動さ
せつつ接合を行わせることを特徴とするものである。
(Means for Solving the Problems) The present invention is an anodic bonding method in which an anode and a cathode are brought into contact with both surfaces of an insulating material and a DC voltage is applied to bond the insulating material and the anode. It is characterized by being composed of a large number of annular electrodes, and by sequentially applying voltage from the center side, the bonding interface between the anode and the insulating material is moved outward from the center to perform bonding.

(実施例) 次に本発明を図示の実施例によって更に詳細に説明する
と、(1)はガラス、セラミックスのような絶縁材であ
り、(2)は絶縁材(1)の片面に接触させた陽極であ
る。半導体圧力センサーの製造の場合においては絶縁材
(1)はガラス、陽極(2)はシリコンウェハーであり
、陽極(2)はリード線(3)を介して200〜200
0 V程度の直流電源(4)のプラス側に接続されてい
る。(5)は絶縁材(1)の反対側の表面に接触させた
陰極であるが、本発明においては第2図にも示されるよ
うに、陰極(5)は導電性材料からなる同心円状の多数
の独立した環状電極(5a)〜(5e)により構成され
ており、各環状電極(5a)〜(5e)はスイッチ(6
a)〜(6e)を介して直流電源(4)のマイナス側に
接続されている。なお(7)は全体を300〜400℃
程度に加熱するためのヒーターである。
(Example) Next, the present invention will be explained in more detail with reference to illustrated examples. (1) is an insulating material such as glass or ceramics, and (2) is an insulating material that is brought into contact with one side of the insulating material (1). It is an anode. In the case of manufacturing a semiconductor pressure sensor, the insulating material (1) is glass, the anode (2) is a silicon wafer, and the anode (2) is connected to a
It is connected to the positive side of a DC power supply (4) of about 0 V. (5) is a cathode that is in contact with the opposite surface of the insulating material (1). In the present invention, as shown in FIG. 2, the cathode (5) is a concentric ring made of a conductive material. It is composed of a large number of independent annular electrodes (5a) to (5e), and each annular electrode (5a) to (5e) is connected to a switch (6
It is connected to the negative side of the DC power supply (4) via a) to (6e). For (7), the entire temperature is 300 to 400℃.
This is a heater for heating to a certain degree.

本発明の方法により陽極接合を行うには、全体を300
〜400℃程度に加熱したうえ、まずスイッチ(6a)
を入れて多数の環状電極のうち最も中心側の環状電極(
5a)に通電する。この結果、絶縁材(1)の中心部分
のみに直流電圧が印加され、この部分の絶縁材[(1)
の内部でLビ、Na”、Ko等の正イオンが陰極(5)
側を向き、02−等の負イオンが陽極(2)側を向く分
極現象が生じて、この02−イオンが陽極(2)の例え
ばSi”″イオンと化学結合し、絶縁材(1)の中心部
において陽極(2)が接合される。次にスイッチ(6a
)をオンとしまま、スイッチ(6b)をオンとして2番
目の環状電極(5b)に直流電圧を印加すれば、最初に
陽極接合が行われた外側の部分で同様に陽極接合が行わ
れる。このようにして中心側の環状電極(5a)から外
側の環状電極(5e)に向って順次直流電圧を印加して
外側に向って陽極接合を進行させれば、接合界面が次第
に外側に向って移動しつつ全体の接合が行われるので、
接合界面に囲まれた部分が生ずるおそれがない、このた
め本発明によれば接合面に気泡を生ずることなく陽極接
合を行うことができる。
To perform anodic bonding by the method of the present invention, the entire
After heating to about 400℃, first turn on the switch (6a).
out of the many annular electrodes (
5a) is energized. As a result, a DC voltage is applied only to the central part of the insulating material (1), and the insulating material [(1)
Inside, positive ions such as L Bi, Na'', and Ko act as cathodes (5).
A polarization phenomenon occurs in which negative ions, such as 02-, face the anode (2) side, and these 02- ions chemically bond with, for example, Si"" ions of the anode (2), and the insulating material (1). An anode (2) is joined at the center. Next, switch (6a
) is left on, the switch (6b) is turned on, and a DC voltage is applied to the second annular electrode (5b), so that anodic bonding is similarly performed on the outer portion where anodic bonding was performed first. In this way, if a DC voltage is sequentially applied from the central annular electrode (5a) to the outer annular electrode (5e) and the anodic bonding progresses outward, the bonding interface will gradually move outward. Since the entire joint is performed while moving,
There is no risk of a portion surrounded by the bonding interface, and therefore, according to the present invention, anodic bonding can be performed without creating bubbles on the bonding surface.

