JPS63229161A - Classification of polishing abrasive particles - Google Patents

Classification of polishing abrasive particles

Info

Publication number
JPS63229161A
JPS63229161A JP6258387A JP6258387A JPS63229161A JP S63229161 A JPS63229161 A JP S63229161A JP 6258387 A JP6258387 A JP 6258387A JP 6258387 A JP6258387 A JP 6258387A JP S63229161 A JPS63229161 A JP S63229161A
Authority
JP
Japan
Prior art keywords
abrasive grains
abrasive particles
liquid
particle size
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6258387A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nishimura
芳明 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6258387A priority Critical patent/JPS63229161A/en
Publication of JPS63229161A publication Critical patent/JPS63229161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Separation (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

PURPOSE:To classify an abrasive particle group within a short time, by adding a cation (anion) to a dispersion containing the abrasive particle group to charge abrasive particles and applying voltage generating a cathode (anode) to the outer periphery of a liquid tank to move the charged abrasive particles having a large particle size toward the cathode (anode). CONSTITUTION:A cation or anion is added to the dispersion having an abrasive particle group with distributed particle size dispersed therein in a liquid tank 3 to charge abrasive particles. For example, water is used as a liquid 2 and NaOH is added to said water to adhere Na<+> ions to the abrasive particles to positively charge the same. A large number of ions are adhered to the abrasive particles having a large particle size to charge the same stronger than the small abrasive particles. When voltage is applied in this state so that the electrode provided in the liquid 2 becomes a cathode, the abrasive particles having a large particle size immediately approach the electrode while the small abrasive particles having a small particle size require a considerable time before approaching the electrode because of the low charge thereof. Therefore, when the liquid 2 present at a position remote from the electrode is taken out at a proper time, the liquid containing only particles having a particle size smaller than a certain size is obtained and the abrasive particles can be accurately classified.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン、石英、炭化硅素、無電解ニッケル、
モリブデン、タングステンなどでできた平面、球面、円
筒面等の形状の光学鏡の表面を表面粗さくRmax)で
数十〜数人の超平滑面に研磨するのに用いる研磨用砥粒
を分級する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to silicon, quartz, silicon carbide, electroless nickel,
Classifies the polishing abrasive grains used to polish the surface of optical mirrors made of molybdenum, tungsten, etc. in flat, spherical, cylindrical, etc. shapes to ultra-smooth surfaces with surface roughness Rmax). It is about the method.

〔従来の技術及び解決しようとする問題点〕従来より研
磨に用いられる砥粒を分級する方法は様々あるが2例え
ばふるいを用いた場合は操作は簡単であるが、ふるい分
けによって得られる砥粒の大きさは粒径が1鱗くらいが
限度であるという欠点がある。もっと小さな砥粒が得ら
れる分級法として液体中における砥粒の沈降を利用する
方法がある。この方法は[−個の球形固体粒子が無限に
広い静水中を沈降する場合、その沈降速度はその粒子径
の2乗に比例する」というストークスの法則を利用した
ものであり、具体的には第3図(A)に示すように液槽
3中に張られた適当な液体2に分級すべき砥粒lを分散
させ一定時間おいて大きな粒径の砥粒が第3図(B)に
示すように沈降したところで上部の小さな粒径の砥粒だ
けを含有する液体部分を吸い出す方法である。しかしこ
の方法においても得られる砥粒の粒径は0.1g(らい
が限度であり、それより小さな砥粒を分級して得ること
は不可能である0粒径の0.1−の砥粒を含んだ研磨液
を用いた場合はRmaxが数十−くらいの平面を得るの
が限度である。この方法は小さな砥粒を得ようとするほ
ど上記ストークスの法則かられかるように沈降させる時
間を極端に長くしなければならないため非常に生産性が
悪いという問題点がある。
[Prior art and problems to be solved] There are various methods for classifying abrasive grains used in polishing.2 For example, when using a sieve, the operation is easy, but the abrasive grains obtained by sieving The drawback is that the particle size is limited to about one scale. As a classification method that can obtain smaller abrasive particles, there is a method that utilizes the sedimentation of abrasive particles in a liquid. This method utilizes Stokes' law, which states that when - spherical solid particles settle in infinitely wide still water, the settling velocity is proportional to the square of the particle diameter. As shown in Fig. 3 (A), the abrasive grains to be classified are dispersed in a suitable liquid 2 in a liquid tank 3, and after a certain period of time, abrasive grains with a large particle size are distributed as shown in Fig. 3 (B). As shown in the figure, when the abrasive grains settle, the upper part of the liquid containing only small-sized abrasive grains is sucked out. However, even with this method, the particle size of the abrasive grains obtained is 0.1 g (the limit is 0.1 g, and it is impossible to obtain smaller abrasive grains by classification. When using a polishing liquid containing a There is a problem in that productivity is extremely low because the length must be extremely long.

