JPS63229858A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63229858A
JPS63229858A JP6656687A JP6656687A JPS63229858A JP S63229858 A JPS63229858 A JP S63229858A JP 6656687 A JP6656687 A JP 6656687A JP 6656687 A JP6656687 A JP 6656687A JP S63229858 A JPS63229858 A JP S63229858A
Authority
JP
Japan
Prior art keywords
groove
conductivity type
substrate
layer
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6656687A
Other languages
Japanese (ja)
Other versions
JP2646547B2 (en
Inventor
Minoru Araki
荒木 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62066566A priority Critical patent/JP2646547B2/en
Publication of JPS63229858A publication Critical patent/JPS63229858A/en
Application granted granted Critical
Publication of JP2646547B2 publication Critical patent/JP2646547B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To contrive the speedup of operation of a semiconductor device, an increase in the density of the device and the improvement of reliability of the device by a method wherein an impurity layer having a conductivity type inverse to that of a semiconductor substrate is formed in the substrate surface to bore a groove and impurity diffused layers having a conductivity type inverse to that of the substrate are provided separately from a gate electrode for filling the groove. CONSTITUTION:An n-type epitaxial layer 103, which is an impurity layer having a conductivity type inverse to that of a p-type semiconductor substrate 101, is formed in the surface of the substrate 101, a groove 113 to reach the substrate 101 is bored and is used as a channel region and at the same time, the layer 103 is halved by the groove 113 to form drain and source regions. A gate electrode 108 is buried in the groove 113 through a high-concentration p<+> impurity region 105 on the bottom part of this groove 113 and a gate insulating film 106 to reach the surface of the layer 103. Moreover, high-concentration n<+> diffused layers 109 and 110 having a conductivity type inverse to that of the substrate 101 are formed in the layer 103 separately from the edge end parts of the electrode 108. By this constitution, the injection of electrons into the film 106 is inhibited, the electric capacities of the layers 109 and 110 are decreased and the operation of a semiconductor device can be speeded up. Moreover, the channel length is decided by tie width and depth of the groove, an increase in the density of the device can be contrived and the reliability of the device can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にMO3型半
導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing an MO3 type semiconductor device.

〔従来の技術〕[Conventional technology]

従来、MO3型半導体装置の高密度設計を試みるために
短チヤネル化を図っているが、短チヤネル化をP型基板
のNチャネルMOS)ランジスタで行なってみると、ソ
ース・トレイン間の電界が強くなり、ドレイン近傍での
インパクト・イオン化現象が増幅されて基板に電流が流
れるとともに、ゲート電極側に電子が流れてゲート絶縁
膜中に捕獲され、閾値電圧の変動とゲート絶縁膜の耐圧
の劣化を生じ、信頼性上好ましくない。
Conventionally, attempts have been made to shorten the channel in an attempt to achieve high-density design of MO3 type semiconductor devices, but when shortening the channel is done using an N-channel MOS (MOS) transistor on a P-type substrate, the electric field between the source and the train is strong. As a result, the impact ionization phenomenon near the drain is amplified and current flows to the substrate, and electrons flow to the gate electrode side and are captured in the gate insulating film, causing fluctuations in the threshold voltage and deterioration of the withstand voltage of the gate insulating film. This is not desirable in terms of reliability.

また、基板電流は基板電位を上昇させ、NPNトランジ
スタ構造のためにドレイン電流が増加する事に依って、
いわゆるスナップ・バック電圧が低下する事になり、高
いドレイン電圧が印加出来なくなる。また電源電圧に対
するマージンが少なくなるために、ノイズに対する余裕
がなく、信頼性上問題になっている。
In addition, the substrate current increases the substrate potential, and due to the increase in drain current due to the NPN transistor structure,
The so-called snap-back voltage will drop, making it impossible to apply a high drain voltage. Furthermore, since the margin for the power supply voltage is reduced, there is no margin for noise, which poses a problem in terms of reliability.