(発明の効果) 本発明は以上の説明からも明らか各ように、同心円状の
多数の環状電極のうちの中心側から順次電圧を印加する
ことにより接合界面を中心から外側に向って移動させつ
つ接合を行わせることができるので、接合面に気泡を生
ずるおそれなく陽極接合を完了することができる。従っ
て本発明はウェハー状の広い面積の陽極を絶縁材に接合
するのに特に好適なものである。よって本発明は従来の
問題点を解決した陽極接合方法として、業界に寄与する
ところは極めて大きいものである。
(Effects of the Invention) As is clear from the above description, the present invention moves the bonding interface outward from the center by sequentially applying voltage from the center of a large number of concentric annular electrodes. Since the bonding can be performed, the anodic bonding can be completed without the risk of creating bubbles on the bonding surface. Therefore, the present invention is particularly suitable for bonding a wafer-shaped anode having a large area to an insulating material. Therefore, the present invention makes an extremely large contribution to the industry as an anodic bonding method that solves the conventional problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の陽極接合方法を説明する断面図、第2
図はその底面図である。 (1):絶縁材、(2):陽極1.(5):陰極、(5
a)〜(5e):環状電極。 特許出願人  石塚硝子株式会社 代  理  人    名   嶋   明   部間
          綿  貫  達  離開    
      山  本  文  夫第1図 第2図
Figure 1 is a sectional view explaining the anodic bonding method of the present invention, Figure 2 is a cross-sectional view explaining the anodic bonding method of the present invention;
The figure is its bottom view. (1): Insulating material, (2): Anode 1. (5): Cathode, (5
a) to (5e): Annular electrode. Patent applicant: Ishizuka Glass Co., Ltd. Agent Name: Akira Shima Tatsu Watatsu Rikai
Fumi Yamamoto Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 絶縁材(1)の両表面に陽極(2)と陰極(5)とを接
触させ直流電圧を印加して絶縁材(1)と陽極(2)と
を接合させる陽極接合方法において、陰極(5)を同心
円状の多数の環状電極(5a)〜(5e)により構成し
、その中心側から順次電圧を印加することにより陽極(
2)と絶縁材(1)との接合界面を中心から外側に向っ
て移動させつつ接合を行わせることを特徴とする陽極接
合方法。
In the anodic bonding method in which the anode (2) and the cathode (5) are brought into contact with both surfaces of the insulating material (1) and a DC voltage is applied to bond the insulating material (1) and the anode (2), the cathode (5) ) is composed of a large number of concentric annular electrodes (5a) to (5e), and by sequentially applying voltage from the center side, the anode (
2) and the insulating material (1), the anodic bonding method is characterized in that the bonding is performed while moving the bonding interface between the material and the insulating material (1) from the center toward the outside.
JP6487887A 1987-03-19 1987-03-19 Method of joining anode Granted JPS63229863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6487887A JPS63229863A (en) 1987-03-19 1987-03-19 Method of joining anode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6487887A JPS63229863A (en) 1987-03-19 1987-03-19 Method of joining anode

Publications (2)

Publication Number Publication Date
JPS63229863A true JPS63229863A (en) 1988-09-26
JPH0577305B2 JPH0577305B2 (en) 1993-10-26

Family

ID=13270818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6487887A Granted JPS63229863A (en) 1987-03-19 1987-03-19 Method of joining anode

Country Status (1)

Country Link
JP (1) JPS63229863A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141442A (en) * 1988-11-21 1990-05-30 Mitsubishi Electric Corp Method for anodically bonding silicon wafer and glass substrate
JPH035346A (en) * 1989-06-01 1991-01-11 Toshiba Corp Positive electrode joining device
US5496199A (en) * 1993-01-25 1996-03-05 Nec Corporation Electron beam radiator with cold cathode integral with focusing grid member and process of fabrication thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02141442A (en) * 1988-11-21 1990-05-30 Mitsubishi Electric Corp Method for anodically bonding silicon wafer and glass substrate
JPH035346A (en) * 1989-06-01 1991-01-11 Toshiba Corp Positive electrode joining device
US5496199A (en) * 1993-01-25 1996-03-05 Nec Corporation Electron beam radiator with cold cathode integral with focusing grid member and process of fabrication thereof
US5514847A (en) * 1993-01-25 1996-05-07 Nec Corporation Electron beam radiator with cold cathode integral with focusing grid member and process of fabrication thereof

Also Published As

Publication number Publication date
JPH0577305B2 (en) 1993-10-26

Similar Documents

Publication Publication Date Title
JPS63229863A (en) Method of joining anode
JPH01141582A (en) Gene-introducing device
US3870850A (en) Method of connecting electrically conducting bodies
JPH0577307B2 (en)
JP2870822B2 (en) Bonding method between silicon and glass
JP3824681B2 (en) Anodic bonding equipment
EP0503094A4 (en) Method of electrically joining objects to be joined including ceramics
JPH02141442A (en) Method for anodically bonding silicon wafer and glass substrate
JPS6338265A (en) Method for bonding anode
JP2706726B2 (en) Electric joining method of ceramics
JPS63229864A (en) Method of joining anode
JPH0383870A (en) Electric bonding of metal si-containing silicon carbide ceramic
EP1217099A3 (en) Microreactor for electrochemical preparations
JP2642154B2 (en) Electrostatic bonding jig
JP2624832B2 (en) Anodic bonding equipment
JP2002145676A (en) Anodic jointing method
JPS634959Y2 (en)
JPH0825818B2 (en) Anodic bonding method
JPH01183177A (en) Superconducting ceramic element
JPS63230070A (en) Cell fusion chamber
JPS6214697Y2 (en)
JP2519635B2 (en) Anodic bonding method
JPH0276237A (en) Anode junction of silicon wafer and glass substrate
JPH02148713A (en) Method of joining silicon with glass
Dragoi et al. Triple-stack anodic bonding for MEMS applications