また砥粒を液体中に投入した際に砥粒がよく分散されず
、いくつかの砥粒が塊を形成し沈降による分級がうまく
行われないという問題もあった。
There was also the problem that when the abrasive grains were put into a liquid, they were not well dispersed, and some of the abrasive grains formed agglomerates, making it difficult to classify them by sedimentation.

本発明は上記問題点に鑑み成されたものでありその目的
は、従来の問題点を解決し粒径が0.1鱗から5OAく
らいの砥粒を短時間で分級できる方法を提供することに
ある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a method that solves the conventional problems and can classify abrasive grains with particle sizes ranging from 0.1 scale to 5 OA in a short time. be.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の上記目的は、粒径に分布のある砥粒群を分散さ
せた分散液に陽イオンまたは陰イオンを添加して各々の
砥粒を帯電させ、該分散液中又は該分散液を入れた液槽
外周に陰極または陽極を発生する手段を設け電圧をかけ
ることにより該帯電した砥粒のうち粒径の大きなものを
該液槽中において該陰極または陽極側に移動させること
により砥粒の大きさを分級する研磨砥粒の分級法によっ
て達成される。
The above object of the present invention is to charge each abrasive grain by adding cations or anions to a dispersion in which a group of abrasive grains having a particle size distribution are dispersed, A means for generating a cathode or an anode is provided on the outer periphery of the liquid tank, and by applying a voltage, larger particles among the charged abrasive grains are moved to the cathode or anode side in the liquid tank. This is achieved by a method of classifying abrasive grains by size.

本発明において粒径に分布のある砥粒群といっているの
は、様々な大きさの研磨用粒子が混ざりあっているもの
のことである。
In the present invention, a group of abrasive grains having a distribution in particle size refers to a group of abrasive particles of various sizes mixed together.

以下1本発明を図面を参照にして説明する。The present invention will be explained below with reference to the drawings.

まず、第1図(A)に示すように液槽3中の粒径に分布
のある砥粒群を分散させた分散液に陽イオンまたは陰イ
オンを添加して各々の砥粒を陽イオンまたは陰イオンに
より帯電させる。第1図(B)は液槽中の液体2として
水を使用し、そこにNaOHを入れることにより電離し
たHa+イオンが砥粒に付着し、砥粒子が帯電している
様子を表している。このように粒径の大きな砥粒には多
くのイオンが付着し小さな砥粒に比べてより強くプラス
に帯電する。
First, as shown in FIG. 1(A), cations or anions are added to a dispersion liquid in which a group of abrasive grains with a distribution of particle sizes are dispersed in a liquid bath 3. Charged with anions. FIG. 1(B) shows how water is used as the liquid 2 in the liquid tank and NaOH is added thereto so that the ionized Ha+ ions adhere to the abrasive grains and the abrasive particles are electrically charged. In this way, a large number of ions adhere to abrasive grains with a large particle size, and the abrasive grains become more strongly positively charged than small abrasive grains.

このように砥粒に帯電している状態で、第2図(A)に
示すように液槽内の液体2中に設けられている電極が陰
極になるように電圧をかければ、より強くプラスに帯電
している粒径の大きな砥粒は陰極電極に直ちに接近して
きて、一方粒径の小さな砥粒は電荷が小さいため電極に
接近してくるのにかなり時間がかかる。よって電極近辺
の液体と電極から遠い位置にある液体の中に含まれる砥
粒とでは平均粒径が異なり、適当な時間に電極から遠い
位置にある液体を取り出せば、ある大きさより小さな粒
径の砥粒だけが含まれる液体が得られる。第2図(B)
は粒径の大きな帯電している砥粒が重力、及び陰極に引
き付けられることにより液槽下部に集まったときに、小
さな粒径の砥粒だけが含まれる液槽上部の液体をポンプ
により吸い出している様子を表している0分級された砥
粒は通常はその後公知の方法により脱イオンされてから
使用される。
With the abrasive grains charged in this way, if you apply a voltage so that the electrode provided in the liquid 2 in the liquid tank becomes a cathode as shown in Figure 2 (A), it will become more positive. Large-sized abrasive grains that are electrically charged approach the cathode electrode immediately, while small-sized abrasive grains have a small charge and therefore take a considerable amount of time to approach the electrode. Therefore, the average particle size of the abrasive grains contained in the liquid near the electrode is different from that contained in the liquid far from the electrode, and if you take out the liquid far from the electrode at an appropriate time, you will be able to obtain particles with a smaller diameter than a certain size. A liquid containing only abrasive grains is obtained. Figure 2 (B)
When charged abrasive grains with large particle sizes gather at the bottom of the liquid tank due to gravity and being attracted to the cathode, a pump sucks out the liquid at the top of the liquid tank, which contains only small-sized abrasive particles. The 0-class abrasive grains shown here are usually deionized by a known method before use.

