JPH0466118A - Manufacture of fine particle - Google Patents

Manufacture of fine particle

Info

Publication number
JPH0466118A
JPH0466118A JP17892690A JP17892690A JPH0466118A JP H0466118 A JPH0466118 A JP H0466118A JP 17892690 A JP17892690 A JP 17892690A JP 17892690 A JP17892690 A JP 17892690A JP H0466118 A JPH0466118 A JP H0466118A
Authority
JP
Japan
Prior art keywords
particles
fine particles
vessels
porous plate
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17892690A
Other languages
Japanese (ja)
Inventor
Minoru Koda
穣 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP17892690A priority Critical patent/JPH0466118A/en
Publication of JPH0466118A publication Critical patent/JPH0466118A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce fine particles having diameters smaller than specific particle diameter by crushing particles in a ball mill, while the particles are classified by means of a porous plate or porous membrane. CONSTITUTION:A porous plate or a porous membrane 3 made from ceramics, metal, etc., is interposed between a pair of vessels 1 provided with a cover plate 2 on each of the opposite ends of vessels. If solvent 10, balls 11, particles 12 of Al2O3, TiO2, etc., are placed in the vessels 1 and voltage is applied, the particles 12 are moved by electrophoresis, while being crushed, so that only those particles, which are allowed to pass through the porous plate 3, moves toward one of the ends of the vessels 1 and are crushed further. Since crushing in the ball mill and classification of particles are parallelly performed, particles with diameters smaller than specific diameter can be produced efficiently.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、セラミック産業に利用される微粒子の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing fine particles used in the ceramic industry.

[従来の技術] 従来から、酸化物の微粒子を製造する方法として、コス
ト、大量生産性、超微粒子化などの面から湿式共沈法が
多用されている。
[Prior Art] Conventionally, a wet coprecipitation method has been widely used as a method for producing oxide fine particles from the viewpoints of cost, mass productivity, ultrafine particle formation, etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術には、微粒子の粒径がまばらであって特定
の粒径以下(特に1ltll以下)の微粒子を選択的に
取り出すことが困難であるとともに、微粒子を乾燥させ
ると凝集粉が形成されることから製造後、新たに凝集粉
を粉砕したり除去したりする工程が必要となる、という
問題がある。
In the above conventional technology, the particle size of the fine particles is sparse, and it is difficult to selectively take out fine particles with a specific particle size or less (particularly 1 ltll or less), and when the fine particles are dried, agglomerated powder is formed. Therefore, there is a problem in that, after production, a new step of pulverizing or removing the aggregated powder is required.

本発明は以上の点に鑑み、特定の粒径以下の小さな微粒
子を容易に製造する方法を提供するものである。
In view of the above points, the present invention provides a method for easily producing small particles having a specific particle size or less.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するため、本発明に係る微粒子の製造方
法は、ボールミルによる微粒子の粉砕工程と、多孔質板
または多孔質膜による微粒子の分別工程とを同時に行な
うことを特徴とする。
In order to solve the above problems, the method for producing fine particles according to the present invention is characterized in that a step of pulverizing the fine particles using a ball mill and a step of separating the fine particles using a porous plate or a porous membrane are performed simultaneously.

【作 用〕[For production]

微粒子の素材である粒子を大量処理が可能なボールミル
によって粉砕し、該粉砕工程の中途で多孔質板または多
孔質膜を通過するか否かによって特定の粒径以下の微粒
子を分別する。
Particles, which are the material of the fine particles, are crushed by a ball mill capable of mass processing, and in the middle of the crushing process, fine particles having a specific particle size or less are separated depending on whether they pass through a porous plate or a porous membrane.

多孔質板または多孔質膜にはその材質としてセラミック
、金属または高分子を用い、必要とされる粒径と同等の
孔径なもつものを選択使用する。
The material for the porous plate or porous membrane is ceramic, metal, or polymer, and a material with a pore size equivalent to the required particle size is selected.

孔径は約0.O1〜数lOμmである。多孔質板または
多孔質膜はボールミルに使用されるボールと同等かそれ
以上の硬度をもつものであることが好ましいが、脆弱な
材質である場合にも該多孔質板または多孔質膜の両側に
SUSなどの強度に優れた材質であってボールより小さ
い径の孔を穿ったものを支持板として用いれば良い。ボ
ールはアルミナ、SOS%5L3N4 、メノウなどで
ある。
The pore diameter is approximately 0. It is O1 to several lOμm. It is preferable that the porous plate or porous membrane has a hardness equal to or higher than that of the balls used in a ball mill, but even if it is made of a brittle material, there is a hardness on both sides of the porous plate or porous membrane. The support plate may be made of a material with excellent strength, such as SUS, and has holes smaller in diameter than the balls. The balls are made of alumina, SOS%5L3N4, agate, etc.