短チヤネル化はそれなりに向上し高速動作が可能となる
が、上記した問題点があり技術向上の妨げになっていた
Although the shortening of the channel has improved to some extent and high-speed operation is possible, the above-mentioned problems have hindered technological improvements.

そこで従来、上記の問題の解決を図るために、MO3型
トランジスタのドレイン近傍の拡散層の濃度を比較的少
なくして、スナップ・バック電圧を高めるという方法を
採用していた。
Conventionally, in order to solve the above problem, a method has been adopted in which the concentration of the diffusion layer near the drain of the MO3 type transistor is made relatively low to increase the snapback voltage.

以下、第3図を用いて説明する。ここでは、P型基板3
01を用いたNチャネル・トランジスタの製造方法を示
しており、相補型に用いる場合に於ても、Nチャネル・
トランジスタは同様の機能特性を示す事を意味して述べ
る。すなわち、相補型デバイスに於ては、上述した現象
はラッチアップ現象を生じさせる事になり、非常に不利
になる事は良く知られている事である。この点を留意し
て従来から検討されている方法の例を説明する。
This will be explained below using FIG. Here, P type substrate 3
The method for manufacturing an N-channel transistor using 01 is shown, and even when used in a complementary type, the N-channel transistor
Transistors are described to mean that they exhibit similar functional characteristics. That is, it is well known that in complementary devices, the above-mentioned phenomenon causes a latch-up phenomenon, which is very disadvantageous. With this point in mind, examples of methods that have been considered in the past will be explained.

まず、第3図(a)に示すように、P型半導体基板30
1に通常の選択酸化法でフィールド絶縁膜302を形成
し、活性化領域にゲート絶縁膜303を設けて、その上
にゲート電極304を多結晶シリコンにリン等の不純物
を含ませて形成する。その後、イオン注入法を用いて比
較的不純物濃度を少なくして、ソース・ドレイン拡散層
305.306を形成する。
First, as shown in FIG. 3(a), a P-type semiconductor substrate 30
1, a field insulating film 302 is formed by the usual selective oxidation method, a gate insulating film 303 is provided in the active region, and a gate electrode 304 is formed thereon by impurities such as phosphorus in polycrystalline silicon. Thereafter, source/drain diffusion layers 305 and 306 are formed using an ion implantation method with a relatively low impurity concentration.

次に、第3図(b)に示すように、ゲート電極304と
少なくともドレイン近傍を覆って、ホトレジスト307
を形成して、不純物濃度の高い拡散層308,309を
形成する。
Next, as shown in FIG. 3(b), a photoresist 307 is applied to cover the gate electrode 304 and at least the vicinity of the drain.
are formed to form diffusion layers 308 and 309 with high impurity concentration.

その後、第3図(c)に示すように、絶縁膜310を、
例えば気相成長法等を用いて成長させ、所定の接続用コ
ンタクト孔を開孔し、金属配線311,312を設ける
After that, as shown in FIG. 3(c), the insulating film 310 is
For example, the metal wirings 311 and 312 are grown using a vapor phase growth method or the like, and predetermined contact holes for connection are opened to provide metal wirings 311 and 312.

この様にして、従来例の断面構造が第3図<c)に示さ
れたが、このトランジスタの構造は、ソース・ドレイン
が不純物濃度の低い領域内に、不純物濃度の高い領域が
含まれており、ゲート電極304からある距離を隔てて
、不純物濃度の高い領域があるという事を特徴としてい
る。この構造のためにドレインに電圧が印加されると、
不純物濃度の低いトレインと基板との電界強度が弱めら
れて、スナップ・バック電圧を高める事になる。
In this way, the cross-sectional structure of the conventional example is shown in FIG. It is characterized in that there is a region with high impurity concentration separated by a certain distance from the gate electrode 304. Because of this structure, when a voltage is applied to the drain,
The electric field strength between the train and the substrate, which has a low impurity concentration, is weakened, increasing the snapback voltage.