なお第2図(A)、(B)において電極を陰極としたの
は、陽イオンを用いて砥粒を帯電させたためであ・す、
陰イオンを用いて砥粒を・帯電させた場合は、電極を陽
極とする。また電極は、第2図(A)。
The reason why the electrode in FIGS. 2(A) and 2(B) is a cathode is because the abrasive grains were charged using cations.
When the abrasive grains are charged using anions, the electrode is used as an anode. The electrodes are shown in FIG. 2(A).

(B)においては液槽中に設けられているが、液槽外部
でもよく、とにかく液槽中の帯電している砥粒に所望の
方向に電気的引力をかけられるように設置されていれば
よい、また電極を設けて砥粒を引きつける方向は重力方
向に限定されず、液槽の横方向から電圧をかけ粒径の大
きな砥粒を引きつけ、それと反対側にある小さな砥粒の
みを含む液体を取り出したり、円筒形の液槽の周囲に電
極を設け粒径の大きな砥粒を円筒周面方向に引きつけ中
心部分の液体を吸い出したりしてもよい。
In (B), it is installed inside the liquid tank, but it can also be installed outside the liquid tank, as long as it is installed so that it can apply electrical attraction in the desired direction to the charged abrasive grains in the liquid tank. Also, the direction in which electrodes are installed to attract abrasive grains is not limited to the direction of gravity; voltage is applied from the side of the liquid tank to attract large abrasive grains, and on the opposite side, a liquid containing only small abrasive grains can be applied. Alternatively, an electrode may be provided around a cylindrical liquid tank to attract abrasive grains having a large particle size toward the circumferential surface of the cylinder and suck out the liquid in the center.

本発明の分級法において、印加する電圧及びその印加時
間は、砥粒の大きさ、砥粒の帯電に用いるイオンの種類
、目的とする砥粒の粒径等に合わせて適宜状めればよい
In the classification method of the present invention, the voltage to be applied and its application time may be determined as appropriate depending on the size of the abrasive grains, the type of ions used to charge the abrasive grains, the particle size of the target abrasive grains, etc. .

本発明の分級法により分級させる砥粒としては、ガラス
用の砥粒としのCeO2、ZrO2、Fe203.5i
02等、ミラーやセラミック用としてのダイヤモンドパ
ウダー、その他、M O3、CrO2、B204等であ
る!□ また上記砥粒を分散させて分散液を調製するための液体
としては通常は水が用いられる。分散液は液質を蒸発さ
せて砥粒だけを取り出すこともできるが、分散液そのも
のを研磨液として使用してもよい。
The abrasive grains classified by the classification method of the present invention include CeO2, ZrO2, and Fe203.5i as abrasive grains for glass.
02, diamond powder for mirrors and ceramics, and others such as M O3, CrO2, B204, etc. □ Also, water is usually used as the liquid for dispersing the abrasive grains to prepare a dispersion liquid. Although it is possible to evaporate the liquid of the dispersion liquid and take out only the abrasive grains, the dispersion liquid itself may be used as the polishing liquid.

また砥粒を帯電させる陰イオン、陽イオンとしては、H
a”、K” 、 Ca2” 、 CI−等が使用され。
In addition, the anions and cations that charge the abrasive grains include H
a", K", Ca2", CI-, etc. are used.

具体的にいえば例えばHa+を用いる場合にはNaOH
を分散液中に投入すればよい0本発明によればRIIa
!が数十−くらいの平面を得るための研磨用砥粒が容易
に得られる。
Specifically, for example, when using Ha+, NaOH
According to the present invention, RIIa may be added to the dispersion.
! Polishing abrasive grains for obtaining a flat surface with a diameter of about several tens of degrees can be easily obtained.