粒子の移動にはコロイド分散系に特有なゼータ電位を利
用して粒子を電気泳動させる。印加する電圧は直流で1
00V以下で充分である。また解膠剤として無機系のバ
インダ、有機系のバインダおよび活性剤を使用すると効
果的である。また溶媒は水、有機溶媒の何れでも良く、
目的に合わせて選択使用する。
To move the particles, the zeta potential, which is unique to colloidal dispersion systems, is used to electrophores the particles. The applied voltage is DC 1
00V or less is sufficient. Furthermore, it is effective to use an inorganic binder, an organic binder, and an activator as the deflocculant. The solvent may be water or an organic solvent,
Select and use according to the purpose.

本発明の対象とされる金属駿化物としてはAl*Os 
、Ti0i、Zr0a、CuO、MgO、5nOz、各
種フェライト類(Fe1O4、N1Fea04、Baフ
ェライト) 、BaTiOx、5iTiOs、PbTi
0.などと、これらの混合物を挙げることができる。
The metal sulfuride targeted by the present invention is Al*Os.
, Ti0i, Zr0a, CuO, MgO, 5nOz, various ferrites (Fe1O4, N1Fea04, Ba ferrite), BaTiOx, 5iTiOs, PbTi
0. and mixtures thereof.

〔実 施 例〕〔Example〕

つぎに本発明の詳細な説明すると、図面は微粒子粉砕分
別装置の概略を示している。
Next, to explain the present invention in detail, the drawings schematically show a fine particle crushing and sorting device.

1対の容器(1)(1)の端部に蓋(2) (2)が被
せられ、容器(1) (1)の間に多孔質板(3)が挟
設されている。(4)は電源、(5)は−極、(6)は
土掻、(7) (7)は仕切板、(8)・・・・・はシ
ール、(9) (9)は固定ねじであって、この容器(
1)の内部に溶媒(lO)、ボール(11)、粒子(1
2)を収容して電圧を印加する。多孔質板(3)は平均
孔径1−のアルミナであって、ボール(11)はφ5の
アルミナを多数入れである。容器(1)の内容積は50
0 @Rである。市販のTiOx (平均粒径5 pr
y ) (12)lOgを水(PH7)(10) 20
0−とともに右側の容器(1)に入れ、20Vの直流電
圧を印加する。TiO□は水中では表面が負に滞電して
おり、Tioz粒子(12)は図上右から左へ移動し、
多孔質板(3)で粒径が分別されてl pmの孔を通過
し得る微粒子(12°)だけが左側の容器(1)へ移動
してボール(11)による粉砕を続けられる。1週間の
処理後、左側の容器(1)へ移動した微粒子(12°)
を取り出したところ、約3g、平均粒径0.3pmのT
iO微粒子(12°)を分別することができ、得られた
微粒子(12°)に1μm以上の大きなものや凝集粉は
確認されなかった。
The ends of a pair of containers (1) (1) are covered with lids (2) (2), and a porous plate (3) is sandwiched between the containers (1) (1). (4) is the power supply, (5) is the negative pole, (6) is the soil scraper, (7) (7) is the partition plate, (8)... is the seal, (9) (9) is the fixing screw And this container (
1) contains the solvent (lO), the ball (11), and the particle (1).
2) is accommodated and voltage is applied. The porous plate (3) is made of alumina with an average pore diameter of 1-, and the balls (11) are made of alumina with a diameter of φ5. The internal volume of container (1) is 50
0 @R. Commercially available TiOx (average particle size 5 pr
y) (12) lOg of water (PH7) (10) 20
0- in the container (1) on the right, and apply a DC voltage of 20V. The surface of TiO□ is negatively charged in water, and the Tioz particle (12) moves from right to left in the figure.
The particle size is separated by the porous plate (3), and only the fine particles (12°) that can pass through the 1 pm holes are moved to the container (1) on the left and continue to be pulverized by the balls (11). After one week of treatment, fine particles moved to the left container (1) (12°)
When taken out, about 3g of T with an average particle size of 0.3pm was found.
The iO fine particles (12°) could be separated, and no particles larger than 1 μm or agglomerated powder were found in the fine particles (12°) obtained.

本願発明者らは、これと並行して比較例の実験を行なっ
ている。すなわち、上記実施例で用いた素材(TiO2
)を同じ条件で先行してボールミルのみ行ない、その後
、電場をかけて微粒子を分別したところ(1週間ボール
ミル、1日電気泳動)、得られた微粒子は約1.2 g
、平均粒径0.5μmであった。
In parallel with this, the inventors of the present application are conducting experiments on comparative examples. That is, the material used in the above example (TiO2
) was first subjected to ball milling under the same conditions, and then an electric field was applied to separate the fine particles (ball milling for one week, electrophoresis for one day).The fine particles obtained were approximately 1.2 g.
, the average particle size was 0.5 μm.

