JP2003089896A - Particle arraying method, and particle arraying device manufactured by the method - Google Patents
Particle arraying method, and particle arraying device manufactured by the methodInfo
- Publication number
- JP2003089896A JP2003089896A JP2001283732A JP2001283732A JP2003089896A JP 2003089896 A JP2003089896 A JP 2003089896A JP 2001283732 A JP2001283732 A JP 2001283732A JP 2001283732 A JP2001283732 A JP 2001283732A JP 2003089896 A JP2003089896 A JP 2003089896A
- Authority
- JP
- Japan
- Prior art keywords
- fine particles
- base material
- electric field
- arranging
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Integrated Circuits (AREA)
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、微粒子配列方法お
よび該方法によって製作された微粒子配列装置に関し、
該微粒子配列装置は、例えば、高密度記録媒体、光学素
子、表示装置などに応用できるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for arranging fine particles and a fine particle arranging apparatus manufactured by the method,
The fine particle array device can be applied to, for example, a high density recording medium, an optical element, a display device and the like.
【0002】[0002]
【従来の技術】微粒子を基材上に配列することに関する
技術としては、例えば、以下に示すようなものが開示さ
れている。
特許 第2828374号(微粒子の2次元凝集形成方
法):微粒子の液状分散媒体を基板表面に展開して液体
薄膜を形成し、液厚を粒子径サイズと同等かそれより小
さくし、液が蒸発する際の横方向に働く表面張力により
微粒子を2次元で凝集させて配列を行うものである。2. Description of the Related Art As a technique relating to arranging fine particles on a substrate, for example, the following are disclosed. Patent No. 2828374 (Method for forming two-dimensional aggregation of fine particles): A liquid dispersion medium of fine particles is spread on the surface of a substrate to form a liquid thin film, and the liquid thickness is made equal to or smaller than the particle diameter size, and the liquid is evaporated. The fine particles are two-dimensionally aggregated by the surface tension that acts in the lateral direction, and the fine particles are arranged.
【0003】特開平 9−230391号公報(電界配
列性粒子の再分散方法):対向する電極に電圧を印加
し、微粒子の電気泳動現象を利用して配列状態にある微
粒子を再分散させるものである。Japanese Unexamined Patent Publication No. 9-230391 (Redispersion method of electric field array particles): A method of redispersing fine particles in an array state by applying voltage to opposing electrodes and utilizing electrophoretic phenomenon of fine particles. is there.
【0004】特開平 10−229090号公報(粒子
配列装置):平行に形成された電極の各々に所定の順序
で電圧を印加することにより、移動電界を形成し、該移
動電界の力により微小粒子を移動し、移動中に所定の位
置に形成された開孔に前記微小粒子を落としこむことに
より所定の位置に配列させるものである。Japanese Unexamined Patent Publication No. 10-229090 (particle array device): A moving electric field is formed by applying a voltage in a predetermined order to each of the electrodes formed in parallel, and fine particles are generated by the force of the moving electric field. Are moved, and the fine particles are dropped into the openings formed at predetermined positions during the movement to be arranged at predetermined positions.
【0005】文献:「3次元有機フォトニック結晶の新
しい形成法」
(O plus E Vol.21,No.12 200
0 PP1549〜1553)ポリスチレン微粒子を分
散させた溶液の蒸発速度を制御し、重力による沈降を非
常にゆっくりさせることにより、3次元に集積したポリ
スチレン微粒子を得るものである。Reference: "A new method for forming a three-dimensional organic photonic crystal" (O plus E Vol. 21, No. 12 200)
(0PP1549-1553) Polystyrene fine particles that are three-dimensionally integrated are obtained by controlling the evaporation rate of a solution in which polystyrene fine particles are dispersed and making sedimentation due to gravity very slow.
【0006】[0006]
【発明が解決しようとする課題】本発明は、微粒子配列
方法および該方法によって製作された微粒子配列装置に
関わるものであり、特に、比重の重い微粒子やあるいは
重力のみでは自然沈降しない超微粒子であっても簡便な
プロセスを用いて2次元又は3次元構造で高密度でかつ
規則的に微粒子を配列できる微粒子配列方法及び該微粒
子配列方法によって製作された微粒子配列装置を提供す
るものである。The present invention relates to a method for arranging fine particles and an apparatus for arranging fine particles produced by the method, and particularly to fine particles having a high specific gravity or ultrafine particles which do not spontaneously settle by gravity alone. Even more specifically, the present invention provides a fine particle arranging method capable of arranging fine particles at a high density and regularly in a two-dimensional or three-dimensional structure by using a simple process, and a fine particle arranging apparatus manufactured by the fine particle arranging method.
【0007】近年、材料を微粒子化することにより、バ
ルク形状では得られなかった種々の特性が得られること
が判明したことに加え、微粒子の形状や粒径などを精度
良く形成する方法による研究成果が発表され、その応用
面も積極的に研究されている。当然、微粒子材料を微粒
子そのままの形態で利用する提案も行われているが、さ
らに微粒子の特性を活かすために、微粒子を規則正しく
配列し、その結果得られる性能を利用する応用研究も盛
んである。In recent years, it has been found that by making a material into fine particles, various characteristics which were not obtained in the bulk shape can be obtained. In addition, research results by a method of accurately forming the shape and particle diameter of the fine particles. Has been announced and its application is being actively researched. Naturally, proposals have been made to use the fine particle material in the form of fine particles as it is, but in order to further utilize the characteristics of the fine particles, finely arranged fine particles are regularly arranged, and applied research utilizing the resulting performance is also active.
【0008】例えば、特許第2828374号には、微
粒子の液状分散媒体を基板表面に展開して液体薄膜を形
成し、液厚を粒子径サイズと同等かそれより小さくし、
液が蒸発する際の横方向に働く表面張力により微粒子を
2次元で凝集させて配列を行う発明が開示されている。
しかし、この発明によれば、得られる微粒子の配列は2
次元であり、その結果応用できる分野も限られ、例え
ば、今後光通信分野などで期待されるフォトニック結晶
に必要な3次元構造を得ることは不可能である。For example, in Japanese Patent No. 2828374, a liquid dispersion medium of fine particles is spread on the surface of a substrate to form a liquid thin film, and the liquid thickness is made equal to or smaller than the particle size.
An invention is disclosed in which fine particles are two-dimensionally aggregated and arrayed by the surface tension acting in the lateral direction when the liquid evaporates.
However, according to the present invention, the arrangement of the obtained fine particles is 2
However, it is impossible to obtain a three-dimensional structure required for a photonic crystal, which is expected in the optical communication field in the future.
【0009】また、微粒子の電気泳動現象を利用したも
のとしては、特開平9−230391号公報があり、そ
の内容は対向する電極に電圧を印加し、微粒子の電気泳
動現象を利用して配列状態にある微粒子を再分散させて
光の透過、遮断を制御するものである。この従来技術
は、微粒子の電気泳動現象を利用した点では、本発明に
類似する点があるといえるが、この従来技術の制御方法
は、配列状態と再分散状態を制御して光の透過、遮断を
制御するものであり、本発明のごとく、高規則性の3次
元微粒子配列装置を得るものとは根本的に異なるもので
ある。Further, as a technique utilizing the electrophoretic phenomenon of fine particles, there is Japanese Patent Application Laid-Open No. 9-230391, the contents of which are arranged by applying a voltage to opposing electrodes and utilizing the electrophoretic phenomenon of fine particles. The fine particles in 1 are redispersed to control the transmission and blocking of light. It can be said that this conventional technique is similar to the present invention in that it utilizes the electrophoretic phenomenon of fine particles, but the control method of this conventional technique controls the array state and redispersion state to transmit light, This is for controlling the interruption, and is fundamentally different from that for obtaining a highly ordered three-dimensional fine particle array device as in the present invention.
【0010】上記2件の先行技術とは異なり、3次元構
造が得られる技術として、前記文献(O plus E
Vol.21,No.12 2000 PP1549〜
1553)があり、この文献には、ポリスチレン微粒子
を分散させた溶液の蒸発速度を制御し、重力による沈降
を非常にゆっくりさせることにより、3次元に集積した
ポリスチレン微粒子を得ることが開示されている。しか
し、この技術は、比較的比重の軽いポリスチレン微粒子
のようなものにしか適用できないという問題に加え、
「重力による沈降を非常にゆっくりさせる」という消極
的な制御技術を利用しているために、超微粒子などのよ
うに、重力では沈降しない微粒子に対しては、効果のな
い技術である。Different from the above-mentioned two prior arts, as a technique for obtaining a three-dimensional structure, the above-mentioned document (O plus E
Vol.21, No.12 2000 PP1549-
1553), and this document discloses that three-dimensionally integrated polystyrene fine particles are obtained by controlling the evaporation rate of a solution in which polystyrene fine particles are dispersed and making the sedimentation due to gravity very slow. . However, in addition to the problem that this technology can be applied only to polystyrene particles having a relatively low specific gravity,
Since it uses a passive control technology that "slows sedimentation by gravity very slowly," it is an ineffective technology for particles that do not sediment by gravity, such as ultrafine particles.