本発明の方法においては砥粒はイオン化され互いに反発
し合うため、従来のように砥粒が塊を形成することなく
全ての砥粒が精確に分級される。
In the method of the present invention, the abrasive grains are ionized and repel each other, so that all the abrasive grains are accurately classified without forming agglomerates as in the conventional method.

〔実施例〕〔Example〕

実施例1 第2図(A)のように底部に陰電極を配した液槽に水を
入れ、そこに平均粒径が1u−1/100−に分布して
いる砥粒を混入し均一に分散させた0次いでNaOH水
溶液を添加し、電極に5mVの電圧をかけながらしばら
く放置し液槽中において上下に砥粒を分級させた後、液
槽上部の液体だけを第2図(B)に示すようにポンプで
吸い出した。吸い出した液体を加熱して水を蒸発させた
ところ、平均粒径が0.1−以下のみの砥粒が得られた
Example 1 As shown in Figure 2 (A), water is poured into a liquid tank with a cathode placed at the bottom, and abrasive grains with an average particle size distribution of 1u-1/100- are mixed therein and the water is uniformly mixed. After adding the dispersed NaOH aqueous solution and leaving it for a while while applying a voltage of 5 mV to the electrode to classify the abrasive grains vertically in the liquid tank, only the liquid at the top of the liquid tank was removed as shown in Figure 2 (B). Pump it out as shown. When the sucked out liquid was heated to evaporate the water, abrasive grains having an average particle size of 0.1 or less were obtained.

実施例2 実施例1において電圧を10m Vに上げたところ、同
じ平均粒径の砥粒を得るための時間が短くなった。
Example 2 When the voltage was increased to 10 mV in Example 1, the time to obtain abrasive grains with the same average grain size became shorter.

比較例1 実施例1においてNaOH水溶液を添加せず、電圧もか
けずに、自然に粒径の大きな砥粒が沈降するのを待つこ
とにより上下に砥粒を分級させた後、同様に液槽上部の
液体だけ吸い出し平均粒径が0.5−以下の砥粒を得た
。この比較例において砥°粒を分級させる時間は実施例
1の5〜10倍の長さであった。また平均粒径0.5μ
s以下の砥粒に混ざって一部粒径の大きな粒子も見つか
った。
Comparative Example 1 In Example 1, the abrasive grains were classified vertically by waiting for the abrasive grains with a large particle size to settle naturally without adding an aqueous NaOH solution or applying a voltage, and then the abrasive grains were similarly placed in a liquid bath. Only the upper liquid was sucked out to obtain abrasive grains having an average particle size of 0.5- or less. In this comparative example, the time for classifying the abrasive grains was 5 to 10 times longer than in Example 1. Also, the average particle size is 0.5μ
Some particles with larger diameters were also found mixed in with the abrasive grains smaller than S.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように本発明の研磨砥粒の分級法によれ
ば。
As explained above, according to the method for classifying abrasive grains of the present invention.

■重力により自然に砥粒が沈降するのを待つのではなく
、電気的引力を用いて砥粒を移動させるために分級速度
が速い。
■Rather than waiting for the abrasive grains to settle naturally due to gravity, the classification speed is fast because the abrasive grains are moved using electrical attraction.

■印加する電圧の大きさを変化させることにより分級時
間及び分級される砥粒の大きさを制御すことができる。
(2) By changing the magnitude of the applied voltage, the classification time and the size of the abrasive grains to be classified can be controlled.

■従来法では不可能だったlμs以下の粒径の砥粒を分
級することが可能である。
■It is possible to classify abrasive grains with a particle size of 1μs or less, which was impossible with conventional methods.

■砥粒が同じ電荷に帯電しているため粒子間に反発力が
生じ砥粒の塊を形成することがないので、砥粒の1つ1
つを精確に分級することができる。
■Since the abrasive grains are charged with the same charge, a repulsive force occurs between the particles, preventing the formation of agglomerates of abrasive grains.
can be classified accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)及び第2図(A)、(B)は本発
明の分級法を工程を追って模式的に説明するものであり
、第1図(A)は液槽中の液体に砥粒を分散させている
状態、第1図(B)はイオンを添加することにより砥粒
が帯電している状態、第2図(A)は電極に電圧をかけ
ている状態、第2図(B)は分級が進み小さな砥粒を含
んでいる液体部分だけを吸い出している状態をそれぞれ
表す模式図である。また、第3図(A)、CB)は従来
の砥粒の分級方法を模式的に示す図である。 l:砥粒 2:砥粒を分散させている液体 3:液槽 4:電極
Figure 1 (A), (B) and Figure 2 (A), (B) schematically explain the classification method of the present invention step by step. Figure 1 (B) shows a state in which abrasive grains are dispersed in a liquid; Figure 1 (B) shows a state in which the abrasive grains are charged by adding ions; Figure 2 (A) shows a state in which a voltage is applied to the electrodes; FIG. 2(B) is a schematic diagram showing a state in which the classification progresses and only the liquid portion containing small abrasive grains is sucked out. Further, FIGS. 3(A) and 3(CB) are diagrams schematically showing a conventional method of classifying abrasive grains. l: Abrasive grains 2: Liquid in which the abrasive grains are dispersed 3: Liquid tank 4: Electrode