高濃度拡散層はソース・ドレインの抵抗を低下させて、
高速動作をさせるために行なうものである。
The high concentration diffusion layer lowers the source/drain resistance,
This is done to achieve high-speed operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のNチャネルMO8型トランジスタは、ゲ
ート電極304で自己整合的にソース・トレインが決定
され、短チヤネル化を図るためには、ソース・ドレイン
の拡散層の不純物濃度、その後の熱処理での拡散層の深
さ、ゲート電極の形成寸法を縮小化しなければならない
。短チヤネル化を図るのに、基板の不純物濃度を高める
事も考えられるが、このようにすると短チヤネル化に効
果があっても、接合容量が増加するし、またゲート絶縁
膜への電子注入が増加して、高速化、高信頼性化への妨
げとなってしまう。また、ゲート電極と高濃度領域とを
隔離しなければならないので、その余裕がリングラフィ
技術として必要となり、高密度化の妨げにもなっている
In the conventional N-channel MO8 type transistor described above, the source train is determined by the gate electrode 304 in a self-aligned manner, and in order to shorten the channel, the impurity concentration of the source/drain diffusion layer and the subsequent heat treatment must be adjusted. The depth of the diffusion layer and the dimensions of the gate electrode must be reduced. In order to shorten the channel, it is possible to increase the impurity concentration of the substrate, but even if this is effective in shortening the channel, it will increase the junction capacitance and also prevent electron injection into the gate insulating film. This increases and becomes an impediment to higher speed and higher reliability. Furthermore, since the gate electrode and the high concentration region must be isolated, a margin for this is necessary for the phosphorography technique, which also hinders higher density.

本発明の目的は、高速動作が可能で、高密度化及び信頼
性の向上した半導体装置の製造方法を提供することにあ
る。
An object of the present invention is to provide a method for manufacturing a semiconductor device that is capable of high-speed operation, has higher density, and has improved reliability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、−導電型半導体基板
上にフィールド絶縁膜を形成する工程と、前記フィール
ド絶縁膜に囲まれた前記半導体基板表面から不純物を導
入するか又は半導体基板上にエピタキシャル成長を行な
うかして逆導電型不純物層を形成する工程と、前記逆導
電型不純物層の表面より前記半導体基板内に達する溝を
形成したのち該溝の底面部に不純物を導入し一導電型高
濃度不純物層を形成する工程と、前記溝表面を含む全面
にゲート絶縁膜を形成する工程と、ゲート絶縁膜が形成
された前記溝を埋めてゲート電極を形成する工程と、前
記ゲート電極の端部より隔て前記逆導電型不純物層表面
から不純物を導入するか又は逆導電型不純物層上に導電
体を堆積するかして逆導電型高濃度不純物層を形成する
工程とを含んで構成される。
The method for manufacturing a semiconductor device of the present invention includes the steps of: - forming a field insulating film on a conductive type semiconductor substrate; and introducing impurities from the surface of the semiconductor substrate surrounded by the field insulating film, or performing epitaxial growth on the semiconductor substrate. forming an opposite conductivity type impurity layer, and forming a groove reaching into the semiconductor substrate from the surface of the opposite conductivity type impurity layer, and then introducing an impurity into the bottom of the groove to form a one conductivity type impurity layer. a step of forming a concentrated impurity layer, a step of forming a gate insulating film on the entire surface including the groove surface, a step of filling the trench in which the gate insulating film is formed to form a gate electrode, and a step of forming a gate electrode at the end of the gate electrode. forming a highly concentrated impurity layer of opposite conductivity type by introducing an impurity from the surface of the opposite conductivity type impurity layer or depositing a conductor on the opposite conductivity type impurity layer. .

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図でる。
FIGS. 1(a) to 1(d) are cross-sectional views of a semiconductor chip shown in order of steps for explaining a first embodiment of the present invention.

まず、第1図(a)に示すように、P型半導体基板10
1上に通常の選択酸化法で、フィールド酸化膜102を
形成する。活性領域はP型半導体基板101の表面が露
出している部分である。
First, as shown in FIG. 1(a), a P-type semiconductor substrate 10
A field oxide film 102 is formed on the surface of the oxide film 102 by a normal selective oxidation method. The active region is a portion of the surface of the P-type semiconductor substrate 101 that is exposed.