【0011】本発明に最も近い技術としては、特開平1
0−229090号公報に開示されているように、平行
に形成された電極の各々に所定の順序で電圧を印加する
ことにより、移動電界を形成し、該移動電界の力により
微小粒子を移動し、移動中に所定の位置に形成された開
孔に前記微小粒子を落としこむことにより所定の位置に
配列させる技術がある。しかしながら、この技術は、比
較的比重の大きい微粒子を配列させる技術としては注目
すべきものであるが、上下の電極をそれぞれ分割して形
成する必要があるという非常に複雑なプロセスを用いる
ことに加え、乾燥状態での配列技術であるために、適用
できる微粒子の大きさに限界がある。すなわち、一般的
に微粒子はその特性により、粒径が小さくなればなるほ
ど非常に凝集する力が大きくなり、この現象は配列する
際の大きな障害であるという点から考えると、今後、益
々必要とされる超微粒子に関しては、それ自身の有する
凝集力という障害のために、適用不可能という大きな問
題を有するものである。The technique closest to the present invention is disclosed in Japanese Patent Laid-Open No.
As disclosed in Japanese Patent Application Laid-Open No. 0-229090, a moving electric field is formed by applying a voltage to each of the electrodes formed in parallel in a predetermined order, and fine particles are moved by the force of the moving electric field. There is a technique in which the fine particles are arranged in a predetermined position by dropping them into an opening formed in a predetermined position during movement. However, this technique is remarkable as a technique for arranging fine particles having a relatively large specific gravity, but in addition to using a very complicated process in which the upper and lower electrodes need to be formed separately, Due to the arraying technique in the dry state, there is a limit to the size of the fine particles that can be applied. That is, in general, due to the characteristics of the fine particles, the smaller the particle size, the greater the cohesive force becomes, and this phenomenon is a major obstacle in the arrangement, so it will be needed more and more in the future. The ultrafine particles have a big problem that they cannot be applied due to the obstacle of the cohesive force of themselves.
【0012】本発明は、上述のような課題を解決するた
めになされたもので有り、微粒子を分散させた溶液系に
おいて、効率よく電界を印加することによって、比較的
比重が大きくかつ超微粒子であっても高規則性を有して
微粒子を配列させる技術を提供することを目的とするも
のであり、また、配列の際もしくは配列後に溶液成分の
みを下方に除去する技術の融合により完成したものであ
り、簡便なプロセスで、精度良く微粒子を規則的に配列
する技術を提供することを目的とするものである。The present invention has been made in order to solve the above-mentioned problems, and in a solution system in which fine particles are dispersed, by applying an electric field efficiently, a relatively large specific gravity and ultrafine particles are obtained. The purpose is to provide a technology for arranging fine particles with high regularity, and completed by the fusion of technologies for removing only the solution component downward during or after the array. It is an object of the present invention to provide a technique for accurately arranging fine particles regularly by a simple process.
【0013】[0013]
【課題を解決するための手段】請求項1の発明は、微粒
子を配列して成る微粒子配列装置の製造方法において、
少なくとも溶液を保持することのできる容器と、該容器
の下部の下部電極と、該容器の上部の上部電極とを用
い、該容器内に微粒子を分散させた溶液を保持し、前記
下部および上部の電極もしくはどちらか一方の電極に電
圧を印加することによって生じる電気泳動現象を利用し
て前記容器内に微粒子を規則的に配列させることを特徴
としたものである。According to a first aspect of the present invention, there is provided a method for manufacturing a fine particle arranging device in which fine particles are arranged,
At least a container capable of holding a solution, a lower electrode on the lower part of the container, and an upper electrode on the upper part of the container are used to hold a solution in which fine particles are dispersed in the container. It is characterized in that fine particles are regularly arranged in the container by utilizing an electrophoretic phenomenon caused by applying a voltage to the electrode or one of the electrodes.
【0014】請求項2の発明は、請求項1の発明におい
て、前記上部および下部の電極に直流の電圧を印加する
際に、極性を交互に変化させるいわゆる交番電界を印加
することを特徴としたものである。According to a second aspect of the invention, in the first aspect of the invention, when a direct current voltage is applied to the upper and lower electrodes, a so-called alternating electric field that alternately changes polarities is applied. It is a thing.
【0015】請求項3の発明は、請求項1の発明におい
て、前記上部または下部電極どちらか一方に交流の電圧
を印加し、他方の電極にその周波数と同期して直流の電
圧を印加することを特徴としたものである。According to a third aspect of the invention, in the first aspect of the invention, an alternating voltage is applied to either the upper or lower electrode, and a direct voltage is applied to the other electrode in synchronization with the frequency. It is characterized by.
【0016】請求項4の発明は、請求項1乃至3のいず
れかの発明において、下部および上部の電極もしくはど
ちらか一方の電極に印加する電圧を徐々に減少させる工
程を含むことを特徴としたものである。The invention of claim 4 is characterized in that, in any one of the inventions of claims 1 to 3, it includes a step of gradually decreasing the voltage applied to the lower and upper electrodes or one of the electrodes. It is a thing.
【0017】請求項5の発明は、請求項1乃至4のいず
れかの発明において、前記下部電極を上部に有する下部
基材を有し、該下部基材が多孔質材料であることを特徴
としたものである。According to a fifth aspect of the present invention, in any one of the first to fourth aspects, a lower base material having the lower electrode on an upper portion is provided, and the lower base material is a porous material. It was done.
【0018】請求項6の発明は、請求項5の発明におい
て、前記多孔質材料がゼオライトであることを特徴とし
たものである。According to a sixth aspect of the present invention, in the fifth aspect, the porous material is zeolite.
【0019】請求項7の発明は、請求項5の発明におい
て、前記多孔質材料がポーラスシリコンであることを特
徴としたものである。According to a seventh aspect of the present invention, in the fifth aspect, the porous material is porous silicon.
【0020】請求項8の発明は、請求項5乃至7のいず
れかの発明において、微粒子配列の際または配列後に、
前記基材の細孔を通じて、溶液成分のみを下方に除去す
ることを特徴としたものである。The invention of claim 8 is the invention according to any one of claims 5 to 7, wherein during or after the fine particle arrangement,
Only the solution component is removed downward through the pores of the base material.
【0021】請求項9の発明は、請求項8の発明におい
て、前記基材上に残した配列微粒子を紫外線硬化樹脂を
用いて固定化することを特徴としたものである。According to a ninth aspect of the invention, in the eighth aspect of the invention, the arrayed fine particles left on the substrate are fixed with an ultraviolet curable resin.
【0022】請求項10の発明は、請求項5乃至9の発
明において、前記微粒子を分散させた液体の液性を、前
記基材および微粒子に応じて最適化することを特徴とし
たものである。The invention of claim 10 is characterized in that, in the invention of claims 5 to 9, the liquid property of the liquid in which the fine particles are dispersed is optimized in accordance with the base material and the fine particles. .
【0023】請求項11の発明は、請求項1乃至10の
いずれかに記載の方法によって製作された微粒子配列装
置である。The invention of claim 11 is a fine particle array device manufactured by the method according to any one of claims 1 to 10.
【0024】[0024]
【発明の実施の形態】図1は、本発明による微粒子配列
装置の製造方法を模式的に示した断面図で、図中、1は
容器、2は該容器1の下部基材、3は該下部基材2の上
に設けられた下部電極、4は容器1の上部基材、5は該
上部基材4の下に設けられた上部電極、6,7は直流電
圧制御装置で、図1(A)は容器1中に微粒子11を分
散させた溶液10が存在し、上部電極5および下部電極
3に電界が印加されていない状態を示したものである。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view schematically showing a method for manufacturing a fine particle array device according to the present invention. In the figure, 1 is a container, 2 is a lower base material of the container 1, and 3 is a container. The lower electrode provided on the lower substrate 2, 4 is the upper substrate of the container 1, 5 is the upper electrode provided under the upper substrate 4, and 6 and 7 are DC voltage control devices. (A) shows a state in which the solution 10 in which the fine particles 11 are dispersed is present in the container 1 and no electric field is applied to the upper electrode 5 and the lower electrode 3.