Claims (1)

【特許請求の範囲】[Claims] 粒径に分布のある砥粒群を分散させた分散液に陽イオン
または陰イオンを添加して各々の砥粒を帯電させ、該分
散液中又は該分散液を入れた液槽外周に陰極または陽極
を発生する手段を設け電圧をかけることにより該帯電し
た砥粒のうち粒径の大きなものを該液槽中において該陰
極または陽極側に移動させることにより砥粒の大きさを
分級することを特徴とする研磨砥粒の分級法。
A cation or anion is added to a dispersion in which a group of abrasive grains with a particle size distribution are dispersed to charge each abrasive grain, and a cathode or A means for generating an anode is provided and a voltage is applied to move larger particles among the charged abrasive grains to the cathode or anode side in the liquid bath, thereby classifying the size of the abrasive grains. Characteristic classification method of abrasive grains.
JP6258387A 1987-03-19 1987-03-19 Classification of polishing abrasive particles Pending JPS63229161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6258387A JPS63229161A (en) 1987-03-19 1987-03-19 Classification of polishing abrasive particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6258387A JPS63229161A (en) 1987-03-19 1987-03-19 Classification of polishing abrasive particles

Publications (1)

Publication Number Publication Date
JPS63229161A true JPS63229161A (en) 1988-09-26

Family

ID=13204487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6258387A Pending JPS63229161A (en) 1987-03-19 1987-03-19 Classification of polishing abrasive particles

Country Status (1)

Country Link
JP (1) JPS63229161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342581A (en) * 2004-06-01 2005-12-15 Toudai Tlo Ltd Classification method of ultra-fine metal powder
JP2017056459A (en) * 2012-04-03 2017-03-23 日立化成株式会社 Wet classification method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005342581A (en) * 2004-06-01 2005-12-15 Toudai Tlo Ltd Classification method of ultra-fine metal powder
JP4627635B2 (en) * 2004-06-01 2011-02-09 株式会社東京大学Tlo Classification method of ultrafine metal powder
JP2017056459A (en) * 2012-04-03 2017-03-23 日立化成株式会社 Wet classification method

Similar Documents

Publication Publication Date Title
US4280918A (en) Magnetic particle dispersions
US9497855B2 (en) High rate electric field driven nanoelement assembly on an insulated surface
JPH0715961B2 (en) Method for forming diamond layer on substrate
JPS63229161A (en) Classification of polishing abrasive particles
JPH01141582A (en) Gene-introducing device
Chung et al. Filling behavior of ZnO nanoparticles into opal template via electrophoretic deposition and the fabrication of inverse opal
JP5891320B1 (en) Processing method using zeta potential control method
JP2003089896A (en) Particle arraying method, and particle arraying device manufactured by the method
Jun Preparation of ZnO thin film by electrophoretic deposition (EPD)
JPH0716878B2 (en) Grinding stone manufacturing method
De Boer et al. Electro‐Deposition of a thin layer of powdered substances
US4233133A (en) Passivating bath for semiconductive bodies
JPH10286512A (en) Method for forming coat and coat-forming part
JPS6359359A (en) Apparatus for classifying shape of metal powder
JP2006265571A (en) Article having ceramic particles oriented and layered thereon, and production method therefor
Shirtcliffe Deposition of clays onto a rotating, electrochemical, quartz crystal microbalance
Uchikoshi Colloidal formation process based on electrophoretic phenomena of charged particles in liquid media and electrode reactions
Schnurmann Contact electrification of solid particles
SU374154A1 (en) ALL-UNION
GB1321224A (en) Methods for depositing powdered material on articles to be coated
Overbeek Coagulation and flocculation. General introduction
JPH0466118A (en) Manufacture of fine particle
JPH02223128A (en) Formation of phosphor film face
JPH03178352A (en) Wet gravitational classification method
JP2000301527A (en) Manufacture of ceramic tube by centrifugal molding and manufactured ceramic tube