次に、第1図(b)に示すように、N型不純物を比較的
低濃度に含んだエピタキシャル層を半導体基板全面に成
長させ、研削法や研磨法を用いてフィールド酸化膜10
2上には、エピタキシャル層が残らない様にし、活性領
域にN型エピタキシャル層103を埋め込んだ状態で残
存させる。
Next, as shown in FIG. 1(b), an epitaxial layer containing a relatively low concentration of N-type impurities is grown over the entire surface of the semiconductor substrate, and a field oxide film 10 is grown using a grinding or polishing method.
No epitaxial layer is left on 2, and the N-type epitaxial layer 103 is left buried in the active region.

その後、ホトレジスト104を塗布して所定の部分を除
去し、このホトレジスト104をマスクとして、N型エ
ピタキシャル層103表面からP型半導体基板101の
内にまで達する溝113を形成する。次で、P型不純物
をイオン注入法で溝113の底面部に導入し、P型不純
物N105を形成する。
Thereafter, a photoresist 104 is applied and a predetermined portion is removed, and using the photoresist 104 as a mask, a groove 113 is formed extending from the surface of the N-type epitaxial layer 103 to the inside of the P-type semiconductor substrate 101. Next, a P-type impurity is introduced into the bottom of the trench 113 by ion implantation to form a P-type impurity N105.

次に、第1図(c)に示すように、ホトレジスト104
を除去したのち、ゲート絶縁膜106を溝部やエピタキ
シャル層を熱酸化して形成する。
Next, as shown in FIG. 1(c), a photoresist 104
After removing, the gate insulating film 106 is formed by thermally oxidizing the trench and the epitaxial layer.

続いて、全面に例えばリンの様な不純物を含んだ多結晶
シリコンを溝113を埋める様に成長させ、そして、ホ
トレジスト107をゲート電極を形成すべき部分に残し
て形成し、これをマスクにして多結晶シリコンをエツチ
ングして、ホトレジスト107下に、多結晶シリコンか
らなるゲート電極108を形成する。
Next, polycrystalline silicon containing an impurity such as phosphorus is grown on the entire surface so as to fill the groove 113, and a photoresist 107 is formed leaving a portion where a gate electrode is to be formed, and this is used as a mask. A gate electrode 108 made of polycrystalline silicon is formed under the photoresist 107 by etching the polycrystalline silicon.

この時、ゲート電極108の縁端部とホトレジスト10
7の縁端部に差が生じているのが通常である。そこで、
次にホトレジスト107をマスクにしてN型不純物をイ
オン注入法で、N型エピタキシャル層103に導入しN
+型型数散層109110を形成する。従って、N+型
型数散層109110は、ゲート電極108の端部とは
ある程度の距離を隔てて設けられる事になり、しかもN
型エピタキシャル層103からなり、溝113に依って
分離されたソース・ドレインの低濃度拡散層の内に形成
されることになる。
At this time, the edge of the gate electrode 108 and the photoresist 10
Usually, there is a difference at the edge of 7. Therefore,
Next, using the photoresist 107 as a mask, N-type impurities are introduced into the N-type epitaxial layer 103 by ion implantation.
A + type scattering layer 109110 is formed. Therefore, the N+ type scattering layer 109110 is provided at a certain distance from the end of the gate electrode 108, and
It consists of a type epitaxial layer 103 and is formed within a source/drain low concentration diffusion layer separated by a trench 113.

次に、第1図(d)に示すように、ホトレジスト107
を除去後、適切な熱処理を経て気相成長法を用いて絶縁
膜111を成長し、所定の位置に接続用のコンタクト孔
を開孔する。その後、金属配線112を施して、MO3
型半導体装置を完成させる。
Next, as shown in FIG. 1(d), a photoresist 107
After removing the insulating film 111, an insulating film 111 is grown using a vapor phase growth method after an appropriate heat treatment, and a contact hole for connection is formed at a predetermined position. After that, metal wiring 112 is applied and MO3
Complete the type semiconductor device.