【0025】このとき、微粒子11は負に帯電している
ものとする。図1(B)は、この状態で、上部電極5に
正の電界を、また、下部電極3に負の電界を印加した時
の微粒子の挙動を模式的に示す。負に帯電している微粒
子11は上部電極5に印加された正の電界に引き寄せら
れ、重力に反して若干上方へと移動する。図1(B)
は、この後、すぐに、上下の電極の極性を切り替えて、
上部電極5に負の電界を、また、下部電極3に正の電界
を印加した時の微粒子11の挙動を模式的に示したもの
である。この状態では、微粒子11は重力に加え下部電
極3に印加された正の電界に引き寄せられて下部電極3
のほうに移動する。そして、印加する電界を適切に制御
することによってこの状態、すなわち図1(B)と図1
(C)の状態を繰り返すことにより、図1(D)に示し
たように、最終的に規則的に配列した微粒子を得ること
ができる。At this time, the fine particles 11 are assumed to be negatively charged. FIG. 1B schematically shows the behavior of the fine particles when a positive electric field is applied to the upper electrode 5 and a negative electric field is applied to the lower electrode 3 in this state. The negatively charged fine particles 11 are attracted to the positive electric field applied to the upper electrode 5, and move slightly upward against the gravity. Figure 1 (B)
Immediately after this, switch the polarity of the upper and lower electrodes,
The behavior of the fine particles 11 when a negative electric field is applied to the upper electrode 5 and a positive electric field is applied to the lower electrode 3 is schematically shown. In this state, the fine particles 11 are attracted to the positive electric field applied to the lower electrode 3 in addition to gravity, and are thus attracted to the lower electrode 3.
Move to. Then, by appropriately controlling the applied electric field, this state, that is, FIG.
By repeating the state of (C), it is possible to finally obtain finely arranged fine particles as shown in FIG.
【0026】図2は、下部基材2として、多孔質材料を
用いた場合の様子を模式的に示した図で、図1(D)に
示した状態で、もしくは、電界を印加終了後に、図2に
示したように下部電極3を有する下部基材2に多孔質材
料を用いた場合には、その細孔を通じて溶液10を下方
に液滴10′として除去することにより、乾燥状態で微
粒子配列装置を容易に得ることができる。FIG. 2 is a diagram schematically showing a state in which a porous material is used as the lower base material 2. In the state shown in FIG. 1 (D) or after application of an electric field, When a porous material is used for the lower base material 2 having the lower electrode 3 as shown in FIG. 2, the solution 10 is removed downward as droplets 10 'through the pores, so that the fine particles in a dry state can be obtained. The array device can be easily obtained.
【0027】また、乾燥した状態で、例えば、図3に示
したごとく、紫外線硬化樹脂20を滴下し、紫外光を照
射して樹脂を硬化させて、図4に示したような、規則正
しく3次元に集積した微粒子11の配列装置を容易に得
ることができ、フォトニック結晶などへの応用が可能と
なる。紫外線硬化樹脂20を滴下するのは、必ずしも乾
燥状態にした後である必要は無く、溶液がある状態で、
紫外線硬化樹脂を滴下し、紫外光を照射して樹脂を硬化
させることも可能である。Further, in the dried state, for example, as shown in FIG. 3, the ultraviolet curable resin 20 is dropped and the resin is cured by irradiating with ultraviolet light to form a regular three-dimensional pattern as shown in FIG. It is possible to easily obtain an arraying device of the fine particles 11 accumulated in the above, and it is possible to apply to a photonic crystal or the like. It is not always necessary to drip the ultraviolet curable resin 20 after it has been dried, and in the state where there is a solution,
It is also possible to drop the ultraviolet curable resin and irradiate it with ultraviolet light to cure the resin.
【0028】本発明は、高規則性の微粒子配列装置を、
溶液系を用いることにより実現することを特徴のひとつ
としている、すなわち、乾燥状態では、凝集しやすくな
る超微粒子であっても、溶液系という状態の利点を最大
限に利用し分散性を向上させることにより凝集を防ぎ、
pHの制御、例えば、添加するイオン種を適切に選択、
制御することにより、下部電極との等電点の関係を利用
することができ、その結果、高規則性の微粒子配列が得
られるものである。The present invention provides a highly ordered fine particle array device,
One of the features is that it is realized by using a solution system, that is, even in the dry state, even ultrafine particles that tend to aggregate easily utilize the advantages of the solution system to the maximum extent to improve dispersibility. To prevent aggregation,
pH control, eg, proper selection of ionic species to be added,
By controlling, the relationship of the isoelectric point with the lower electrode can be utilized, and as a result, a highly ordered fine particle array can be obtained.
【0029】この点についてさらに詳細に説明する。一
般に、例えば、金属酸化物からなる微粒子を水中に浸漬
すると、微粒子は正または負の電荷を持ち、電界が存在
すると対向する電場を有する方向へ移動する。この現象
が電気泳動現象である。この電気泳動現象によって、微
粒子の水中における荷電すなわち界面電位(ゼータ電
位)の存在を知ることができる。この界面電位は微粒子
−水系のpHによって大きく変化する。一般に、横軸に
水系のpHを、縦軸に界面電位をとると、界面電位は水
系のpHによって変化し、界面電位「0」を切る点の水
系のpHは「等電点」と定義される。この現象から、一
般的に金属酸化物微粒子表面の界面電位は、酸性側では
正、アルカリ側では負の極性を取る。This point will be described in more detail. Generally, for example, when fine particles made of a metal oxide are immersed in water, the fine particles have a positive or negative electric charge, and when an electric field is present, the fine particles move in a direction having opposite electric fields. This phenomenon is an electrophoretic phenomenon. By this electrophoretic phenomenon, it is possible to know the charge of the particles in water, that is, the existence of the interfacial potential (zeta potential). This interfacial potential changes greatly depending on the pH of the fine particle-water system. Generally, when the horizontal axis is the pH of an aqueous system and the vertical axis is the interfacial potential, the interfacial potential changes depending on the pH of the aqueous system, and the pH of the aqueous system at the point where the interfacial potential is "0" is defined as the "isoelectric point". It From this phenomenon, generally, the interfacial potential on the surface of the metal oxide fine particles has a positive polarity on the acidic side and a negative polarity on the alkaline side.
【0030】しかし、この等電点は材料によって大きく
異なり、例えば、コロイダルシリカでは「2.0」、α
−アルミナでは「9.0」、ヘマタイトでは「6.7」と
いう値が紹介されている。つまり、等電点から離れるほ
ど界面電位が大きくなり、酸性側にいくほど界面電位の
値は正の大きい方に向かい、また逆に、アルカリ側にい
くほど界面電位の値は負の大きい方に向かう。これはp
Hで制御することができるものである。pHの制御は、
酸やアルカリの添加で、制御性よくコントロールできる
ものである。However, this isoelectric point varies greatly depending on the material. For example, colloidal silica has a value of "2.0", α.
-The value "9.0" is introduced for alumina and "6.7" for hematite. In other words, the interfacial potential increases with increasing distance from the isoelectric point, the interfacial potential increases toward the positive side with increasing acidity, and conversely, the interfacial potential increases with increasing negative polarity toward the alkaline side. Go to This is p
It can be controlled by H. pH control is
It can be controlled with good controllability by adding acid or alkali.
【0031】本発明では、この現象を積極的に利用し、
微粒子の凝集を防ぎながら、電気泳動現象により、微粒
子を3次元で規則的に配列させることが可能となる点が
大きな特徴である。以上述べたように、等電点の概念、
および電気泳動現象を利用できない乾式のプロセスとは
根本的に異なるものである。The present invention positively utilizes this phenomenon,
A major feature is that the particles can be regularly arranged in three dimensions by the electrophoretic phenomenon while preventing the particles from aggregating. As mentioned above, the concept of isoelectric point,
Also, it is fundamentally different from the dry process in which the electrophoretic phenomenon cannot be used.
【0032】さらにもうひとつの特徴は、上下の電極に
印加する電界は、使用する微粒子、および溶液のpHな
どにより、直流、交流、またはその両方の組み合わせを
使用することができる。また、必ずしも一定の強度の電
界を印加する必要はなく、例えば、印加する電界の強度
を徐々に弱くしていくことにより、短時間で最も安定し
た状態になるように制御することも可能である点であ
る。その結果、最終的に最も安定な状態、すなわち、欠
陥が無く、高規則性を持って配列した、微粒子構造体を
得ることができる。Still another feature is that the electric field applied to the upper and lower electrodes can be a direct current, an alternating current, or a combination of both depending on the particles used and the pH of the solution. Further, it is not always necessary to apply an electric field having a constant intensity, and for example, it is possible to control the electric field to be most stable in a short time by gradually weakening the intensity of the applied electric field. It is a point. As a result, it is possible to finally obtain the most stable state, that is, a fine particle structure having no defects and arranged with high regularity.
【0033】これらの特徴により、従来の配列技術とは
異なり、適用できる微粒子の材料、粒径の範囲が広が
り、当然、乾燥状態では凝集して規則的に配列するこが
不可能な微粒子にも対応でき、その結果、応用分野もそ
れにしたがって広がり、広範囲な材料から成る微粒子に
適用でき得るものになるという大きな特徴を有するもの
である。Due to these characteristics, unlike the conventional arraying technique, the material of the applicable fine particles and the range of the particle size are expanded, and naturally, even the fine particles which cannot be regularly aggregated in a dry state can be arranged. It has a great feature that it can be applied, and as a result, the field of application is expanded accordingly, and can be applied to fine particles composed of a wide range of materials.