〔発明の効果] 本発明の微粒子の製造方法は以上説明したように、ボー
ルミルによる微粒子の粉砕工程と、多孔質板または多孔
質膜による微粒子の分割工程とを同時に行なうことを特
徴とするものであって、特定の粒径以下の小さな微粒子
を効率良(得ることができる。
[Effects of the Invention] As explained above, the method for producing fine particles of the present invention is characterized in that the step of crushing the fine particles using a ball mill and the step of dividing the fine particles using a porous plate or a porous membrane are performed simultaneously. Therefore, small particles with a specific particle size or less can be obtained efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に使用する微粒子粉砕分別装置の
概略的な断面図である。 (1)容器  (2)蓋  (3)多孔質板(4)電源
  (5) (6)電極  (7)仕切板(8)シール
  (9)固定ねじ  (10)溶媒(11)ボール 
 (12)粒子  (12°)微粒子〃ル貰板
The drawing is a schematic cross-sectional view of a fine particle crushing and sorting device used in an embodiment of the present invention. (1) Container (2) Lid (3) Porous plate (4) Power source (5) (6) Electrode (7) Partition plate (8) Seal (9) Fixing screw (10) Solvent (11) Ball
(12) Particles (12°) Fine particles

Claims (1)

【特許請求の範囲】[Claims] 1、ボールミルによる微粒子の粉砕工程と、多孔質板ま
たは多孔質膜による微粒子の分別工程とを同時に行なう
ことを特徴とする微粒子の製造方法。
1. A method for producing fine particles, which comprises simultaneously carrying out the step of pulverizing the fine particles using a ball mill and the step of separating the fine particles using a porous plate or a porous membrane.
JP17892690A 1990-07-06 1990-07-06 Manufacture of fine particle Pending JPH0466118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17892690A JPH0466118A (en) 1990-07-06 1990-07-06 Manufacture of fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17892690A JPH0466118A (en) 1990-07-06 1990-07-06 Manufacture of fine particle

Publications (1)

Publication Number Publication Date
JPH0466118A true JPH0466118A (en) 1992-03-02

Family

ID=16057059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17892690A Pending JPH0466118A (en) 1990-07-06 1990-07-06 Manufacture of fine particle

Country Status (1)

Country Link
JP (1) JPH0466118A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT412091B (en) * 2001-06-01 2004-09-27 Saint Gobain Ceramics METHOD FOR GRINDING ALPHA ALUMINUM OXIDE IN A BALL MILL BY MEANS OF ALPHA ALUMINUM OXIDE PARTICLES AS A GRINDING BODY
KR100470444B1 (en) * 2000-07-20 2005-02-07 조극래 Manufacturing process and an apparatus for nonstoichiometric compounds of titanium, metal or nonferrous metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470444B1 (en) * 2000-07-20 2005-02-07 조극래 Manufacturing process and an apparatus for nonstoichiometric compounds of titanium, metal or nonferrous metal
AT412091B (en) * 2001-06-01 2004-09-27 Saint Gobain Ceramics METHOD FOR GRINDING ALPHA ALUMINUM OXIDE IN A BALL MILL BY MEANS OF ALPHA ALUMINUM OXIDE PARTICLES AS A GRINDING BODY

Similar Documents

Publication Publication Date Title
JPH0466118A (en) Manufacture of fine particle
Esmaeilzadeh et al. Effect of dispersant on chain formation capability of TiO2 nanoparticles under low frequency electric fields for NO2 gas sensing applications
Knoll et al. Advances in electrostatic separation
Huang et al. A new optically-induced dielectrophoretic (ODEP) force-based scheme for effective cell sorting
Mukaibo et al. Ultrathin nanoporous membranes for insulator-based dielectrophoresis
US20130206598A1 (en) Capacitive deionization apparatus
Larroyd et al. Purification of north Brazilian kaolin by selective flocculation
Qiu et al. Weak electrostatic interaction enabled highly oriented assembly of gold nanorods onto ultrathin flagella bionanofibers
Petroff et al. Zeta potential modification of ceramic powders using zirconium hydrogel
CA1208614A (en) Method for fabricating ceramic materials
Lin et al. High-intensity, high-gradient electric separation and dielectric filtration of particulate and granular materials
Huiying et al. Separation and manipulation of rare-earth oxide particles by dielectrophoresis
JP5891320B1 (en) Processing method using zeta potential control method
Gao et al. Influence of Tourmaline on DPC Pore Structure and Removal Effect on Malachite Green
JPH02297812A (en) Sintered body of oxide, manufacture thereof, and target using same
JP2006265571A (en) Article having ceramic particles oriented and layered thereon, and production method therefor
SE8603074D0 (en) PROCEDURAL KIT FOR SURFACE MODIFICATION OF OXIDIC AND NON-OXIDIC CERAMIC MATERIALS
US3009573A (en) Electrostatic separation of minerals
RU2149687C1 (en) Method for breaking rigid dielectric and semiconductive materials
JPS6092834A (en) Activating device
RU2158183C1 (en) Installation for electrostatic treatment of binding material
ES447339A1 (en) Method and machine for manufacturing a plate-like material made from agglomerated particles and in particular ceramic products obtained thereby
JPS63229161A (en) Classification of polishing abrasive particles
SU428767A1 (en) METHOD FOR CLEANING GAS FROM DUST
TWI245662B (en) Method for producing slurry with high powder content by auxiliary vibration