このようにして製造されたMO3型半導体装置装、チャ
ネル長が1回のりソグラフィでの溝113の幅と深さで
決定する事が出来、高密度設計が可能となる。また、ド
レイン拡散層が低濃度のN型エピタキシャル層103か
ら形成されているため、スナップバック電圧が高められ
、電源マージンが拡大されるため信頼性も向上する。
In the MO3 type semiconductor device manufactured in this way, the channel length can be determined by the width and depth of the groove 113 formed by one-time lithography, and high-density design is possible. Furthermore, since the drain diffusion layer is formed from the lightly doped N-type epitaxial layer 103, the snapback voltage is increased and the power supply margin is expanded, thereby improving reliability.

また、チャネル領域だけ比較的不純物濃度の高いP型不
純物層105が形成されており、しかもソースやドレイ
ン拡散層と接触していないため、更にソース・トレイン
拡散層が低濃度である事でゲート絶縁膜中への電子注入
が抑えられ、拡散層の電気的容量が小さくなり、信頼性
が向上し、かつ高速動作が可能となる。
In addition, since the P-type impurity layer 105 with a relatively high impurity concentration is formed only in the channel region, and is not in contact with the source or drain diffusion layer, the source/train diffusion layer has a low concentration, which insulates the gate. Electron injection into the film is suppressed, the electrical capacity of the diffusion layer is reduced, reliability is improved, and high-speed operation is possible.

さらに、フィールド酸化膜で囲まれた領域がN型エピタ
キシャル層で埋められているため段差がない事、また溝
113の部分をゲート電極材で埋めているために、表面
が平坦化されて金属配線の多層化を図る事が可能となる
等の利点がある。
Furthermore, since the region surrounded by the field oxide film is filled with an N-type epitaxial layer, there is no step, and since the trench 113 is filled with gate electrode material, the surface is flattened and the metal wiring It has advantages such as being able to have multiple layers.

第2図(a)、(b)は本発明の第2の実施例を説明す
るための半導体チップの断面図である。
FIGS. 2(a) and 2(b) are cross-sectional views of a semiconductor chip for explaining a second embodiment of the present invention.

まず、第2図(a)に示すように、P型半導体基板10
1に、フィールド酸化膜102を形成する。次で、活性
領域部分にN型不純物をイオン注入法を用いて導入し、
N型拡散層203を形成する。これは第1図(b)にお
けるN型エピタキシャル層103に相当する。
First, as shown in FIG. 2(a), a P-type semiconductor substrate 10
1, a field oxide film 102 is formed. Next, N-type impurities are introduced into the active region using ion implantation,
An N-type diffusion layer 203 is formed. This corresponds to the N type epitaxial layer 103 in FIG. 1(b).

次に、第2図(b)に示すように、第1の実施例と同様
に溝を形成し、その後基板に比較的高い濃度のP型不純
物層105を形成する。ゲート絶縁膜106を形成して
、このゲート絶縁膜の一部を除去した後に、N型不純物
例えばリンの様な不純物を含んだ多結晶シリコンを成長
し、溝を埋めるとともに、フィールド酸化11A、10
2で囲まれた領域を埋める。次で、この多結晶シリコン
をリソグラフィー技術でパターニングして、ソース・ド
レイン領域206.207と、ゲート電極208を分離
形成する。その後、絶縁膜111を成長し、所定の位置
にコンタクト孔を開孔し、金属配線112を施してMO
S型半導体装置を完成させる。
Next, as shown in FIG. 2(b), a groove is formed in the same manner as in the first embodiment, and then a relatively high concentration P-type impurity layer 105 is formed on the substrate. After forming the gate insulating film 106 and removing a part of the gate insulating film, polycrystalline silicon containing an N-type impurity, such as phosphorus, is grown to fill the trench and field oxidation 11A, 10 is formed.
Fill in the area surrounded by 2. Next, this polycrystalline silicon is patterned using a lithography technique to separately form source/drain regions 206 and 207 and gate electrode 208. After that, an insulating film 111 is grown, a contact hole is opened at a predetermined position, a metal wiring 112 is formed, and the MO
Complete the S-type semiconductor device.