【0034】(実施例1)
(1)下部電極を有する基材および容器の形成
50mm×50mm、厚さ0.5mmの石英基板にスパ
ッタリング法にて金を約2μm成膜し、その基板表面中
央に内径20mm×20mm、外径22mm×22m
m、高さ15mmの直方体状石英管を公知の手段で接着
し、下部電極を有する基材と容器の形成を行った。ま
た、下部電極にパルス駆動が可能な電圧制御装置を接続
し、正の電界を印加できるようにした。
(2)微粒子分散液の作製
純水90mLにコロイダルシリカ(日産化学社製 MP
−4540 平均粒径=450nm 40%)溶液を1
0mL加え、十分に攪拌して4%のコロイダルシリカ分
散液を作製した。Example 1 (1) Formation of Base Material and Container Having Lower Electrode About 2 μm of gold was deposited by sputtering on a quartz substrate having a size of 50 mm × 50 mm and a thickness of 0.5 mm, and the center of the substrate surface was formed. Inner diameter 20 mm x 20 mm, outer diameter 22 mm x 22 m
A rectangular parallelepiped quartz tube of m and a height of 15 mm was adhered by a known means to form a base material having a lower electrode and a container. Further, a voltage control device capable of pulse driving was connected to the lower electrode so that a positive electric field could be applied. (2) Preparation of fine particle dispersion liquid Colloidal silica (MP manufactured by Nissan Kagaku Co., Ltd.) was added to 90 mL of pure water.
-4540 average particle size = 450 nm 40%) 1 solution
0 mL was added and thoroughly stirred to prepare a 4% colloidal silica dispersion liquid.
【0035】(3)上部電極を有する基材の形成
下部電極を有する基材の形成と同様の手法で、上部電極
として機能する金薄膜を有する基材を形成した。また、
上部電極にパルス駆動が可能な電圧制御装置を接続し、
負の電界を印加できるようにした。
(4)分散液の充填と上部電極を有する基材の設置
(2)で作製した微粒子分散液を容器に充填し若干オー
バーフローするところまで充填した。すぐに上部電極を
有する基材を覆いかぶせクランプで固定した。この状態
で容器はほぼ密閉状態となった。(3) Formation of Base Material Having Upper Electrode A base material having a gold thin film functioning as an upper electrode was formed in the same manner as the formation of the base material having a lower electrode. Also,
Connect a voltage control device capable of pulse drive to the upper electrode,
A negative electric field can be applied. (4) Filling of dispersion liquid and installation of base material having upper electrode The fine particle dispersion liquid prepared in (2) was filled in a container until a slight overflow occurred. Immediately, the substrate having the upper electrode was covered and fixed with a clamp. In this state, the container was almost sealed.
【0036】(5)電界印加による微粒子配列
上部および下部電極にそれぞれの極性で交番電界を印加
した。電圧は50Vで、駆動周波数は10Hzで行っ
た。このときの上部および下部電極に印加した電界のタ
イムチャートを示したものが図5である。この状態で2
0分間保持し、最後に、下部電極にマイナス50V印加
した状態で10分間保持した。この間にクランプをはず
し、上部電極を有する基材を静かにずらし、はずした。
この状態で容器は開放状態となった。(5) Alternating electric fields with different polarities were applied to the upper and lower electrodes of the fine particle array by applying an electric field. The voltage was 50 V and the driving frequency was 10 Hz. FIG. 5 shows a time chart of the electric fields applied to the upper and lower electrodes at this time. 2 in this state
It was maintained for 0 minutes, and finally, it was maintained for 10 minutes while applying -50 V to the lower electrode. During this time, the clamp was removed, and the base material having the upper electrode was gently displaced and removed.
In this state, the container was opened.
【0037】(6)溶液成分の乾燥
容器が開放状態となったところで、振動を与えないよう
に注意しながら、溶液成分が自然乾燥するのをまった。
約2時間後に乾燥が完了した。
(7)微粒子配列装置の評価
得られた3次元の微粒子配列装置を走査型電子顕微鏡
(SEM)を用いて観察を行ったところ、若干欠陥はあ
るもののほぼ最密充填構造になっていることが確認され
た。(6) Drying of solution components When the container was opened, the solution components were allowed to dry naturally, taking care not to give vibration.
Drying was complete after about 2 hours. (7) Evaluation of Fine Particle Arrangement Device The obtained three-dimensional fine particle arrangement device was observed using a scanning electron microscope (SEM). As a result, it was found that the structure had a close-packed structure although there were some defects. confirmed.
【0038】(実施例2)
(1)下部電極を有する基材および容器の形成
50mm×50mm、厚さ0.5mmの石英基板にスパ
ッタリング法にて金を約2μm成膜し、その基板表面中
央に内径20mm×20mm、外径22mm×22m
m、高さ15mmの直方体状石英管を公知の手段で接着
し、下部電極を有する基材と容器の形成を行った。ま
た、下部電極に交流の電圧が可能な電圧制御装置を接続
し、交流による電界を印加できるようにした。
(2)微粒子分散液の作製
実施例1と同様の条件で微粒子分散液を作製した。Example 2 (1) Formation of Base Material and Container Having Lower Electrode Gold film of about 2 μm was formed on a quartz substrate having a size of 50 mm × 50 mm and a thickness of 0.5 mm by the sputtering method, and the center of the substrate surface was formed. Inner diameter 20 mm x 20 mm, outer diameter 22 mm x 22 m
A rectangular parallelepiped quartz tube of m and a height of 15 mm was adhered by a known means to form a base material having a lower electrode and a container. Further, a voltage control device capable of alternating voltage was connected to the lower electrode so that an electric field by alternating current could be applied. (2) Preparation of fine particle dispersion A fine particle dispersion was prepared under the same conditions as in Example 1.
【0039】(3)上部電極を有する基材の形成
下部電極を有する基材の形成と同様の手法で、上部電極
として機能する金薄膜を有する基材を形成した。また、
上部電極にパルス駆動が可能な電圧制御装置を接続し、
負の電界を印加できるようにした。
(4)分散液の充填と上部電極を有する基材の設置
(2)で作製した微粒子分散液を容器に充填し若干オー
バーフローするところまで充填した。すぐに上部電極を
有する基材を覆いかぶせクランプで固定した。この状態
で容器はほぼ密閉状態となった。(3) Formation of Base Material Having Upper Electrode A base material having a gold thin film functioning as an upper electrode was formed in the same manner as the formation of the base material having a lower electrode. Also,
Connect a voltage control device capable of pulse drive to the upper electrode,
A negative electric field can be applied. (4) Filling of dispersion liquid and installation of base material having upper electrode The fine particle dispersion liquid prepared in (2) was filled in a container until a slight overflow occurred. Immediately, the substrate having the upper electrode was covered and fixed with a clamp. In this state, the container was almost sealed.
【0040】(5)電界印加による微粒子配列
下部電極に15Hzの交流による電界を印加した。電圧
は50Vで行った。上部電極には、直流による電界を印
加したが、タイミングを以下の様に制御した。下部電極
に負の電界が印加されているときのみ上部電極に正の電
界マイナス20Vを印加した。このときの上部および下
部電極に印加した電界のタイムチャートを示したものが
図6である。この状態で10分間保持し、次に、上部電
極および下部電極ともに毎秒0.2Vずつ印加電圧を減
少させて、100秒後には、下部電極に30Vの交流が
印加された状態となった。この状態で10秒保持し更に
下部電極に印加している電圧を毎秒0.2Vずつ減少さ
せた。この状態で5分間保持した。この間にクランプを
はずし、上部電極を有する基材を静かにずらし、はずし
た。この状態で容器は開放状態となった。(5) A 15 Hz alternating current electric field was applied to the lower electrode of the fine particle array by applying an electric field. The voltage was 50V. A DC electric field was applied to the upper electrode, but the timing was controlled as follows. A positive electric field of -20 V was applied to the upper electrode only when a negative electric field was applied to the lower electrode. FIG. 6 shows a time chart of the electric fields applied to the upper and lower electrodes at this time. This state was maintained for 10 minutes, then the applied voltage was reduced by 0.2 V / sec for both the upper electrode and the lower electrode, and after 100 seconds, an alternating current of 30 V was applied to the lower electrode. This state was maintained for 10 seconds, and the voltage applied to the lower electrode was decreased by 0.2 V per second. This state was maintained for 5 minutes. During this time, the clamp was removed, and the base material having the upper electrode was gently displaced and removed. In this state, the container was opened.
【0041】(6)溶液成分の乾燥
容器が開放状態となったところで、振動を与えないよう
に注意しながら、溶液成分が自然乾燥するのをまった。
(7)微粒子配列装置の評価
得られた3次元の微粒子配列装置を走査型電子顕微鏡
(SEM)を用いて観察を行ったところ、若干欠陥はあ
るもののほぼ最密充填構造になっていることが確認され
た。(6) Drying of solution component When the container was opened, the solution component was allowed to dry naturally, taking care not to give vibration. (7) Evaluation of Fine Particle Arrangement Device The obtained three-dimensional fine particle arrangement device was observed using a scanning electron microscope (SEM). As a result, it was found that the structure had a close-packed structure although there were some defects. confirmed.
【0042】(実施例3)
(1)下部電極を有する基材および容器の形成
これまでの実施例とは異なり、下部電極を有する基材と
して50mm×50mm、厚さ2.5mmのゼオライト
燒結体を用いた。この基材にスパッタリング法にて金を
約2μm成膜し、その基板表面中央に内径20mm×2
0mm、外径22mm×22mm、高さ15mmの直方
体状石英管を公知の手段で接着し、下部電極を有する基
材と容器の形成を行った。また、下部電極にパルス駆動
が可能な電圧制御装置を接続し、正の電界を印加できる
ようにした。
(2)微粒子分散液の作製
実施例1と同様の条件で微粒子分散液を作製した。Example 3 (1) Formation of Substrate with Lower Electrode and Container Different from the previous examples, a zeolite sintered body of 50 mm × 50 mm and a thickness of 2.5 mm was used as the substrate with the lower electrode. Was used. A gold film of about 2 μm was formed on this substrate by a sputtering method, and the inner diameter of the substrate surface was 20 mm × 2.
A rectangular parallelepiped quartz tube having an outer diameter of 0 mm, an outer diameter of 22 mm × 22 mm, and a height of 15 mm was adhered by a known means to form a base material having a lower electrode and a container. Further, a voltage control device capable of pulse driving was connected to the lower electrode so that a positive electric field could be applied. (2) Preparation of fine particle dispersion A fine particle dispersion was prepared under the same conditions as in Example 1.
【0043】(3)上部電極を有する基材の形成
50mm×50mm、厚さ0.5mmの石英基板にスパ
ッタリング法にて金を約2μm成膜し、下部電極を有す
る基材とした。また、下部電極にパルス駆動が可能な電
圧制御装置を接続し、負の電界を印加できるようにし
た。
(4)分散液の充填と上部電極を有する基材の設置
(2)で作製した微粒子分散液を容器に充填し若干オー
バーフローするところまで充填した。すぐに上部電極を
有する基材を覆いかぶせクランプで固定した。この状態
で容器はほぼ密閉状態となった。(3) Formation of Base Material Having Upper Electrode On a quartz substrate having a size of 50 mm × 50 mm and a thickness of 0.5 mm, about 2 μm of gold was deposited by a sputtering method to obtain a base material having a lower electrode. Also, a voltage control device capable of pulse driving was connected to the lower electrode so that a negative electric field could be applied. (4) Filling of dispersion liquid and installation of base material having upper electrode The fine particle dispersion liquid prepared in (2) was filled in a container until a slight overflow occurred. Immediately, the substrate having the upper electrode was covered and fixed with a clamp. In this state, the container was almost sealed.
【0044】(5)電界印加による微粒子配列
上部および下部電極にそれぞれの極性で交番電界を印加
した。電圧は50Vで、駆動周波数は10Hzで行っ
た。この状態で20分間保持し、最後に、下部電極にマ
イナス50V印加した状態で10分間保持した。この間
にクランプをはずし、上部電極を有する基材を静かにず
らし、はずした。この状態で容器は開放状態となった。(5) Alternating electric fields with different polarities were applied to the upper and lower electrodes of the fine particle array by applying an electric field. The voltage was 50 V and the driving frequency was 10 Hz. This state was maintained for 20 minutes, and finally, a state in which -50 V was applied to the lower electrode was maintained for 10 minutes. During this time, the clamp was removed, and the base material having the upper electrode was gently displaced and removed. In this state, the container was opened.
【0045】(6)溶液成分の乾燥
容器が開放状態となったところで、振動を与えないよう
に注意しながら、溶液成分のみがゼオライトの細孔を通
して下方に排出されるようにした。すべての溶液成分が
排出されるのに約30分を要した。
(7)微粒子配列装置の評価
得られた3次元の微粒子配列装置を走査型電子顕微鏡
(SEM)を用いて観察を行ったところ、ほとんど欠陥
のない最密充填構造になっていることが確認された。(6) When the drying container for the solution component was opened, only the solution component was discharged downward through the pores of the zeolite, taking care not to give vibration. It took about 30 minutes for all the solution components to drain. (7) Evaluation of Fine Particle Arrangement Device When the obtained three-dimensional fine particle arrangement device was observed using a scanning electron microscope (SEM), it was confirmed that it had a close-packed structure with almost no defects. It was
【0046】(実施例4)
(1)下部電極を有する基材および容器の形成
50mm×50mm、厚さ0.5mmの石英基板にスパ
ッタリング法にて金を約2μm成膜し、その基板表面中
央に内径20mm×20mm、外径22mm×22m
m、高さ15mmの直方体状石英管を公知の手段で接着
し、下部電極を有する基材と容器の形成を行った。ま
た、下部電極にパルス駆動が可能な電圧制御装置を接続
し、正の電界を印加できるようにした。(Example 4) (1) Formation of base material and container having lower electrode Gold was deposited to a thickness of about 2 μm on a quartz substrate having a size of 50 mm × 50 mm and a thickness of 0.5 mm by the sputtering method, and the center of the substrate surface was formed. Inner diameter 20 mm x 20 mm, outer diameter 22 mm x 22 m
A rectangular parallelepiped quartz tube of m and a height of 15 mm was adhered by a known means to form a base material having a lower electrode and a container. Further, a voltage control device capable of pulse driving was connected to the lower electrode so that a positive electric field could be applied.
【0047】(2)微粒子分散液の作製
実施例1と同様の条件で微粒子分散液を作製した。
(3)上部電極を有する基材の形成
下部電極を有する基材の形成と同様の手法で、上部電極
として機能する金薄膜を有する基材を形成した。また、
上部電極にパルス駆動が可能な電圧制御装置を接続し、
負の電界を印加できるようにした。(2) Preparation of fine particle dispersion A fine particle dispersion was prepared under the same conditions as in Example 1. (3) Formation of Base Material Having Upper Electrode A base material having a gold thin film functioning as an upper electrode was formed in the same manner as the formation of the base material having a lower electrode. Also,
Connect a voltage control device capable of pulse drive to the upper electrode,
A negative electric field can be applied.
【0048】(4)分散液の充填と上部電極を有する基
材の設置
(2)で作製した微粒子分散液を容器に充填し若干オー
バーフローするところまで充填した。すぐに上部電極を
有する基材を覆いかぶせクランプで固定した。この状態
で容器はほぼ密閉状態となった。
(5)電界印加による微粒子配列
上部および下部電極にそれぞれの極性で交番電界を印加
した。電圧は50Vで、駆動周波数は10Hzで行っ
た。このときの上部および下部電極に印加した電界のタ
イムチャートを示したものが図6である。この状態で2
0分間保持し、最後に、下部電極にマイナス50V印加
した状態で10分間保持した。この間にクランプをはず
し、上部電極を有する基材を静かにずらし、はずした。
この状態で容器は開放状態となった。(4) Filling of Dispersion Liquid and Installation of Substrate Having Upper Electrode The fine particle dispersion liquid prepared in (2) was filled in a container until a slight overflow occurred. Immediately, the substrate having the upper electrode was covered and fixed with a clamp. In this state, the container was almost sealed. (5) An alternating electric field was applied to the upper and lower electrodes of the fine particle array by applying an electric field with respective polarities. The voltage was 50 V and the driving frequency was 10 Hz. FIG. 6 shows a time chart of the electric fields applied to the upper and lower electrodes at this time. 2 in this state
It was maintained for 0 minutes, and finally, it was maintained for 10 minutes while applying -50 V to the lower electrode. During this time, the clamp was removed, and the base material having the upper electrode was gently displaced and removed.
In this state, the container was opened.
【0049】(6)紫外線硬化樹脂による微粒子配列装
置の固定
容器が開放状態となったところで、振動を与えないよう
に注意しながら、紫外線硬化樹脂(スリーボンド社製
一液性紫外線硬化樹脂)を5mL静かに滴下した。紫外
線照射装置(波長:312nm)を用いて、1分間紫外
線の照射を行った。これにより、固定化された微粒子配
列装置が得られた。
(7)微粒子配列装置の評価
得られた3次元の微粒子配列装置を走査型電子顕微鏡
(SEM)を用いて観察を行ったところ、ほとんど欠陥
のない最密充填構造の3次元の微粒子配列装置になって
いることが確認された。(6) When the fixing container of the apparatus for arranging the fine particles of the ultraviolet curable resin is in an open state, be careful not to give vibration to the ultraviolet curable resin (manufactured by Three Bond Co.).