この第2の実施例に於ては、低濃度ソース・ドレインを
、基板の活性領域に全面にイオン注入法で形成したN型
拡散層を溝で分離して形成し、溝の底の基板内にP型不
純物層を形成し、ゲート絶縁膜を介して多結晶シリコン
からなるゲート電極とソース・トレイン領域となる電極
形成を同時に行なうことにより、活性領域表面が平坦化
されているのが構造的特徴である。
In this second embodiment, a low concentration source/drain is formed by separating an N-type diffusion layer formed by ion implantation over the entire surface of the active region of the substrate with a trench, and forming a low concentration source/drain in the substrate at the bottom of the trench. Structurally, the surface of the active region is planarized by forming a P-type impurity layer on the surface, and simultaneously forming a gate electrode made of polycrystalline silicon and an electrode that will become the source/train region via a gate insulating film. It is a characteristic.

このようにして形成されたMOS型半導体装置は、ソー
ス・ドレインが比較的低濃度で形成され、スナップ・バ
ック電圧が高められ、また拡散層の電気的容量が小さく
なって高速動作が可能である。この第2の実施例では、
ゲート電極208と高濃度のソース・トレイン領域20
6,207を隔てて同時に形成でき、しかも多結晶シリ
コンでソース・ドレイン領域となる電極を形成している
ために、接合が浅くなった際の直接金属配線を施こす場
合と較べて、金属配線によるアロイ・スパイクの影響が
なくなり、リーク電流は抑制される。従って、浅い接合
が可能となり、高密度で平坦化でき、この電極の抵抗を
自由に下げる事が出来て、高速動作が可能となる。
The MOS type semiconductor device formed in this way has a source/drain formed with a relatively low concentration, has a high snapback voltage, and has a small electrical capacitance of a diffusion layer, so that high-speed operation is possible. . In this second example,
Gate electrode 208 and highly doped source/train region 20
6 and 207 at the same time, and since the electrodes that become the source and drain regions are formed using polycrystalline silicon, the metal wiring The influence of alloy spikes caused by this is eliminated, and leakage current is suppressed. Therefore, shallow junctions can be formed, high-density flattening can be achieved, the resistance of this electrode can be freely lowered, and high-speed operation can be achieved.