5 mL of one-component UV curable resin was gently added dropwise. Ultraviolet irradiation was performed for 1 minute using an ultraviolet irradiation device (wavelength: 312 nm). As a result, the immobilized fine particle array device was obtained. (7) Evaluation of fine particle array device The obtained three-dimensional fine particle array device was observed using a scanning electron microscope (SEM). It has been confirmed that
【0050】(実施例5)
(1)下部電極を有する基材および容器の形成
実施例3と同様に、下部電極を有する基材として50m
m×50mm、厚さ2.5mmのゼオライト燒結体を用
いた。この基材にスパッタリング法にて金を約2μm成
膜し、その基板表面中央に内径20mm×20mm、外
径22mm×22mm、高さ15mmの直方体状石英管
を公知の手段で接着し、下部電極を有する基材と容器の
形成を行った。また、下部電極にパルス駆動が可能な電
圧制御装置を接続し、正の電界を印加できるようにし
た。(Example 5) (1) Formation of base material having lower electrode and container As in the case of Example 3, a base material having a lower electrode of 50 m was formed.
A zeolite sintered body having a size of m × 50 mm and a thickness of 2.5 mm was used. A gold film having a thickness of about 2 μm was formed on this substrate by a sputtering method, and a rectangular parallelepiped quartz tube having an inner diameter of 20 mm × 20 mm, an outer diameter of 22 mm × 22 mm, and a height of 15 mm was adhered to the center of the substrate surface by a known means to form a lower electrode. A base material and a container were formed. Further, a voltage control device capable of pulse driving was connected to the lower electrode so that a positive electric field could be applied.
【0051】(2)微粒子分散液の作製
実施例1と同様の条件で微粒子分散液を作製した。
(3)上部電極を有する基材の形成
50mm×50mm、厚さ0.5mmの石英基板にスパ
ッタリング法にて金を約2μm成膜し、下部電極を有す
る基材とした。また、下部電極にパルス駆動が可能な電
圧制御装置を接続し、負の電界を印加できるようにし
た。(2) Preparation of Fine Particle Dispersion A fine particle dispersion was prepared under the same conditions as in Example 1. (3) Formation of Base Material Having Upper Electrode A quartz substrate having a size of 50 mm × 50 mm and a thickness of 0.5 mm was deposited with a thickness of about 2 μm of gold by a sputtering method to obtain a base material having a lower electrode. Also, a voltage control device capable of pulse driving was connected to the lower electrode so that a negative electric field could be applied.
【0052】(4)分散液の充填と上部電極を有する基
材の設置
(2)で作製した微粒子分散液を容器に充填し若干オー
バーフローするところまで充填した。すぐに上部電極を
有する基材を覆いかぶせクランプで固定した。この状態
で容器はほぼ密閉状態となった。
(5)電界印加による微粒子配列
上部および下部電極にそれぞれの極性で交番電界を印加
した。電圧は50Vで、駆動周波数は10Hzで行っ
た。この状態で20分間保持し、最後に、下部電極にマ
イナス50V印加した状態で10分間保持した。この間
にクランプをはずし、上部電極を有する基材を静かにず
らし、はずした。この状態で容器は開放状態となった。(4) Filling of Dispersion Liquid and Installation of Substrate Having Upper Electrode The fine particle dispersion liquid prepared in (2) was filled in a container until it overflowed slightly. Immediately, the substrate having the upper electrode was covered and fixed with a clamp. In this state, the container was almost sealed. (5) An alternating electric field was applied to the upper and lower electrodes of the fine particle array by applying an electric field with respective polarities. The voltage was 50 V and the driving frequency was 10 Hz. This state was maintained for 20 minutes, and finally, a state in which -50 V was applied to the lower electrode was maintained for 10 minutes. During this time, the clamp was removed, and the base material having the upper electrode was gently displaced and removed. In this state, the container was opened.
【0053】(6)紫外線硬化樹脂による微粒子配列装
置の固定
容器が開放状態となったところで、振動を与えないよう
に注意しながら、図3に模式的に示したように、紫外線
硬化樹脂(スリーボンド社製 一液性紫外線硬化樹脂)
を5mL静かに滴下し、紫外線照射装置(波長:312
nm)を用いて、3分間紫外線の照射を行った。これに
より、固定化された微粒子配列装置が得られた。
(7)微粒子配列装置の評価
得られた3次元の微粒子配列装置を走査型電子顕微鏡
(SEM)を用いて観察を行ったところ、ほとんど欠陥
のない最密充填構造の3次元の微粒子配列装置になって
いることが確認された。(6) When the fixing container of the fine particle arraying apparatus using the ultraviolet curable resin is in the open state, as shown schematically in FIG. 3, taking care not to give vibration, the ultraviolet curable resin (three bond) is used. One-component UV curable resin manufactured by the company)
5 mL was dropped gently and the ultraviolet irradiation device (wavelength: 312
(nm) was used for ultraviolet irradiation for 3 minutes. As a result, the immobilized fine particle array device was obtained. (7) Evaluation of fine particle array device The obtained three-dimensional fine particle array device was observed using a scanning electron microscope (SEM). It has been confirmed that
【0054】(実施例6)
(1)下部電極を有する基材および容器の形成
50mm×50mm、厚さ0.5mmの石英基板にスパ
ッタリング法にて金を約2μm成膜し、その基板表面中
央に内径20mm×20mm、外径22mm×22m
m、高さ15mmの直方体状石英管を公知の手段で接着
し、下部電極を有する基材と容器の形成を行った。ま
た、下部電極にパルス駆動が可能な電圧制御装置を接続
し、これまでの実施例とは異なり負の電界を印加できる
ようにした。この理由は以下に説明する。Example 6 (1) Formation of Base Material and Container Having Lower Electrode About 2 μm of gold was deposited by sputtering on a quartz substrate having a size of 50 mm × 50 mm and a thickness of 0.5 mm, and the center of the substrate surface was formed. Inner diameter 20 mm x 20 mm, outer diameter 22 mm x 22 m
A rectangular parallelepiped quartz tube of m and a height of 15 mm was adhered by a known means to form a base material having a lower electrode and a container. Further, a voltage control device capable of pulse driving is connected to the lower electrode so that a negative electric field can be applied unlike the previous embodiments. The reason for this will be described below.
【0055】(2)微粒子分散液の作製
本実施例では、これまでの実施例とは異なり、純水90
mLにアルミナ微粒子(アドマテックス社製 AO−5
02 平均粒径=約700nm)を5mg液中に分散さ
せ、更に液性を酸性に制御するために、塩酸(関東化学
社製 JIS特級 35.0−37.0%)を200μL
添加した。分散液のpHは「2.55」であった。この
ようにする理由は、以下のことによる。つまり、アルミ
ナ微粒子の等電点は一般的に「9.0」といわれている
ので、純水のように、中性(pH=7.0)の溶液では
界面電位がそれほど大きくはない。従って、アルミナ微
粒子を制御性良く電気泳動させるには、液性を酸性側に
して、界面電位を大きくすることが有効である。本発明
のごとく、溶液系を用いることにより、液性も制御が可
能となり、幅広い材料への応用が可能となるものであ
る。(2) Preparation of Fine Particle Dispersion In this example, different from the previous examples, pure water 90
Alumina fine particles (AO-5 manufactured by Admatex Co., Ltd.)
02 average particle size = about 700 nm) was dispersed in 5 mg liquid, and 200 μL of hydrochloric acid (JIS special grade 35.0-37.0% manufactured by Kanto Chemical Co., Inc.) was added to control the liquidity to be acidic.
Was added. The pH of the dispersion was "2.55". The reason for doing this is as follows. That is, since the isoelectric point of alumina fine particles is generally said to be “9.0”, the interface potential is not so large in a neutral (pH = 7.0) solution like pure water. Therefore, in order to allow the alumina fine particles to be electrophoresed with good controllability, it is effective to make the liquidity acidic and increase the interfacial potential. By using a solution system as in the present invention, it is possible to control the liquidity and to apply it to a wide range of materials.
【0056】(3)上部電極を有する基材の形成
下部電極を有する基材の形成と同様の手法で、上部電極
として機能する金薄膜を有する基材を形成した。また、
上部電極にパルス駆動が可能な電圧制御装置を接続し、
正の電界を印加できるようにした。
(4)分散液の充填と上部電極を有する基材の設置
(2)で作製した微粒子分散液を容器に充填し若干オー
バーフローするところまで充填した。すぐに上部電極を
有する基材を覆いかぶせクランプで固定した。この状態
で容器はほぼ密閉状態となった。(3) Formation of Base Material Having Upper Electrode A base material having a gold thin film functioning as an upper electrode was formed in the same manner as the formation of the base material having the lower electrode. Also,
Connect a voltage control device capable of pulse drive to the upper electrode,
A positive electric field can be applied. (4) Filling of dispersion liquid and installation of base material having upper electrode The fine particle dispersion liquid prepared in (2) was filled in a container until a slight overflow occurred. Immediately, the substrate having the upper electrode was covered and fixed with a clamp. In this state, the container was almost sealed.
【0057】(5)電界印加による微粒子配列
上部および下部電極にそれぞれの極性で交番電界を印加
した。電圧は50Vで、駆動周波数は10Hzで行っ
た。このときの上部および下部電極に印加した電界のタ
イムチャートを示したものが図6である。この状態で2
0分間保持し、最後に、下部電極にマイナス50V印加
した状態で10分間保持した。この間にクランプをはず
し、上部電極を有する基材を静かにずらし、はずした。
この状態で容器は開放状態となった。(5) Alternating electric fields with different polarities were applied to the upper and lower electrodes of the fine particle array by applying an electric field. The voltage was 50 V and the driving frequency was 10 Hz. FIG. 6 shows a time chart of the electric fields applied to the upper and lower electrodes at this time. 2 in this state
It was maintained for 0 minutes, and finally, it was maintained for 10 minutes while applying -50 V to the lower electrode. During this time, the clamp was removed, and the base material having the upper electrode was gently displaced and removed.
In this state, the container was opened.
【0058】(6)溶液成分の乾燥
容器が開放状態となったところで、振動を与えないよう
に注意しながら、溶液成分が自然乾燥するのをまった。
約2時間後に乾燥が完了した。
(7)微粒子配列装置の評価
得られた3次元の微粒子配列装置を走査型電子顕微鏡
(SEM)を用いて観察を行ったところ、若干欠陥はあ
るもののほぼ最密充填構造になっていることが確認され
た。(6) Drying of solution components When the container was opened, the solution components were allowed to dry naturally, taking care not to apply vibration.
Drying was complete after about 2 hours. (7) Evaluation of Fine Particle Arrangement Device The obtained three-dimensional fine particle arrangement device was observed using a scanning electron microscope (SEM). As a result, it was found that the structure had a close-packed structure although there were some defects. confirmed.
【0059】[0059]
【発明の効果】請求項1に対応する作用効果
溶液系、すなわち微粒子を分散させた溶液を容器に保持
し、下部および上部の電極に電圧を印加することによっ
て微粒子を配列させるために、重力のみでは沈降しない
超微粒子であっても、高規則性を有する微粒子配列装置
を作成することができる。The action and effect solution system according to claim 1, that is, a solution in which fine particles are dispersed is held in a container, and only the gravity is used to arrange the fine particles by applying a voltage to the lower and upper electrodes. Thus, it is possible to prepare a fine particle arranging device having high regularity even for ultrafine particles that do not settle.
【0060】請求項2に対応する作用効果
前記上部および下部電極に直流の電圧を印加する際に極
性を交互に変化させる、いわゆる交番電界を印加するた
めに、重力による沈降と、電界による移動を最適に制御
することができる。Action and Effect Corresponding to Claim 2 In order to apply a so-called alternating electric field, which changes the polarity alternately when a DC voltage is applied to the upper and lower electrodes, sedimentation due to gravity and movement due to the electric field are performed. It can be controlled optimally.
【0061】請求項3に対応する作用効果
前記上部または下部電極どちらか一方に交流の電圧を印
加し、他方の電極にその周波数と同期して直流の電圧を
印加するために、簡単なプロセスで、制御性良く微粒子
を配列させることができる。Action and Effect Corresponding to Claim 3 In order to apply an AC voltage to one of the upper and lower electrodes and to apply a DC voltage to the other electrode in synchronization with the frequency, a simple process is performed. The fine particles can be arranged with good controllability.
【0062】請求項4に対応する作用効果
電極に印加する電圧を徐々に減少させる工程を含むこと
を特徴としているので、効率よく、短時間で、最も安定
な状態、すなわち、欠陥が無く、高規則性を持って配列
した、微粒子構造体を得ることができる。Since the method includes the step of gradually decreasing the voltage applied to the working effect electrode corresponding to claim 4, it is an efficient and short-time most stable state, that is, there is no defect and high. It is possible to obtain a fine particle structure that is regularly arranged.
【0063】請求項5に対応する作用効果
下部電極を有する下部基材が多孔質材料であるために、
微粒子配列の際、または配列後に、溶液成分のみを下方
に除去することができ、乾燥状態の3次元微粒子配列装
置を容易に得ることができる。Since the lower base material having the lower electrode having the function and effect corresponding to claim 5 is a porous material,
Only the solution component can be removed downward during or after the fine particle arrangement, and a dry three-dimensional fine particle arrangement device can be easily obtained.
【0064】請求項6に対応する作用効果
多孔質材料がゼオライトであるために、安全でかつ取り
扱いが容易であり、溶液成分の通過速度が速いという効
果が得られる。Since the porous material is zeolite, it is safe and easy to handle, and the solution component has a high passage speed.
【0065】請求項7に対応する作用効果
多孔質材料がポーラスシリコンであるために、安全でか
つ取り扱いが容易であり、溶液成分の通過速度が速いと
いう効果が得られる。Action and Effect Corresponding to Claim 7 Since the porous material is porous silicon, it is safe and easy to handle, and the solution component has a high passage speed.
【0066】請求項8に対応する作用効果
下部電極を有する下部基材が多孔質材料であるために、
微粒子配列の際、または配列後に、溶液成分のみを下方
に除去することができ、乾燥状態の3次元微粒子配列装
置を容易に得ることができる。また、欠陥がなく微細で
かつ高規則性を持った配列微粒子を有する装置が容易に
得られる。Since the lower base material having the lower electrode having the function and effect corresponding to claim 8 is a porous material,
Only the solution component can be removed downward during or after the fine particle arrangement, and a dry three-dimensional fine particle arrangement device can be easily obtained. Further, it is possible to easily obtain a device having fine array particles having no defects and having high regularity.
【0067】請求項9に対応する作用効果
配列した微粒子を紫外線硬化樹脂を用いて固定化するた
めに、フォトニック結晶などの光学部品、その他の応用
が容易に可能となる。Since the fine particles having the function and effect arrangement corresponding to the ninth aspect are fixed by using the ultraviolet curing resin, optical parts such as a photonic crystal and other applications can be easily made.
【0068】請求項10に対応する作用効果
微粒子を分散させた液体の液性を、基材および微粒子に
応じて最適化するために、欠陥がなく微細でかつ高規則
性を持った配列微粒子を有する装置が容易に得られる。In order to optimize the liquidity of the liquid in which the fine particles are dispersed according to the substrate and the fine particles, fine aligned fine particles having no defects and having high regularity are used. The device it has is easily obtained.
【図1】 本発明による微粒子配列装置の製造方法を模
式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing a method for manufacturing a fine particle array device according to the present invention.
【図2】 下部基材として多孔質材料を用いた場合の様
子を模式的に示した図である。FIG. 2 is a diagram schematically showing a state in which a porous material is used as a lower base material.
【図3】 紫外線硬化樹脂を滴下し、紫外光を照射して
樹脂を硬化させる場合の例を模式的に示した図である。FIG. 3 is a diagram schematically showing an example in which an ultraviolet curable resin is dropped and irradiated with ultraviolet light to cure the resin.
【図4】 本発明の方法によって制作された微粒子配列
装置の例を示す図である。FIG. 4 is a diagram showing an example of a fine particle array device manufactured by the method of the present invention.
【図5】 上部および下部電極に印加する電界のタイム
チャートの一例を示す図である。FIG. 5 is a diagram showing an example of a time chart of electric fields applied to upper and lower electrodes.
【図6】 上部および下部電極に印加する電界のタイム
チャートの他の例を示す図である。FIG. 6 is a diagram showing another example of a time chart of electric fields applied to upper and lower electrodes.
1…容器、2…下部基材、3…下部電極、4…上部基
材、5…上部電極、6,7…直流電圧制御装置、10…
溶液、10′…液滴、11…微粒子、20…紫外線硬化
樹脂。DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Lower base material, 3 ... Lower electrode, 4 ... Upper base material, 5 ... Upper electrode, 6,7 ... DC voltage control apparatus, 10 ...
Solution, 10 '... Droplet, 11 ... Fine particle, 20 ... UV curable resin.