尚、上記実施例に於てはP型基板を用いた場合について
説明したが、N型基板でのPチャネルトランジスタにも
適用でき、相補型デバイスに用いた時には、相補型デバ
イスに特徴のあるラッチ・アップ現象を発生しにくくす
るという効果が生じてくる。
Although the above embodiment has been described using a P-type substrate, it can also be applied to a P-channel transistor on an N-type substrate, and when used in a complementary device, a latch characteristic of the complementary device can be applied.・This has the effect of making it difficult for the up phenomenon to occur.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、−導電型半導体基板表面
に逆導電型不純物層を形成し、この不純物層に半導体基
板内に達する溝を掘り、ゲート絶縁膜を表面に形成し、
この溝を埋めてゲート電極を形成し、このゲート電極の
縁端部からある距離を隔てて、逆導電型高濃度不純物層
を形成することに依り、高速動作が可能で、高密度設計
が出来、信頼性が向上した半導体装置を得る事ができる
As explained above, the present invention includes forming an opposite conductivity type impurity layer on the surface of a -conductivity type semiconductor substrate, digging a groove reaching into the semiconductor substrate in this impurity layer, forming a gate insulating film on the surface,
By filling this groove to form a gate electrode and forming a highly concentrated impurity layer of opposite conductivity at a certain distance from the edge of the gate electrode, high-speed operation and high-density design are possible. , it is possible to obtain a semiconductor device with improved reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)及び第2図(a>、(b)は、本
発明の第1及び第2の実施例を説明するための工程順に
示した半導体チップの断面図、第3図(a)〜(C)は
従来の半導体装置の製造方法を説明するための半導体チ
ップの断面図である。 101・・・P型半導体基板、102・・・フィールド
酸化膜、103・・・N型エピタキシャル層、104・
・・ホトレジスト、105・・・P型不純物層、106
・・・ゲート絶縁膜、107・・・ホトレジスト、10
8・・・ゲート電極、109.110・・・N+型型数
散層111・・・絶縁膜、112・・・金属配線、11
3・・・溝、203・・・N型拡散層、206.207
・・・ソース・ドレイン領域、208・・・ゲート電極
、301・・・P型半導体基板、302・・・フィール
ド絶縁膜、303・・・ゲート絶縁膜、304・・・ゲ
ート電極、305.306・・・ソース・トレイン拡散
層、307・・・ホトレジスト、308,309・・・
拡散層、310・・・絶縁膜、311,312・・・金
属配線。 第4区
FIGS. 1(a) to (d) and FIGS. 2(a) to 2(b) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the first and second embodiments of the present invention. 3(a) to 3(C) are cross-sectional views of a semiconductor chip for explaining a conventional method for manufacturing a semiconductor device. 101... P-type semiconductor substrate, 102... Field oxide film, 103...・N-type epitaxial layer, 104・
... Photoresist, 105 ... P-type impurity layer, 106
... Gate insulating film, 107 ... Photoresist, 10
8... Gate electrode, 109.110... N+ type scattering layer 111... Insulating film, 112... Metal wiring, 11
3... Groove, 203... N-type diffusion layer, 206.207
... Source/drain region, 208... Gate electrode, 301... P-type semiconductor substrate, 302... Field insulating film, 303... Gate insulating film, 304... Gate electrode, 305.306 ... Source train diffusion layer, 307... Photoresist, 308, 309...
Diffusion layer, 310... Insulating film, 311, 312... Metal wiring. Ward 4

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上にフィールド絶縁膜を形成する工
程と、前記フィールド絶縁膜に囲まれた前記半導体基板
表面から不純物を導入するか又は半導体基板上にエピタ
キシャル成長を行なうかして逆導電型不純物層を形成す
る工程と、前記逆導電型不純物層の表面より前記半導体
基板内に達する溝を形成したのち該溝の底面部に不純物
を導入し一導電型高濃度不純物層を形成する工程と、前
記溝表面を含む全面にゲート絶縁膜を形成する工程と、
ゲート絶縁膜が形成された前記溝を埋めてゲート電極を
形成する工程と、前記ゲート電極の端部より隔て前記逆
導電型不純物層表面から不純物を導入するか又は逆導電
型不純物層上に導電体を堆積するかして逆導電型高濃度
不純物層を形成する工程とを含むことを特徴とする半導
体装置の製造方法。
A step of forming a field insulating film on a semiconductor substrate of one conductivity type, and forming an impurity layer of an opposite conductivity type by introducing impurities from the surface of the semiconductor substrate surrounded by the field insulating film or by performing epitaxial growth on the semiconductor substrate. forming a groove reaching into the semiconductor substrate from the surface of the opposite conductivity type impurity layer, and then introducing an impurity into the bottom of the groove to form a high concentration impurity layer of one conductivity type; a step of forming a gate insulating film over the entire surface including the groove surface;
a step of filling the trench in which the gate insulating film is formed to form a gate electrode; and introducing an impurity from the surface of the reverse conductivity type impurity layer apart from the end of the gate electrode or conductive on the reverse conductivity type impurity layer. 1. A method for manufacturing a semiconductor device, comprising the step of forming a highly concentrated impurity layer of opposite conductivity type by depositing an impurity layer.
JP62066566A 1987-03-19 1987-03-19 Method for manufacturing semiconductor device Expired - Lifetime JP2646547B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62066566A JP2646547B2 (en) 1987-03-19 1987-03-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62066566A JP2646547B2 (en) 1987-03-19 1987-03-19 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS63229858A true JPS63229858A (en) 1988-09-26
JP2646547B2 JP2646547B2 (en) 1997-08-27