Claims (11)
製造方法において、少なくとも溶液を保持することので
きる容器と、該容器の下部の下部電極と、該容器の上部
の上部電極とを用い、該容器内に微粒子を分散させた溶
液を保持し、前記下部および上部の電極もしくはどちら
か一方の電極に電圧を印加することによって生じる電気
泳動現象を利用して前記容器内に微粒子を規則的に配列
させることを特徴とする微粒子配列方法。1. A method of manufacturing a fine particle arranging device in which fine particles are arranged, wherein at least a container capable of holding a solution, a lower electrode below the container, and an upper electrode above the container are used, A solution in which fine particles are dispersed is held in the container, and fine particles are regularly formed in the container by utilizing an electrophoretic phenomenon generated by applying a voltage to the lower electrode and the upper electrode or one of the electrodes. A method for arranging fine particles, which comprises arranging them.
を印加する際に、極性を交互に変化させるいわゆる交番
電界を印加することを特徴とする請求項1に記載の微粒
子配列方法。2. The method of arranging fine particles according to claim 1, wherein when a direct current voltage is applied to the upper and lower electrodes, a so-called alternating electric field that alternately changes polarities is applied.
交流の電圧を印加し、他方の電極にその周波数と同期し
て直流の電圧を印加することを特徴とする請求項1に記
載の微粒子配列方法。3. The fine particle array according to claim 1, wherein an AC voltage is applied to one of the upper electrode and the lower electrode, and a DC voltage is applied to the other electrode in synchronization with the frequency. Method.
部および上部の電極もしくはどちらか一方の電極に印加
する電圧を徐々に減少させる工程を含むことを特徴とす
る微粒子配列方法。4. The method of arranging fine particles according to claim 1, further comprising a step of gradually decreasing a voltage applied to the lower and upper electrodes or one of the electrodes.
有し、該下部基材が多孔質材料であることを特徴とする
請求項1乃至4のいずれかに記載の微粒子配列方法。5. The method for arranging fine particles according to claim 1, further comprising a lower base material having the lower electrode on an upper portion thereof, wherein the lower base material is a porous material.
を特徴とする請求項5に記載の微粒子配列方法。6. The method of arranging fine particles according to claim 5, wherein the porous material is zeolite.
ることを特徴とする請求項5に記載の微粒子配列方法。7. The method of arranging fine particles according to claim 5, wherein the porous material is porous silicon.
粒子配列の際または配列後に、前記基材の細孔を通じ
て、溶液成分のみを下方に除去することを特徴とする微
粒子配列方法。8. The method of arranging fine particles according to claim 5, wherein only the solution component is removed downward through the pores of the base material during or after the arrangement of the fine particles.
硬化樹脂を用いて固定化することを特徴とする請求項8
に記載の微粒子配列方法。9. The arrayed fine particles left on the base material are fixed by using an ultraviolet curable resin.
5. The method for arranging fine particles according to item 4.
を、前記基材および微粒子に応じて最適化することを特
徴とする請求項5乃至9に記載の微粒子配列方法。10. The method for arranging fine particles according to claim 5, wherein the liquid property of the liquid in which the fine particles are dispersed is optimized according to the base material and the fine particles.
方法によって製作された微粒子配列装置。11. A fine particle array device manufactured by the method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001283732A JP2003089896A (en) | 2001-09-18 | 2001-09-18 | Particle arraying method, and particle arraying device manufactured by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001283732A JP2003089896A (en) | 2001-09-18 | 2001-09-18 | Particle arraying method, and particle arraying device manufactured by the method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003089896A true JP2003089896A (en) | 2003-03-28 |
Family
ID=19107181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001283732A Pending JP2003089896A (en) | 2001-09-18 | 2001-09-18 | Particle arraying method, and particle arraying device manufactured by the method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003089896A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007084852A (en) * | 2005-09-20 | 2007-04-05 | Omron Corp | Method of forming dielectric film |
JP2009006311A (en) * | 2007-05-31 | 2009-01-15 | National Univ Corp Shizuoka Univ | Fine particle fixing device and fine particle fixing method |
JP2009216862A (en) * | 2008-03-10 | 2009-09-24 | Toshiba Corp | Light taking-out layer for luminous device and organic electroluminescence element using the same |
JP2009256790A (en) * | 2008-03-19 | 2009-11-05 | Tam Network Kk | Coating method of titanium oxide |
US7850938B2 (en) | 2004-03-17 | 2010-12-14 | Denki Kagaku Kogyo Kabushiki Kaisha | Silicon particles, silicon particle superlattice and method for producing the same |
WO2011135924A1 (en) * | 2010-04-27 | 2011-11-03 | 独立行政法人物質・材料研究機構 | Metal nanoparticle array structure, device for producing same, and method for producing same |
CN103499850A (en) * | 2013-09-29 | 2014-01-08 | 京东方科技集团股份有限公司 | Slit grating structure and display device |
-
2001
- 2001-09-18 JP JP2001283732A patent/JP2003089896A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7850938B2 (en) | 2004-03-17 | 2010-12-14 | Denki Kagaku Kogyo Kabushiki Kaisha | Silicon particles, silicon particle superlattice and method for producing the same |
US8221881B2 (en) | 2004-03-17 | 2012-07-17 | Denki Kagaku Kogyo Kabushiki Kaisha | Silicon particle, silicon particle superlattice and method for producing the same |
JP2007084852A (en) * | 2005-09-20 | 2007-04-05 | Omron Corp | Method of forming dielectric film |
JP2009006311A (en) * | 2007-05-31 | 2009-01-15 | National Univ Corp Shizuoka Univ | Fine particle fixing device and fine particle fixing method |
JP2009216862A (en) * | 2008-03-10 | 2009-09-24 | Toshiba Corp | Light taking-out layer for luminous device and organic electroluminescence element using the same |
JP2009256790A (en) * | 2008-03-19 | 2009-11-05 | Tam Network Kk | Coating method of titanium oxide |
WO2011135924A1 (en) * | 2010-04-27 | 2011-11-03 | 独立行政法人物質・材料研究機構 | Metal nanoparticle array structure, device for producing same, and method for producing same |
JP5669276B2 (en) * | 2010-04-27 | 2015-02-12 | 独立行政法人物質・材料研究機構 | Metal nanoparticle array structure, manufacturing apparatus thereof, and manufacturing method thereof |
US9096954B2 (en) | 2010-04-27 | 2015-08-04 | National Institute For Materials Science | Metal nanoparticle array structure, device for producing same, and method for producing same |
CN103499850A (en) * | 2013-09-29 | 2014-01-08 | 京东方科技集团股份有限公司 | Slit grating structure and display device |
US9860523B2 (en) | 2013-09-29 | 2018-01-02 | Boe Technology Group Co., Ltd. | Slit grating structure and display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dutta et al. | Self-organization of colloidal nanoparticles | |
Li et al. | Colloidal assembly: the road from particles to colloidal molecules and crystals | |
Xu et al. | A review on colloidal self-assembly and their applications | |
KR101313812B1 (en) | Method of fabrication of liquid film, method of arranging nano paticles and substrate to have liquid thin film manufactured by using the same | |
Simoncelli et al. | Combined optical and chemical control of a microsized photofueled Janus particle | |
JP2003089896A (en) | Particle arraying method, and particle arraying device manufactured by the method | |
Golubina et al. | Interfacial synthesis: morphology, structure, and properties of interfacial formations in liquid–liquid systems | |
Zheng et al. | Five in One: Multi‐Engine Highly Integrated Microrobot | |
JP4170619B2 (en) | Method for producing fine particle structure | |
JP4024532B2 (en) | Fine particle array film forming method | |
CN102586883B (en) | Method for assembling three-dimensional photonic crystal in electric control mode | |
JP4611583B2 (en) | Artificial crystal forming device | |
CN109553063B (en) | Method for one-dimensional co-assembly of micro-particles and/or nano-particles with different particle sizes, substrate and application | |
US10131755B2 (en) | System and method for formation of thin films with self-assembled monolayers embedded on their surfaces | |
JP4412634B2 (en) | Method for producing artificial crystal and method for producing structure using the method | |
JPWO2003040025A1 (en) | Fine particle film and manufacturing method thereof | |
US7771787B2 (en) | Particle lithography method and ordered structures prepared thereby | |
JP3768568B2 (en) | Secondary thin film integration method of nanoscale fine particles | |
JP2003088752A (en) | Fine particle arrangement apparatus and method for preparing the same | |
JP2004344854A (en) | Method of forming fine particles accumulated body | |
JP2007169669A (en) | Packed body of particles and method of arraying and packing particles | |
JP4546129B2 (en) | PRODUCTION METHOD FOR DIFFERENT SIZE PARTICLE ASSEMBLY, DIFFERENT SIZE PARTICLE ASSEMBLY, AND DIFFERENT SIZE PARTICLE ASSEMBLY LINE | |
JP4375927B2 (en) | Method for producing artificial crystal and method for producing structure using the method | |
Lai et al. | Imaging of nanoscale particles in microfluidic devices using super-lens manipulated by optically-induced dielectrophoresis | |
JP4129560B2 (en) | Method for manufacturing electron-emitting device and electron-emitting device |