Family

ID=13319627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62066566A Expired - Lifetime JP2646547B2 (en) 1987-03-19 1987-03-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2646547B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283670A (en) * 1990-03-30 1991-12-13 Fuji Electric Co Ltd Mos transistor
JPH0482272A (en) * 1990-07-25 1992-03-16 Semiconductor Energy Lab Co Ltd Insulated-gate field-effect semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123571U (en) * 1980-02-20 1981-09-19
JPS59168675A (en) * 1983-03-15 1984-09-22 Sony Corp Manufacture of semiconductor device
JPS6047464A (en) * 1983-08-26 1985-03-14 Toshiba Corp Insulated gate type transistor
JPS6163059A (en) * 1984-09-05 1986-04-01 Hitachi Ltd Semiconductor device
JPS6226863A (en) * 1985-07-29 1987-02-04 インダストリアル テクノロジ− リサ−チ インスチチユ−ト Mos transistor and manufacture thereof
JPS6251263A (en) * 1985-08-30 1987-03-05 Toshiba Corp Insulated gate type transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56123571U (en) * 1980-02-20 1981-09-19
JPS59168675A (en) * 1983-03-15 1984-09-22 Sony Corp Manufacture of semiconductor device
JPS6047464A (en) * 1983-08-26 1985-03-14 Toshiba Corp Insulated gate type transistor
JPS6163059A (en) * 1984-09-05 1986-04-01 Hitachi Ltd Semiconductor device
JPS6226863A (en) * 1985-07-29 1987-02-04 インダストリアル テクノロジ− リサ−チ インスチチユ−ト Mos transistor and manufacture thereof
JPS6251263A (en) * 1985-08-30 1987-03-05 Toshiba Corp Insulated gate type transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03283670A (en) * 1990-03-30 1991-12-13 Fuji Electric Co Ltd Mos transistor
JPH0482272A (en) * 1990-07-25 1992-03-16 Semiconductor Energy Lab Co Ltd Insulated-gate field-effect semiconductor device

Also Published As

Publication number Publication date
JP2646547B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
US8067804B2 (en) Semiconductor device having an SOI structure, manufacturing method thereof, and memory circuit
US7115950B2 (en) Semiconductor device and method of manufacturing the same
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
US6955972B2 (en) Methods of fabricating integrated circuit devices having trench isolation structures
KR100363554B1 (en) Soi type semiconductor device and method of forming the same
JP3583982B2 (en) Method for manufacturing dual gate field effect transistor
US6815794B2 (en) Semiconductor devices with multiple isolation structure and methods for fabricating the same
JPH0719838B2 (en) Semiconductor device and manufacturing method thereof
JPS6273655A (en) Highly planar integrated circuit structure
US6495406B1 (en) Method of forming lightly doped drain MOS transistor including forming spacers on gate electrode pattern before exposing gate insulator
JP5360735B2 (en) Semiconductor device
US5786265A (en) Methods of forming integrated semiconductor devices having improved channel-stop regions therein, and devices formed thereby
JP3400891B2 (en) Semiconductor storage device and method of manufacturing the same
JP3057792B2 (en) Method for manufacturing thin film transistor
JPH04264776A (en) Semiconductor device
JP2646547B2 (en) Method for manufacturing semiconductor device
JP2000068372A (en) Semiconductor device and manufacture thereof
JPH0389555A (en) Semiconductor device and manufacture thereof
JPH10335660A (en) Semiconductor device and manufacture thereof
JP2519541B2 (en) Semiconductor device
JPS5858816B2 (en) Manufacturing method of vertical junction field effect transistor
JP5657601B2 (en) Semiconductor device and manufacturing method thereof
JP4572541B2 (en) Manufacturing method of semiconductor device
JPH0945789A (en) Semiconductor device, and its manufacture
JP2506947B2 (en) Semiconductor device and manufacturing method thereof